
How SlimWill My System Be?
Estimating Refactored Code Size by Merging Clones

Norihiro Yoshida
Nagoya University

Japan

yoshida@ertl.jp

Takuya Ishizu
Osaka University

Japan

t-ishizu@ist.osaka-u.ac.jp

Bufurod Edwards III
Osaka University

Japan

BufordEdwards3@gmail.com

Katsuro Inoue
Osaka University

Japan

inoue@ist.osaka-u.ac.jp

ABSTRACT

We have been doing code clone analysis with industry collaborators

for a long time, and have been always asked a question, “OK, I

understand my system contains a lot of code clones, but how slim

will it be after merging redundant code clones?” As a software

system evolves for long period, it would increasingly contain many

code clones due to quick bug fix and new feature addition. Industry

collaborators would recognize decay of initial design simplicity, and

try to evaluate current system from the view point of maintenance

effort and cost. As one of resources for the evaluation, the estimated

code size by merging code clone is very important for them. In this

paper, we formulate this issue as “slimming” problem, and present

three different slimming methods, Basic, Complete, and Heuristic

Methods, each of which gives a lower bound, upper bound, and

modest reduction rates, respectively. Application of these methods

to OSS systems written in C/C++ showed that the reduction rate is

at most 5.7% of the total size, and to a commercial COBOL system,

it is at most 15.4%. For this approach, we have gotten initial but

very positive feedback from industry collaborators.

CCS CONCEPTS

• Software and its engineering→Maintaining software;

KEYWORDS

Code Clone, Refactoring, Size Estimation

ACM Reference Format:

Norihiro Yoshida, Takuya Ishizu, Bufurod Edwards III, and Katsuro Inoue.

2018. How Slim Will My System Be? Estimating Refactored Code Size by

Merging Clones. In ICPC ’18: ICPC ’18: 26th IEEE/ACM International Con-

fernece on Program Comprehension , May 27–28, 2018, Gothenburg, Sweden.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3196321.3196353

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196353

1 INTRODUCTION

Once software systems are delivered to market, they are contin-

uously used for a long time with various kinds of maintenance

activities such as bug fixing and new feature addition, causing code

decay and a serious increase in the maintenance cost [12, 28, 31, 32].

The maintenance cost of a software system is generally determined

by the scale and complexity of the system, so the users of huge and

decayed systems need to pay a huge amount of money every year

[32]. At certain point of the continuous system’s use, the users may

evaluate the value of the current running system and determine if

they will keep paying the maintenance cost, or abandon the current

systems and rebuild a new system [34].

When we evaluate the current system value, knowing the size

of the system is a fundamental and essential step. We would easily

measure the system’s sizes by the tools for counting LOC (Lines Of

Code), but it would not be sufficient. The system may contain much

unused code [11] or it may implement very complex architecture

and algorithm. Or it may include a lot of code clones created over

its evolution [14, 27].

We are interested in the effect of existence of code clone to

the maintenance activities. In industry, so-called “software mainte-

nance business” is very popular[20, 24], where a software mainte-

nance company takes over the maintenance of the system which

was not developed by itself. The maintenance activities might in-

clude system operation, bug fixes, refactoring of current system and

these activities could lead to future restructuring or re-building (mi-

gration) of the system. In this business, the maintenance company

analyzes the current system, and it should know various charac-

teristics, such as system size and complexity, in order to properly

estimate the maintenance cost and to construct a good maintenance

plan. Among those various characteristics, code clone information

is essential and important.

Along the evolution of the system, a lot of code clones might

have been created, and many hidden dependencies among them

would be generated, so that the maintenance becomes difficult and

the maintenance cost will be increased. Those code clones might

be easily refactored by a simple merge of those clones, so that the

total system size and also the maintenance cost could be reduced.

In this manner, the existence of code clones heavily affects the

maintenance activities and their costs.

352

2018 ACM/IEEE 26th International Conference on Program Comprehension

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Norihiro Yoshida, Takuya Ishizu, Bufurod Edwards III, and Katsuro Inoue

This paper proposes a novel approach to estimating the system

size after refactoring by merging code clones. We call this clone

merge refactoring slimming in this paper. The obtained estimation

size strongly helps to make the maintenance plan and to predict

the maintenance cost.

Let S denote the whole source program of a system, and |S |
represent the total size of S . S would contain code clones and we
could remove all or part of those clones by the merge refactoring,

producing a new slimmed system S ′. To know the effectiveness of
slimming, we define metrics reduction r = |S | − |S ′| and reduction

rate r/|S | by slimming. If the reduction rate is close to 0, this means
that the system has little room to reduce its size by merging clones.

On the other hand, if it is relatively large, say, 40%, then the system

contains a lot of clones and by merging those clones, the system

size could be reduced to 70%.

We can consider various approaches to slimming, and based on

those approaches, the reduction rate would change largely. In this

paper, we will propose three slimming methods, Basic, Complete,

and Heuristic Methods. Basic Method is a simple merge only ap-

plied to function clones. Complete Method is a greedy method to

eliminate all the code clones including overlapping and embedded

clones. Heuristic Method employs heuristics for selecting merge

candidates.

These methods do not guarantee the actual existence of S ′. Some
of the clone merging might be infeasible or impractical due to

the programming language constraints or readability of program.

However, those methods and their reduction rates will give the

maintainer very good indicator for future maintenance overhead.

