
CCFinderSW: Clone Detection Tool
with Flexible Multilingual Tokenization

Yuichi Semura∗, Norihiro Yoshida†, Eunjong Choi‡ and Katsuro Inoue∗
∗Osaka University, Japan

{y-semura, inoue}@ist.osaka-u.ac.jp
†Nagoya University, Japan

yoshida@ertl.jp
‡Nara Institute of Science and Technology, Japan

choi@is.naist.jp

Abstract—So far, many tools have been developed for the
detection of code clones in source code. The existing clone
detection tools support only a limited number of programming
languages and do not provide any easy extension mechanism to
handle additional language. However, from our experience in in-
dustry/university collaboration, we found that many practitioners
need to analyze source code written in various languages. In this
paper, we propose a clone detection tool CCFinderSW that has
extension mechanism to handle addition language on demand
from practitioners.

I. INTRODUCTION

Programmers often copy and paste code so that they can

reuse existing code fragments. This causes code clones, code

fragments that are identical or similar code fragments to

each other. Generally, a code clone is regarded as one of

the factors that hinder software maintainability. For instance,

when a cloned code fragment contains a bug, a programmer

should check all of its cloned fragments for the same bug. If

the cloned fragments contain the same bugs, they should be

modified for the same bug. To that end, he/she should know

locations of all code clones in the source code. However, it

is difficult to for developers to recognize all code clone from

large-scale software systems. To alleviate this problem, a mul-

titude of code clone detection tools have been developed. For

example, Kamiya has developed a token-based code detection

tool CCFinderX [2] that is widely used in academic research

as well as industries.
The existing clone detection tools support only a limited

number of programming languages and do not provide any

easy extension mechanism to handle additional language.

From our experience in industry/university collaboration, we

found that many practitioners need to analyze source code

written in various languages.
In this paper, we propose a clone detection tool CCFind-

erSW that has extension mechanism to handle addition lan-

guage on demand from practitioners. It enables the user to

easily change the lexical mechanism for comment elimination

and identifier replacement.
In the experiment, we compared source code before and

after comments elimination of multiple program languages

to confirm the flexibility and changeable of lexical analy-

sis mechanism in the CCFinderSW. As a result, it was

found that CCFinderSW can remove comments from about

92% of program languages. Moreover, it was confirmed that

CCFinderSW is able to detect code clones from all program

languages.

II. OVERVIEW OF CCFINDERX

To introduce the mechanism of a token-based clone de-

tection tool, we briefly explain CCFinderX. It identifies not

only Type-1 clones (i.e. identical code fragments except for

variations in whitespace, layout and comments) but also Type-

2 clones (i.e. syntactically identical fragments except for

variations in identifiers, literals, types, whitespace, layout and

comments.) by replacing identifiers related to types, variables,

and constants with a special token.

The code clone detection process of CCFinderX is com-

prised of the following four steps:

Step1: (Lexical analysis) Input source code is divided into

tokens according to a lexical rule of the programming

language. At this step, the white spaces (including

comments) between tokens are removed from the

source code.

Step2: (Transformation) The token sequence is transformed

based on the transformation rules and then each

identifier related to types, variables, and constants

is replaced with a special token. This replacement

makes code fragments with different variable names

to become clone pairs.

Step3: (Detection) From all the substrings on the trans-

formed token sequence, equivalent pairs are detected

as clone pairs using suffix-tree matching algorithm.

Step4: (Formatting) Each location of clone pair is converted

into line numbers on the original source files.

III. A CLONE DETECTION TOOL WITH FLEXIBLE

MULTILINGUAL TOKENIZATION

This section presents an overview of CCFinderSW, a

new code clone detection tool using a flexible tokenization

mechanism for multilingual program languages.

Figure 1 depicts a clone detection process of CCFinderSW.