If the reduction rate is high, there would be a chance to reduce the

system size and its maintenance cost by the slimming. If it is low,

we would need to continue current maintenance efforts.

Basic Method will show a lower bound of the reduction rate,

which could be relatively easily accomplished by the simple function-

level clone merging. Complete Method will indicate an upper bound

of the reduction by the clone merging. Heuristic Method will pro-

vide a practical rate of other two methods.

We have applied these methods to various Open Source Software

(OSS) systems are written in C/C++ and investigated the effects

of the slimming methods. From the application results, we have

known that the reduction rate is from 0.02% to 5.7% depending on

the targets and the slimming methods.

Also, we have applied these methods to analyze an actually run-

ning business system written in COBOL, and found that reduction

rates are from 8.1% to 15.4%.

The main contributions of this paper are as follows:

• We have formulated a novel problem, slimming, for soft-

ware maintenance, which estimates the code size after the

refactoring of code clones.

• We have devised three different methods for the slimming,

Basic, Complete, and Heuristic, which provide a lower bound,

an upper bound, and the modest rates of the reduction re-

spectively.

• We have applied those methods to many OSS systems in
C and found the tendency of the code clone rate and the

reduction rate. Also those are applied to a commercial sys-

tem in COBOL, which showed different tendency from OSS

application.

The organization of this paper is as follows. Sec. 2 will introduce

overviews of code clone and refactoring. In Sec. 3, Basic, Complete,

and Heuristic Methods will be described respectively. Sec. 4 will

show applications to OSS systems in C/C++, and Sec. 5 will present

an application to a commercial system in COBOL. In Sec. 6, we

will discuss our approaches and result, and also in Sec.7, we will

show the relation of our work to previous works. Sec. 8 will discuss

threats to validity, and Sec. 10 will conclude our discussions.

2 BACKGROUND

2.1 Code Clone Detection

A code clone is a code fragment that has identical or similar code

fragments to it in the source code [22]. So far, a lot of code clone de-

tection techniques have been developed to capture various aspects

of source code similarity [18, 22, 29].

For the detection of syntactically identical or similar code frag-

ments, token-based and tree-based approaches detect identical to-

ken sequence and similar syntax tree in source code, respectively

[18, 22]. These approaches are able to detect useful clones (i.e.,

code fragments to be merged [15], inconsistent code clones that

are suspected to include a bug [19]).

In this research, we use a token-based detection tool CCFinderX

[21], as a clone detection tool for type 1 and 2 clones1. It reports

clones in the form of clone pair (a pair of code clones, i.e., code

fragments in clone relation) or clone set (i.e., a set of code clones

identical or similar to each other).

2.2 Refactoring Code Clone

Clone refactoring is a series of the code transformations to merge

similar parts of source code into a single program unit (e.g., Java

method, C++ function). It is aimed at improving the maintainability

of the source code [35].

Several approaches have been proposed for the identification

and the categorization of clone refactoring opportunities in source

code. Balazinska et al. [1] proposed an approach for supporting

clone refactoring by categorizing code clones based on the dif-

ferences between them. Baxter et al. [4] have developed a clone

detection tool CloneDR based on AST similarity. CloneDR derives

only syntactically-complete clones that can be easily refactored.

Hotta et al. [17] focused on Form Template Method refactoring

pattern [13] and proposed a specialized approach to identifying its

opportunities. For the prioritization of clone refactoring opportu-

nities, Higo et al. [15] and Choi et al. [7] proposed metric-based

approaches respectively.

3 ANALYSIS OF CODE CLONE RATE

In this section, we introduce the definition of code clone rate in

this study.

A cloned line is defined as a line that included in at least one

code clone. CLines(f) and Lines(f) denote sets of cloned and all
1Type 1 clones are syntactically equivalent code fragments and type 2 are the same
except for identifier names. type 3 allows changes of line insertions and deletions, and
type 4 are semantically equivalent fragments[5, 33]

353

How Slim Will My System Be?

Estimating Refactored Code Size by Merging Clones

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Extraction of
Function
Clones

Merge Function
Clones and
Calculate r

Report
r and |S'|

Source Code S

External Code
Clone Detector

(CCFinderX)

Figure 1: Basic Slimming Method

lines in a file f , respectively. We define clone ratio ROC(F) of a file
set F = (f0, f1, . . . , fn) as follows.

ROC(F) =
∑n
i=1 |CLines(fi)|∑n
i=1 |Lines(fi)|

The detection of type 1 and 2 clones in source code is a longest

common substring problem where a string is a list of tokens in a

file [5]. This means that a cloned line is often included in multiple

code clones that belong to different clone sets, or we can say that

the clones are overlapped. Here, let Lines(C) denote a set of lines
of all code clones in a clone set C . Then the following formula is
established,

n∑
i=1

|CLines(fi)| ≤
m∑
j=1

|Lines(Cj)|

where C1, . . .Cm−1,Cm are detected clone sets. This is because the

right-hand side makes multiple count of cloned lines in source

code. Developers should not regard the right-hand side value as

the total amount of cloned lines because it is overestimated. Here

in this paper, the size of code clones always means the left-hand

side definition, without counting the duplication of the overlapped

clone lines.

Kapser and Godfrey reported that developers make code clones

due to the inexpressiveness of a programming language [23]. It

is difficult to merge those code clones. A metric RNR(C) (Ratio

of Non-Repeated tokens) is developed for clone set C, and Higo

et al. found out that RNR(C) metric is effective to filter out code

clones that are caused by language inexpressiveness [15]. A clone

set whose RNR(C) is low means that code fragments in C mostly

consist of repeated token sequences, such as repeated i f then else
statements or repeated simple assignment statements.

4 PROPOSED APPROACHES

4.1 Basic Method

In this section, we will describe a simple and fundamental method

to slim the system by merging only function clones. The objective

of presenting Basic Method is to show a lower bound of the code

reduction with a simple strategy easily performed by developers.

In Fig.1, the overview of Basic Method is presented. It takes a set

of source code S for a system as an input, and then it analyzes the
code clones inside S , by using an external code clone detector. In
this research, we will use CCFinderX[21], but we can replace it with

any other clone detectors which report code clone pairs of type 1

and 2[33]. The reason for using only type 1 and 2 information is

System S

Slimmed System S'

Function Clone A

Block Clone B

Refactor only
function clones

Call Statement to A

Block Clone B

Block Clone B

Function Clone A
Call Statement to A

Block Clone B

Block Clone B

Block Clone B

Shared Function A

|S|
|S'|

Figure 2: A Simple Example of Basic Method

that merging type 3 and 4 clones are not so straightforward and

generally very difficult.

CCFinderX is used with the proper configuration such that the

detectable minimum token length is 50 and RNR(C) is 0.5. By these

settings, we can eliminate the report of unnecessary code clone

pairs for the following estimation process.

The output of the detector is the list of code clone pairs. These

code clones include various kinds of code fragments such as a

sequence of multiple statements, a part of a code block, a complete

function, or a complete file. From the set of these code clones,

we extract only ones of complete functions. This can be easily

performed by a simple syntax analysis of the detected clones.

The extracted functions are the target of slimming, so the sizes

of those functions are counted. Also, the number of the instances

of the merged functions are counted. Fig.2 shows a simple example

of Basic Method. In this example, there are two groups of code

clones in a system S . Clone A is a complete function structure, and
clone B is a code fragment making a code block (not complete
function). Here, we consider that we can merge all instances of A
into a single shared function, by creating a new shared function for

A and replacing each clone instance for A with a calling statement
and its appropriate parameter setting. Other clones which are not

complete functions such as B are not merged and kept as they are.
Finally, we compute the total reduction size r and the total size of
the slimmed system |S ′|, by generalizing A to any function clone
set Ci , as follows.

r =
∑

Ci ∈CC

∑
c j ∈Ci

(|c j | −Call) +
∑

Ci ∈CC
(|C∗ | + Init + End)

|S ′| = |S | − r

Here Ci is a function clone set in all of clone sets CC in system
S , and c j is an instance of a clone set Ci . Also Call is the size of
the calling statement to the shared function. |C∗ | is the average
size of Ci , and Init and End are the sizes of the initialization and
termination statements of the shared function, respectively. Call ,
Init , and End could be changed based on different clone set Ci ,
but we could simplify our discussion by assuming all of those as

one line. They can be changed by setting the parameters of our

estimation tool.

354

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Norihiro Yoshida, Takuya Ishizu, Bufurod Edwards III, and Katsuro Inoue

Clone B

Clone A

Clone A

Clone B

Shared
Function B

Shared
Function A

Call B

Call A

Call B

Call A

Create shared functions
for each clone set, and
place call statements for
each clone instance

Overlapping
fragment

Overlapping
fragment is
executed
twice by
both A and B

Overlapping
fragments as
clones

System S System S'

Figure 3: Merge Clones without Care of Overlapping

The final output of this method is the resulting r and |S ′| in LOC
associated with the information of the mergeable function clones.

For example, libcurl is an OSS library written in C for URL trans-

fer. The total system size |S | in LOC (Lines of Code) excluding
comment lines, white spaces, and new lines is 107.5K. It contains

11.0K code clone lines in total. After applying Basic Method, we

got reduction r of 1.8K and |S ′| became 105.7K, and the reduction
rate was 1.6%. These will be explained in detail later in Sec.5.

4.2 Complete Method

Complete Method is designed to aim at merging and removing

greedily all code clone instances reported from the code clone

detector. This method is complete in the sense that the refactored

system S ′ contains no code clones reported from the clone detector,
and it gives an upper bound of the reduction rate of slimming. Note

that the other methods, Basic and Heuristic, may leave some of the

code clones in S ′.
The strategy of merging here is that any code clones in the

list should be merged and no duplicated code fragments should

remain in the output. Thus, any kinds of clone fragments, such as a

complete function, partial and complete code block, and sequence

of statements, are the target of merging. Since we are interested in

only the maximum reduction of the system size in this research,

we do not care about the feasibility and usefulness of this merging

in practice.

Fig. 3 presents a straightforward strategy for merging the input

clone list. In this figure, we assume that there are two sets of clones,

A, and B. Then we prepare new shared functions for A and B, and
the clone instances for A and B are deleted and the call statements
to those shared functions are placed.