As you can see in Figure 1, CCFinderSW adopts the same

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.80

654

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.80

654

�������	
���

����������
��

�����������������
��

	������
��

��	
������

����������
�
���
�� �������������

�����������������������	
����������

����
���
�����
�������� �
�

�������!�����

�����"#�
���$������"�������

������������������!�����

�����������������������!�����

Fig. 1. An Overview of CCFinderSW

four clone detection process, same as the CCFinderX. Fur-

thermore, it also identifies Type-1 and Type-2 code clones.

CCFinderSW provides options for changing target com-

ments for the elimination and reserved words. The option

for the comment elimination is used in the lexical analysis

process. The option for the reserved words is adopted for

finding identifiers.

The reminding subsection details the process of CCFind-
erSW. The details of the lexical analysis and transformation

process of the CCFinderSW are described in Sections III-A

and III-B, respectively. In particular, Section III-A explains

comment elimination and tokenization mechanisms in order

to handle multiple program languages. Next, Section III-C

describes the code clone detection process and, finally, Section

III-D describes transforming process.

A. Step 1: Lexical analysis

Lexical Analysis process is comprised of three steps namely

comment elimination, tokenization, and identifier distinction.

Comments in a programming language are used to anno-

tate/explain the source code. Therefore, during the comment

elimination step, they are ignored by default.

In this study, we categorize comments into five comments

styles based on their appearance in the source code in different

program languages. Hereafter, the details of five comment

styles are described with the examples. Note that the red font

in each example represents a comment that is ignored during

the lexical analysis.

a) End of line comment: End of line comment starts with

a symbol (e.g., // in C and Java program) and continues until

the end of the line. The following code fragment demonstrates

an example of the end of line comment in C and Java
programs:

Example of end of line comment� �
v=v+i; //comment

� �
b) Multi-line comment: Multi-line comment comments

out the source code from a start symbol to an end symbol. The

following code fragment illustrates an example of the multi-

line comment in C and Java programs, wheter a start symbol

is /*, and an end symbol is */ .

Example of multi-line comments� �
v=v+i; /*comment

printf(”Hello world”); comment */

printf(”Hello world”); /*comment*/

� �
In several languages, multi-line comments are nested inside

other multi-line comments. The nesting of comment is to

describe more multi-line comment in the multi-line comment.

The following code fragment describes an example of the

nested multi-line comment by other multi-line comments.

Example of nested multi-line comments� �
1 /*

2 /*

3 comment

4 */

5 comment

6 */
� �
If nesting is not permitted, the above example can be inter-

preted as (1) the comment starts with a /* symbol in the 1st

line and continues until a */ symbol on the 4th line or (2) the

comment starts with a /* symbol in the 1st line and continues

until a */ symbol on the 6th line and in both cases, a /* in

the second line is ignored. Meanwhile, if nesting is permitted,

the above example can be interpreted as a multi-line comment

starts with the symbol on the 2nd line and ends at the 4th line,

and other comment starts with the symbol on the 1st line and

ends on the 6th line. It can be seen from this example that

there are big differences in interpreting languages depends on

whether nesting is permitted.

c) Full line comment: Full line comment begins with

a start symbol and comments out full lines of code. The

following code fragment describes an example of the full line

comment in Fortran program, where the start symbol is C or

* Note that different from the end of line comment, the start

symbol does not be interpreted as an indicator for the full line

comment, if it appears in the middle of the line.

Example of full line comment� �
c This is a comment

* This is a comment
� �

d) Full multi-line comment: We defined a comment rule

that regards lines from the line where the start symbol exists

first to the line where the end symbol exists first as a comment.

We named it overall multi-line comment. In Ruby source

codes, lines from =begin to lines starting with =end are

655655

TABLE I
SYNTAX INFORMATION FOR EACH COMMENT STYLE

Comment Style Start symbol End symbol Nesting
End of line comment �

Multi-line coment � � �
Full line comment �

Full multi-line Comment � �
Character and string literals � �

regarded as comments.