This strategy has two drawbacks if A and B overlap each other,
i.e, they share a code fragment2. The simple placement of the call

statements to the shared functions causes the execution of the

2 For simplicity of discussion, here we do not consider the code clones of this over-
lapping fragment possibly contained in other instance of A and B . Even with such
clones, the following discussions are not affected

Clone B

Clone A

Clone A

Clone B

Shared
Function B'

Shared
Function A'

Call B

Call A'

Call AB

Call A'

Create a shared function
for each clone chunk
created by overlapping
fragment

Overlapping
fragment

Clone A is
divided with
A' and AB,
and B with
AB and B'

Remove cloned
overlapping
fragments

Call B'

Call AB

Call AB

Create for
Overlapping
Fragment

System S System S'

Call AB

Call AB

Shared Function AB

Figure 4: Merge Clones with Cares of Overlapping

overlapping fragment twice by the execution of A and B. Also, the
shared functions of A and B make a code clone pair same as the
overlapping fragment, which violates Complete Method policy of

removing all clones.

Therefore, we have devices a method of dealing with such over-

lapping of code clones. Fig. 4 illustrates this method with the same

example clones. This method detects an overlapping code fragment

of clones A and B, and we employ a new shared function AB for
the overlapping fragment.

The overview of Complete Method is presented as follows. The

detail is described in our technical report3.

(1) Clone Detection. Execute an external clone detector. We use

CCFinderX as before, and get the list of clone pairs.

(2) Overlapping Detection. Each code clone instance is located

onto the source code, and the overlapping fragments are

identified.

(3) Clone Chunk Construction. Each code clone instance is di-

vided into code fragments called clone chunks which inter-

nally contain no partial overlapping fragment with any other

clones.

(4) Construction of Shared Functions. For each clone set, a set

of shared functions are created based on the finest partition

of each clone chunk.

(5) Removing Clones in Shared Functions. An overlapping frag-

ment forms a clone pair in the shared functions, asmentioned

above. Those clones are identified and removed.

(6) Size Calculation. The reduction size r and the slimmed sys-
tem size |S ′| are computed by the following equations.

r =
∑

β ∈CH

∑
βi ∈β

(|βi | −Call) +
∑

β ∈CH
(|β∗ | + Init + End)

|S ′| = |S | − r

Here,CH is a set of all clone chunks, β is the set of the same
clone chunks, |βi | is the size of an instance of clone chunk,

3https://goo.gl/BS4gih

355

How Slim Will My System Be?

Estimating Refactored Code Size by Merging Clones
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Figure 5: Graph for overlap relationship between clone sets

and |β∗ | is its average size.Call , Init , and End are the calling,
initialization, and termination statements for clone chunks

respectively.

For the same example target libcurl, we get reduction r of 6.1K
LOC and |S ′| is 101.4K LOC. The reduction rate is 5.7%, which is
3.7 times higher than Basic Method.

Table 1: Analysis Target OSS Systems

System Use Ver. Total KLOC Clone KLOC (%)

git Distributed versioning 2.9.2 157.4 1.9(1.2)

libcurl Client-side URL transfer 7.50.0 107.5 11.0(10.2)

Skynet Game framework* 1.0.0 31.4 0.6(2.0)

Linux Operating system 4.5.3 11,852.6 864.2(7.3)

Note that Total and Clone are sizes in K lines of source code

excluding comments, spaces, or new lines.

∗ https://github.com/cloudwu/skynet

Table 2: Execution Time for Analysis

System Clone Detection(s) Basic(s) Complete(s) Heuristic(s)

git 87.1 5.7 0.7 4.5

libcurl 52.8 5.6 0.6 3.9

Skynet 18.3 1.1 0.2 0.9

Linux 1.5 hours 484.1 103.0 407.5

The execution time for each method does not include the clone

detection time.

Table 3: Reduction by 3 Slimming Methods

System Basic(% against total) Complete(%) Heuristic(%)

git 63(0.04%) 1,209(0.8%) 681(0.4%)

libcurl 1,766(1.6%) 6,116(5.7%) 4,876(4.5%)

Skynet 6(0.02%) 246(0.8%) 212(0.7%)

Linux 117,025(1.0%) 531,285(4.5%) 372,453(3.1%)

Source Lines of Code

4.3 Heuristic Method

In this section, we regard the problem of estimating code size by

merging code clones as a combinatorial optimization problem with

constraints. The basic idea here is to select and merge only one of

the overlapped clones. The overlapped clones not selected are left as

they are without any merging. For the case of Fig.3, we may select

clone A for merging, and so we will abandon B. By the selection,
the reduction rate would decrease but the actual refactoring will

be much easier than Complete Method. The selection strategy is

to maximize the objective function, i.e., to maximize the reduction

size in our case.

Let D ≡ {D1,D2, . . . ,Dn−1,Dn } denote the set of all detected
clone sets and D ′ ≡ {D ′

1,D
′
2, . . . ,D ′

n−1,D
′
n } denote a sublist of

D. When all of clone sets in D ′ are merged, total reduction size
reduction(D ′) can be estimated as follows4.

reduction(D ′) =
|D′ |∑
i=0

(CLines(D ′
i) − averaдe(D ′

i))

where CLines(D ′
i) denotes a set of lines that are involved in clone

set D ′
i and averaдe(D) denotes the average number of lines of code

clones in clone set D ′
i .

Then the heuristic method in this paper is approximately max-

imizing the objective function f = reduction(D ′) by choosing D ′
from D subject to the following constraint condition cond ,

∀Di ,D j ∈ D ′ : CLines(Di) ∩CLines(D j) = ϕ

whereCLines(Dx) denotes a set of lines that are involved in a code
set Dx .

Since maximizing f is an NP-hard problem, we use a greedy
algorithm asmeta-heuristic to reduce the computational complexity

of this combinatorial optimization.

For the greedy algorithm, we define the following function:

overlap(Di ,D j) =
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

true
(CLines(Di) ∩ DLines(D j) � ϕ)
f alse
(otherwise)

reduction(Dx) = CLines(Dx) − averaдe(Dx)
The heuristic method comprises the following steps:

Step1: Make a sorted list L = [l0, l1, . . . , ln−1, ln] of all detected
clone setsD based on the descending order of reduction(Dx)

Step2: k ← 0; H ← [l0]
Step3: k ← k + 1
Step4: Add lk into list H if ∀i(i < |H | ⇒ ¬overlap(hi , lk))
Step5: Ifk+1 = |L| then calculate reduction size∑ |H |

j=0 reduction(hj)
from list H otherwise goto Step 3

The graph in Figure 5 illustrates overlap relationship between

6 clone sets. Each vertex has a label (ID,number). ID and number
denote the ID and the reduction(lx) of a clone set. For example,
20 cloned lines are included in clone set la . Each edge means that
at least one overlap exists between the two clone sets that are

connected by the edge.

In the heuristic method, sorted list L = [le , lf , ld , lc , la , lb] from
clone sets in Figure 5 is made based on the descending order of

4For simplicity of discussion, we do not include call, initial, and termination statements
here. In actual implementation of the tool, these are counted.

356

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Norihiro Yoshida, Takuya Ishizu, Bufurod Edwards III, and Katsuro Inoue

reduction(lx) at Step 1. And then clone set le is added to list H at

Step 2. At Step 3, clone set lf is omitted because overlap(le , lf) is
true . After that, clone sets ld and lc are added to list H because

any of those clone sets do NOT overlap with clone set le in list H ,
and clone sets la and lb are omitted because both of those clone
sets are overlapped with clone set lc . Finally, total reduction size∑[reduction(le), reduction(ld), reduction(lc)] = 130 is calculated.
Using this method, for the case of libcurl, we get 4.9 KLOC

reduction and it is 4.5% of the total size.

5 APPLYING TO OSS SYSTEMS

To know various characteristics of the proposed methods, we have

following RQ1.

RQ1:What are the reduction rates of Basic, Complete, and

HeuristicMethods for popularOSS systems inwrittenC/C++?

We have chosen four OSS systems written in C/C++ from various

domains, such as OS kernel, game, network library, and develop-

ment support tool, as presented in Table 1. It also shows the size of

the systems and code clone size in LOC excluding the comments,

white spaces, or new lines.

Clone rates are generally small between 1.2% to 10.2%, which

are consistent with an earlier report on the clone rate [27]. Git

shows very small clone rate, which means that it would have been

developed very consistently.

Three tools have been implemented to compute r and |S ′| for
the target system S . We have executed these tools on a 2.7GHz
dual Xeon machine with 24GB memory and the execution time is as

shown in Tab.2. As you can see this table, dominant of the total anal-

ysis time is the execution time of the code clone detector. Complete

Method is faster than others due to its different implementation

technique.

Tab.3 and Fig.6 show the result of the reduction rates for three

methods associated with the code clone rates. Complete Method

shows the highest reduction in threemethods, andHeuristicMethod

follows. Basic Method does not reduce the size significantly, i.e.,

there are little opportunities for applying function level refactoring

of clones.

Fig.7 shows the reduction rate relative to the code clone size.

From this figure, we see that Complete Method reduction is about

40% to 65% of the clone size, and Heuristic Method is about 35% to

45%.

The difference of the reduction rates in three methods can be

seen more clearly in Fig.8. Basic Method performed only 2.4% to

28.9% reduction of Complete Method, but Heuristic Method could

do much better, i.e., 56.3% to 86.2% of the Complete reduction.

Answer to RQ1: Complete Method shows the highest re-

duction, andBasicMethod shows the lowest.HeuristicMethod

is between them. Basic Method does not reduce effectively.

6 APPLYING TO COMMERCIAL SYSTEM

In the previous section, we have applied our methods to OSS sys-

tems written in C/C++. In this section, we will apply to a huge

and actual commercial system written in COBOL and will see the

1.2%

10.2%

2.0%

7.3%

0.04%

1.6%

0.02%

1.0%
0.8%

5.7%

0.8%

4.5%

0.4%

4.5%

0.7%

3.1%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

git libcurl Skynet Linux Kernel

Clone rate

Basic

Complete

Heuristic

Re
du

ct
io

n
ra

te
 re

la
tiv

e
to

 to
ta

l s
ize

Figure 6: Reduction Rates of 3 Slimming Methods Associ-

ated with Clone Rate

����

�����

����

���	�

���	�

		�
�

�����

���	�

�����

���	�

�����

�����

����

�����

�����

�����

�����

	����

�����

����

��� ������� ������ ������������

Re
du

ct
io

n
re

la
ti

ve
 to

 c
lo

ne
 s

iz
e

� !��

"#$%����

&����!���

Figure 7: Reduction Relative to Clone Size

result of a different environment based on the following research

question.

RQ2: Is the reduction rate is stable in a different environ-

ment?

The target program of this analysis is an account managing

system for a chain store, and the total size is about 1.3M LOC in

COBOL. Table 4 shows the total size, clone size, and the result of the

application of Complete and Heuristic Methods. Basic Method was

not applied due to our limited analysis resource. The execution time

for this analysis was about 1.5 hours for clone detection and a half

minute both for Complete andHeuristic Method applications. These

execution times are sufficiently fast and acceptable as a practical

tool.