Overall multi-line comment� �
=begin comment

puts ”Comment 1” comment

puts ”Comment 2” comment

=end comment

puts ”Hello world”

� �
e) Character and String literals: A character literal and

string literal is a type of literal in programming for the

representation of a value single character and string object

within the source code, respectively. For instance, in Java

program, characters enclosed in single quotes are identified as

a character literal, and characters enclosed in double quotes

are identified as a string literal. These literal are not concisely

comment styles, they are necessary to distinguish literals from

comments. For instance, Therefore, if a character used as a

symbol in the comment style appears in the string literal, it

is not recognized as the start or end point of the comment.

The following code fragment shows an example of a character

literal and string literal in Java program. In this example, the

characters enclosed in double quotes is the start symbol of a

multi-line comment, but they are not regarded as an indicator

for the multi-line comment.
Example of Character and String literals� �

String x = ” Line Comment start = /* ”;

String y = ” Line Comment end = */ ”;

� �
Table I summarizes syntax information of each comment

style based on above-mentioned definitions of comment styles.

In this table, necessary information is marked with �.
After the comments are eliminated from source code based

on the defined comment styles, each line of source code is

divided into tokens based on a lexical rule. The following

four lexical rules are used for the tokenization. Note that a

rule with a low number has a higher priority.

1) Each character literal or string literal corresponds to one

token, respectively.

2) White spaces and line breaks are delimiters.

3) Each symbol is one token.

4) Other consecutive alphabetic or numeric strings are

identified as one token.

B. Step 2: Transformation
In the transformation process, the token sequence is trans-

formed in order to detect meaningful code clones. In detail, all

if b = c value = i ;()=

if(b==c) value=i ;

if $ = $ $ = $;()=

Fig. 2. Tokenization and Transformation

the identifiers representing variable names and function names

are replaced by the same token. Reserved words are strings

that are reserved by the programming language and cannot

be used for variable and function names. For instance, in Java

program, words used for controlling the flow of programs such

as if and while are reserved words.

Figure 2 depicts an example of the tokenization of sour

code. In this figure, green square represents alphabetic strings,

and blue square represents converted variables. As you can see

in this figure, a variable name is converted to the same token

called $.

C. Step 3: Code Clone Detection

Generally, when a clone detection tool identifies code clones

from large-scale software systems, it takes a huge amount of

time or crashed due to lack of memory space [5]. To tackle

this problem, CCFinderSW adopts n-gram for detecting clone

detection with high speed. N-gram is a contiguous sequence

of n words from a given sequence of string or words. It is

frequently used to investigate the occurrence frequency of

contiguous strings in the statistical field of natural linguistics

or searching matching string.

Hereafter, the details of the process of code clone detection

are explained. At first, CCFinderSW extracts n-gram from a

sequence of transformed tokens, based on a threshold value

set by the user. This threshold value represents that textsfC-

CFinderSW only detects code clones that are more than n

token length.

Suppose that user set up 4 as a threshold value when

executing CCFinderSW and a sequence of transformed tokens

is sethesetheses.

Based on this threshold value, CCFinderSW then creates

a list of tuples (index, n-gram, hash value), where (1) index
is an integer denoting the position of n-gram in the sequence

(2) n-gram is a sequence contiguous of tokens with n token

length based on a value defined by user and (3) hash value
is a hash code for the n-gram.

The reason for using hash code is that comparison of

numerical values is faster than comparison of strings. To

calculate hash code, a hashcode() method in a class String
was used.

Table III illustrates a created list from sethesetheses with

the 4 threshold value 1.

Next, it selects a unique hash value and its corresponding

index from the list and then creates a unique list, which

1For the simplicity, this paper explains with character-based n-grams. Note
that token-based n-grams are used in CCFinderSW.

656656

TABLE II
AN EXAMPLE OF 4-GRAMS

order 4-gram
0 if($=
1 ($==
2 $==$
3 ==$)
4 =$)$
5 $)$+
6)$=$
7 $=$;

contains unique hash value and its index. Table IV illustrates

a unique list created from the Table III. As can be seen in the

table, the hash value in the unique list contains more than two

index values, because a hash value might appear more than

twice.