357

How Slim Will My System Be?

Estimating Refactored Code Size by Merging Clones

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

5.2%

28.9%

2.4%

22.0%

56.3%

79.7%

86.2%

70.1%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

git libcurl Skynet Linux Kernel

Basic

Heuristic

Re
du

ct
io

n
re

la
tiv

e
to

 C
om

pl
et

e
re

du
ct

io
n

Figure 8: Relative Reduction to Complete Method

Table 4: Reduction Sizes for COBOL System

Total Clone (% of Total) Complete (%) Heuristic (%)

1,259,184 853,271(68.0%) 194,358(15.4%) 102,113(8.1%)

Size in source lines of code and percentage relative to the total.

It is interesting to know that the clone rate is 68% which is

fairly higher than the cases of C/C++ where those are around 1.2%

to 10.2%. This is consistent with the report such that commercial

software systems tend to have very high code clone rate [8].

For this target, the slimming methods were expected to reduce

a large number of clones, but the result showed that they reduced

only 8.1% and 15.4% of the total size. This suggests that there are

a lot of overlapping fragments in cloned codes. They increase the

overhead for the chunked procedures in Complete Method, and

also it could reduce the merging opportunities in Heuristic Method.

Answer to RQ2: No, the reduction is quite different from

the target’s domain.

7 DISCUSSIONS

7.1 Slimming Methods

As we have shown in previous sections, each slimming method

shows different reduction performance, due to its inherent nature

of the algorithm. However, the following relation holds among the

total and clone sizes and the reductions sizes.

Total Size > Clone Size > Complete Reduction

> Heuristic Reduction > Basic Reduction

This relation is consistent with our expectation of each method.

Complete Method presents a theoretical upper bound of the

reduction size, but performing actual refactoring based on this

method would be almost impractical because it creates many small

code chunks which will decrease the readability and maintainability

of the system.

Basic Method presents a lower bound of the reduction, and it

would be relatively easy to perform this refactoring. However, as

shown in Sec.5, there is little opportunity to do this in practice.

The Heuristic method proposed here is a good compromise be-

tween the reduction and feasibility. We were able to get sufficiently

high reduction sizes for OSS in C/C++. However, in the case of

the commercial application written in COBOL, it did not provide a

sufficient reduction under the very high clone rate. The reason is

that the code clones are heavily overlapped each other, which does

not allow simple merging of clones.

When we talk about the refactoring code clones, these three

methods will be all important tools and they will complement each

other. We can present a maximum reduction with a lot of efforts, a

minimum reduction with light-weight effort, and an intermediate

reduction with effort and performance compromise.

7.2 Feedback from Industry Collaborators

We had discussed the impact of estimating the slimmed system size

by code clone merge refactoring, with industry collaborators from

two different companies for program maintenance and migration

services. The following are their comments on our approach.

• The approach is very important and practical because their

customers always ask them (1) the maintenance cost for the

current system without any refactoring or migration, and (2)

the migration cost and the maintenance cost for the migrated

system. This approach gives them a solid theoretical basis

for the cost estimation.

• For the case of COBOL system application shown in Sec.6, the

result is a little disappointing, because the clone rate is fairly

high (68%) and so they had expected a higher reduction rate

too. If so, the owner of this system would want to refactor

the system or re-build a new system, that will make a big

business profit. However, the analysis result showed the

limited reduction possibility, so the owner would not be

interested in a new investment.

• The approach is limited in the sense that it gives them the

reduction sizes of the slimming refactoring, but it does not

perform actual refactoring. They would like to have a tool

performing actual refactoring for the clones which are safely

refactored automatically.

For the last comment, we might be able to implement automatic

refactoring tool only for very safe clone fragments. However, even

for Basic Method, we have to take care of the difference of variable

names in the clones, and so the automatic refactoring might not

be straightforward. Also the opportunity of the function clone

refactoring would be very limited.

8 RELATEDWORKS

8.1 Mining Code Clones and Aspects

As presented in Sec.2.1, there are much research on code clone

detection and its application [26, 33]. Higo et al. proposed a proper

maintenance process with their tool for measuring and visualizing

clone metrics [16]. This tool helps to understand the overall clone

rate and individual clone fragment, but it does not provide any hint

to actual reduction by removing clones.

358

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Norihiro Yoshida, Takuya Ishizu, Bufurod Edwards III, and Katsuro Inoue

High-level clone detection and understanding was proposed by

Basit et al. [3]. They have shown a method of detecting architec-

tural clones, and a way of understanding the system organization,

although they did not show any approach to slim and simplify the

target system.

Aspect Mining is one of the related areas of our work in the

sense that it detects common processes placed in different places

and merge them as a shared aspect [25]. The main focus of it is to

extract and share semantically common processes to give better

understandability and maintainability, which is different from our

concern on the share of textual common fragments.

8.2 Refactoring

Some of general ideas and efforts for refactoring code clones have

been presented already in Sec. 2.2. A sophisticated approach to

finding refactoring opportunities using three metrics was proposed

by Choi et al. [7]. The approach employs LEN, POP, and RNR where

LEN is the length of a clone, POP is the number of instances in a

clone set, and RNR is the degree of simply repeated subsequences

in a clone. Combining these metrics values, effective refactoring

opportunities are explored over all clone detector’s output. The

objective of this approach is to find effective clone merge opportu-

nities and it is not to estimate and minimize the refactored system

size as we do in this research.