Finally, code clones are identified based on the unique list.

For that end, firstly, code clones whose token length is equal

to the n threshold value are detected by using hash value and

index value in the unique list. That is, the hash value with

multiple index values implies that the same code appears in

the multiple places, which indicates the existences of code

clones. For example, in the first row of the list in the table

IV, the index values of a (1234) hash value are {0, 5}. This

means that the same hash value appearing in both 0th and 5th

positions. This means that 4-grams appearing from 0th and

5th positions are equivalent. Therefore, 4 characters appearing

from 0th to 3rd and 4 characters from the 5th to the 8th in

the original string are detected as code clones. Furthermore,

(2342) and (3421) hash value has 1, 6 and 2, 7 index value,

respectively. This indicates that the code clones exist at 1th

and 6th position and 2nd and 7th position.

Secondly, code clones with a maximum number of tokens

are detected by checking the hash value of the next index

for each element that is already detected clone clones. For

example, code clones, whose hash value is (1234), appearing

at the 0th and 5th position, as can be seen in the first row of

the list in the table IV. To identify code clones with maximum

number of tokens, CCFinderSW checks whether code clones

also exist in the next position (1th and 6th) of detected codes.

From table IV, you can see that the same hash value namely

(2342) exist. ,

Since 4-gram starting at 0th and 5th positions are code

clones and 4-gram starting from 1st and 6th positions are code

clones, strings starting from 0th and 5th positions are detected

as code clones with 5 tokens.

In this way, a new clone clones are identifying by determin-

ing hash values of the next index. This process is terminated

by checking all hash values in the unique list.

As a result, Table II is a list of 4-grams.

For the simplicity, character-based N-grams are extracted,

but token-based N-grams are used in the actual algorithm.

We define the target source code as sethesetheses. The

threshold value of the number of tokens of the code clone is

set to 4, and the detection target is a coincidence portion of 4

or more characters.

Since the threshold is 4, 4-gram is extracted from sethe-

setheses. Next, 4-grams are listed. The elements of 4-gram

list include appearance, string, and hash value. The index of

appearance is set such that the first 4-gram is 0, the next 4-

gram is 1, and so on. The hash value is a hash of the string.

This hashing is aimed at speeding up based on the fact that

comparison of numerical values is faster than comparison of

strings. In this way, a list of elements with a appearance, a

string and a hash value is called list in order of appearance.

Table III gives an example of a list in order of appearance.

However, the hash value shown in the figure is different

from that implemented in CCFinderSW. Hashing in CCFind-
erSW is implemented using the hashcode method provided

in class String. Also, in this explanation, it is assumed that

collision of hash values does not occur. In other words, when

the hash values are equal, the original character string is

assumed to be equivalent.

From the set of hash value of this list in order of appearance,

all unique hash values are selected. And CCFinderSW selects

all appearance corresponding to each of the selected hash

values. The correspondence of the appearance from the hash

value is not only one-to-one, but it may be one-to-many. A

list of elements with a set of hash values and a appearance is

called a unique list. Table IV gives an example of a unique

list.

Next, we searches for code clones. {0, 5} of the first line of

the created unique list is a set of appearances corresponding

to the hash value (1234). When referring to the list in order

of appearance for each element of this set, the same hash

value appeared in those occurrence spots. In other words,

values hashed from 4-grams appearing at appearance 0 and

5 are equivalent, so 4-grams are considered to be equivalent.

Therefore, it is considered that the 4 characters from 0 to

3 and 4 characters from the 5th to the 8th in the original

string are equivalent, and are code clone. Also, the set {1, 6}
of appearance corresponding to the hash value (2342) and

the set {2, 7} of appearance corresponding to the hash value

(3421) are also the same as in the previous example, so

sethesetheses has a set of clone sets. Hence, a code clone

whose number of tokens is equal to the threshold value is

detected.

Next, an algorithm for searching a code clone whose number

of tokens is larger than the threshold value will be described.

CCFinderSW checks the hash value of the next appearance

for each element of the already detected clone set. For exam-

ple, the tool adds 1 to each of the elements of clone set {0, 5}
to be {1, 6}, and look at the hash values corresponding to 1

and 6 in the list in order of appearance, so both match (2342).
Since 0th 4-gram and 5th 4-gram match, and 1st 4-gram and

6th 4-gram match, strings starting at 0 and strings starting at

5 are code clones of 5-character. Thus the 4-character clone

set {0, 5} is rewritten to a 5-character clone set {0, 5}. In this

way, a new clone set is searched by looking at the hash values

of the next clone set in order of appearance. If this algorithm

is performed on all the hash values of the unique list, the code

657657

TABLE III
AN EXAMPLE OF A LIST IN ORDER OF APPEARANCE

{Appearance} [String] (Hash value)
{0} [seth] (1234)
{1} [ethe] (2342)
{2} [thes] (3421)
{3} [hese] (4212)
{4} [eset] (2123)
{5} [seth] (1234)
{6} [ethe] (2342)
{7} [thes] (3421)
{8} [hese] (4212)
{9} [eses] (2121)

TABLE IV
AN EXAMPLE OF A UNIQUE LIST

(Hash value) {Appearance}
(1234) {0,5}
(2342) {1,6}
(3421) {2,7}
(4212) {3,8}
(2123) {4}
(2121) {9}

clone detection is over.

D. Step 4: Formatting

In this process, the output file is gereated by converting

each location of detected code clones into line numbers on

the original source files. For output file of CCFinderSW, two

kinds of formats are available; One is the same output format

as the CCFinder and others are the same output form as the

CCFinderX.

IV. EVALUATION

We investigated the accuracy of CCFinderSW in terms of

comment elimination.. We use Rosetta Code, a webpage that

provides source code implemented in different programming

languages for solving the same task2. Due to its abundant

resources, Rosetta Code has been effectively used to compare

languagesf concise, performance, and failure-proneness. In the

evaluation, we extracted source code snapshot of November

18, 2015 from the RosettaCode Git repository3.

We select a task named Comments2, which contains pro-

grams with comments implemented in multiple program lan-

guages, in Rosetta Code. We then apply CCFinderSW to

programs contained at Comments task. The details of the

experiment are as follows.

We manually check programs in the Comments task and

then choose 78 tasks as our studied subjects, because they are

all implemented in the object-oriented manner.

1) We list the comment rules of each language that can be

deleted by the proposed method used in Comments.

Among them, we regarded comments that were possible

2http://rosettacode.org/wiki/Rosetta Code
3https://github.com/acmeism/RosettaCode. Data
2http://rosettacode.org/wiki/Comments

by lexical analysis but can not be removed by the

proposed method as impossible to remove.

2) We create 26 kinds of options. This option makes it

possible to cover more language comment rules.

In order to make it easier for users to set comment rules,

we created a mechanism that allows comment rules to

be set simply by giving an alphabet string. By limiting

26 types, we hope that it is easier to write comment

rules as arguments when running the tool. For example,

when executing the tool by giving argument adf on the

command line, comment elimination is performed using

the comment rule set to a, d, and f.

Each option is shown in the Table V, a list of options

for code elimination. The option of z concerns whether

nesting of multi-line comments is allowed or not, so it

is not included in the table. Numbers in the column of

the category indicate the classification of comments, 1

is a line comment, 2 is a multi-line comment, 3 is a full

line comment, 4 is a full multi-line comment, and 5 is

a literal rule. The details of the results of applying the

option to each language are described in the literature3.

Using this option, we performed comment elimination to

the 175 languages that implement Comments. For languages

in which we could not be performed comment elimination, it

was described as impossible in the option column. From this

experiment, 166 languages out of 175 languages are possible

by the proposed method, and 151 languages showed that it

is possible to remove comments with 26 options. The reason

why the proposed method can not cope with a language is that

comments of a language can not be removed unless parsing

and that a language had a difficult grammar. Then, the reason

that 26 kinds of options can not support is that a comment

rule is unique and there are too many comment rules.