Balazinska et al. proposed automatic detection of refactoring

opportunity by analyzing code clone differences and their interpre-

tation in terms of programming language entities [2]. Since they

intend to perform automatic refactoring, the applicable opportuni-

ties are generally limited.

Krishnan et al. formulated the refactoring clones as an optimiza-

tion problem to minimize and parameterize the difference of clones

[30]. The idea could be used for our manual refactoring suggested

by three slimming methods.

8.3 Code Compaction

Code compaction is very related topics to our work. It focuses on

the generation of smaller programs with the same execution result

[9]. Debray et al. proposed a binary rewriting method and tool using

compiler optimization technique, especially with interprocedural

code transformation and factoring [10], and they get averagely 30%

reduction of the executable size. This is an interesting approach to

the type 3 code clones in executable binary code, but it requires

non-trivial interprocedural control and dataflow analyses on the

basic blocks of the binary code and those cannot be applicable to

source program targets.

Chen et al. devised a method of transforming cloned fragments

with a single entry and multiple exits based on the control flow anal-

ysis [6]. They have shown an algorithm to detect mergeable code

fragments with multiple exits, and presented an empirical result

with about 25% reduction in the average. This assumes the control

flow analysis of basic blocks and cannot be directly applicable to

the source program targets.

Zastre developed a procedural level abstraction of clone frag-

ments [36], but it is at binary level compaction, and is different

from our objective to estimate the slimmed code at the source code

level.

9 THREATS TO VALIDITY

Code clones are not always good candidates for refactoring. Some

code clones are intentionally created and useful for overall quality

of program, andmerging those clones might give negative impact to

the program maintenance [23]. Our three methods present possible

candidates of refactoring for the size estimation, but all of those

candidates might not be feasible in such sense, so the resulting size

estimation might be overestimated. We might be able to improve

this issue to identify clone candidates whose refactoring would be

harmful.

For the proposed three methods, we can consider various vari-

ants. For example of Complete Method, we have taken a strategy

to make many short code chunks, but we could do it differently by

treating the overlap fragments with a more complex algorithm, and

we might get a more reduction and a better upper bound.

We have used CCFinderX as an external tool of code clone de-

tection for type 1 and type 2 clones, with minimum token length

50 and RNR 0.5. Based on our analysis of the output of CCFinderX,

we think that these configurations are effective to remove useless

refactoring candidates. We could use different clone detectors with

different configurations, and this might affect our application re-

sults. Bellon et al. reported the distinction of tool’s output for the

same target [5]. In the sense of our objective of searching for refac-

toring opportunities, AST-based clone detector might easily handle

the opportunities without specific parameter tuning.

The application to the OSS systems was performed to the limited

target set of C/C++ programs. We can extend targets to various

domains in the same languages, and also to different language

programs. For the commercial program application, we had only

one COBOL target due to our limited resources. We understand it

is important to extend the application targets and domains and get

the customer feedback for the result of our analysis.

In order to verify our approach, the tools for the three methods

and the analysis result for the OSS systems are available online5.

The source code for those systems can be found in those project’s

repositories. The analyzed data for the COBOL system is shown in

Tab.4 in Sec.6, but the source code is proprietary so it cannot be

opened.

10 CONCLUSION

In this paper, we have presented the slimming problem for estima-

tion of refactored system size, and have proposed three methods

for slimming. Tools implementing these methods have been imple-

mented and applied to OSS systems in C/C++ and also a commercial

system in COBOL. The reduction rate for OSS systems varies on

the target program, but it is about 60% of clone rate of the target

by Complete Method, and 43% by Heuristic Method. For COBOL

system, the reduction rate is quite different from the OSS cases. In

this case, the system contains 68% of code clones, but the reduction

rate even with Complete Method is only 15.4%. This suggests that

a high code clone rate does not always guarantee high reduction

rate. Further investigation of the target domain and programming

language would be needed to clarify the high clone rate and their

overlapping situation.

5https://goo.gl/Ny5g24

359

How Slim Will My System Be?

Estimating Refactored Code Size by Merging Clones

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

REFERENCES
[1] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas

Kontogiannis. 1999. Measuring clone based reengineering opportunities. In Proc.
of METRICS 1999. 292–303. https://doi.org/10.1109/METRIC.1999.809750

[2] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas
Kontogiannis. 2000. Advanced clone-analysis to support object-oriented system
refactoring. In Proc. of WCRE 2000. 98–107. https://doi.org/10.1109/WCRE.2000.
891457

[3] Hamid Abdul Basit and Stan Jarzabek. 2009. A data mining approach for detecting
higher-level clones in software. IEEE Transactions on Software engineering 35, 4
(2009), 497–514. https://doi.org/10.1109/TSE.2009.16

[4] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone detection using abstract syntax trees. In Proc. of ICSM 1998.
368–377. https://doi.org/10.1109/ICSM.1998.738528

[5] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions
on Software Engineering 33, 9 (2007), 577–591. https://doi.org/10.1109/TSE.2007.
70725

[6] Wen-Ke Chen, Bengu Li, and Rajiv Gupta. 2003. Code compaction of matching
single-entry multiple-exit regions. In Proc. of SAS 2003. Springer, 401–417. https:
//doi.org/10.1007/3-540-44898-5_23