Table VI is the number of languages used for each option

in 166 languages.

V. RELATED WORK

So far, various tools have been developed for the detection

of code clones in source code [6], [7], [2]. Most of the

tools (e.g., CCFinderX [2]) support only a limited number

of programming languages. Since NiCaD [8] detects code

clones based on a TXL [9] grammar for each languages, it

is able to support new programing language by writing a

TXL grammar for the language. However, according to our

experience in industry/university collaboration, it is difficult

for most practitoners to write a programming language gram-

mar and the parser for it correctly. Therefore, we developed

CCFinderSW that is able to support a new programming

language by specifying only a few options.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced CCFinderSW, a tool that

detects token-based codes clones for multiple program lan-

guages. Regarding token splitting, we did not set options with-

3https://sites.google.com/site/yoshidaatnu/tableforAPSEC.pdf

658658

TABLE V
26 OPTIONS (EXCLUDE Z)

Opt. Cat. Start End
a 5 ’ ”
b 5 ” ”
c 1 // none

2 /* */
2 /+ +/
2 <!– – >

d 1 ; none
e 1 # none
f 1 – none
g 1 % none
h 1 ! none

1 # ! none
i 1 ’ none

1 ‘ none
j 1 NB. none
k 2 { }
l 2 []

m 2 ()
n 2 ” ”

Opt. Cat. Start End
o 2 (* *)

2 (: :)
2 (# #)

p 2 #| |#
2 #= =#
2 #{ }#
2 ### ###
2 #cs #ce
2 # ˜ ˜#

q 2 {| |}
2 {- -}

r 2 %{ %}
s 1 -> none

1 –## none
2 –[[]]

t 1 COMMENT none
1 IGNORELINE none
2 ’COMMENT’ ;

Opt. Cat. Start End
u 1 c© none

1 *> none
1 *| none
3 NOTE none
3 * none

v 3 * none
3 C none
3 c none
3 : none

w 2 %REM %END REM
1 REM none
1 rem none
1 Rem none

x 4 ==comment =cut
4 =begin =end
4 =pod =cut

y 3 #; none
3 NIL none
3 ### none
3 end. none

TABLE VI
THE NUMBERS OF LANGUAGES FOR EACH OPTIONS

a b c d e f g h i j k l m n o p q r s t u v w x y z
1 3 55 25 40 14 10 7 11 1 3 2 1 2 14 8 1 1 2 2 2 4 9 2 1 17

out literals. As a future work, we plan to prepare additional

option for token splitting.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-

bers JP25220003, JP15H06344 and JP16K16034.

REFERENCES

[1] S. Nanz and C. A. Furia, “A comparative study of programming languages
in rosetta code,” in Proceedings of the 37th International Conference on
Software Engineering, 2015, pp. 778–788.

[2] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[3] A. Tosun, E. Shihab, and Y. Kamei, “On code reuse from stackoverflow:
An exploratory study on android apps,” Information and Software Tech-
nology, vol. 88, pp. 148 – 158, 2017.

[4] T. Kamiya, “the archive of CCFinder Official Site,” 2005. [Online].
Available: http://www.ccfinder.net/

[5] S. Livieri, D. M. German, and K. Inoue, “A needle in the stack: efficient
clone detection for huge collections of source code,” Osaka University,
Tech. Rep., 2010.

[6] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proc. of ICSM 1998, 1998, pp.
368–377.

[7] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proc. of ICSE 2007,
2007, pp. 96–105.

[8] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in Proc. of ICPC 2008, 2008, pp. 172–181.

[9] J. R. Cordy, “The TXL source transformation language,” Science of
Computer Programming, vol. 61, no. 3, pp. 190 – 210, 2006.

659659