[7] Eunjong Choi, Norihiro Yoshida, Takashi Ishio, Katsuro Inoue, and Tateki Sano.
2011. Extracting code clones for refactoring using combinations of clone metrics.
In Proc. of IWSC 2011. 7–13. https://doi.org/10.1145/1985404.1985407

[8] James R Cordy. 2003. Comprehending reality-practical barriers to industrial
adoption of software maintenance automation. In Proc. of IWPC 2003. 196–205.
https://doi.org/10.1109/WPC.2003.1199203

[9] Bjorn De Sutter and Koen De Bosschere. 2003. Software Techniques for Program
Compaction. Commun. ACM 46, 8 (2003). https://doi.org/10.1145/859670.859694

[10] Saumya K Debray, William Evans, Robert Muth, and Bjorn De Sutter. 2000.
Compiler techniques for code compaction. ACM Transactions on Programming
languages and Systems 22, 2 (2000), 378–415. https://doi.org/10.1145/349214.
349233

[11] Sebastian Eder, Maximilian Junker, Elmar Jürgens, Benedikt Hauptmann, Rudolf
Vaas, and Karl-Heinz Prommer. 2012. How much does unused code matter for
maintenance?. In Proc. of ICSE 2012. 1102–1111. https://doi.org/10.1109/ICSE.
2012.6227109

[12] Stephen G Eick, Todd L Graves, Alan F Karr, J Steve Marron, and Audris Mockus.
2001. Does code decay? assessing the evidence from change management data.
IEEE Transactions on Software Engineering 27, 1 (2001), 1–12. https://doi.org/10.
1109/32.895984

[13] Martin Fowler. 1999. Refactoring: improving the design of existing code. Addison
Wesley.

[14] Anfernee Goon, Yuhao Wu, Makoto Matsushita, and Katsuro Inoue. 2016. Evo-
lution of Code Clone Ratios throughout Development History of Open-Source
C and C++ programs. Technical Report of Software Engineering Lab, Dept. of
Computer Science, Osaka University (2016). http://sel.ist.osaka-u.ac.jp/lab-db/
betuzuri/contents.ja/1046.html

[15] Yoshiki Higo, Shinji Kusumoto, and Katsuro Inoue. 2008. Ametric-based approach
to identifying refactoring opportunities formerging code clones in a Java software
system. Journal of Software Maintenance and Evolution 20, 6 (2008), 435–461.
https://doi.org/10.1002/smr.394

[16] Yoshiki Higo, Yasushi Ueda, Toshihro Kamiya, Shinji Kusumoto, and Katsuro
Inoue. 2002. On software maintenance process improvement based on code clone
analysis. In Proc. of PROFES 2002. Springer, 185–197. https://doi.org/10.1007/
3-540-36209-6_17

[17] Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. 2012. Identifying, Tailoring,
and Suggesting Form Template Method Refactoring Opportunities with Program
Dependence Graph. In Proc. of CSMR 2012. 53–62. https://doi.org/10.1109/CSMR.
2012.16

[18] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
DECKARD: scalable and accurate tree-based detection of code clones. In Proc. of
ICSE ’07. 96–105. https://doi.org/10.1109/ICSE.2007.30

[19] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. 2007. Context-based detection
of clone-related bugs. In Proc. of ESEC-FSE ’07. 55–64. https://doi.org/10.1145/
1287624.1287634

[20] Yasuo Kadono. 2015. Management of Software Engineering Innovation in Japan.
Springer.

[21] Toshihiro Kamiya. 2010. the archive of CCFinder Official Site.
http://www.ccfinder.net/ccfinderxos.html. (2010).

[22] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670. https:
//doi.org/10.1109/TSE.2002.1019480

[23] Cory Kapser and Michael W Godfrey. 2006. “Cloning considered harmful" consid-
ered harmful. In Proc. of WCRE 2006. 19–28. https://doi.org/10.1109/WCRE.2006.1

[24] Koki Kato, Tsuyoshi Kanai, and Sanya Uehara. 2011. Source code partitioning
using process mining. In Proc. of BPM 2011. 38–49. https://doi.org/10.1007/
978-3-642-23059-2_6

[25] Andy Kellens, Kim Mens, and Paolo Tonella. 2007. A survey of automated
code-level aspect mining techniques. In Transactions on aspect-oriented software
development IV. Springer, 143–162. http://dl.acm.org/citation.cfm?id=1793854.
1793862

[26] Rainer Koschke. 2007. Survey of Research on Software Clones. In Duplica-
tion, Redundancy, and Similarity in Software (Dagstuhl Seminar Proceedings),
Rainer Koschke, Ettore Merlo, and Andrew Walenstein (Eds.). Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany, Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2007/962

[27] Rainer Koschke and Saman Bazrafshan. 2016. Software-Clone Rates in Open-
Source Programs Written in C or C++. In Proc. of IWSC 2016. 1–7. https://doi.
org/10.1109/SANER.2016.28

[28] Jussi Koskinen. 2015. Software maintenance costs. (2015). https://wiki.uef.fi/
download/attachments/38669960/SMCOSTS.pdf

[29] Jens Krinke. 2001. Identifying Similar Code with Program Dependence Graphs.
In Proc. of WCRE ’01. 301–307. https://doi.org/10.1109/WCRE.2001.957835

[30] Giri Panamoottil Krishnan and Nikolaos Tsantalis. 2013. Refactoring Clones: An
Optimization Problem. In Proc. of ICSM 2013. 360–363. https://doi.org/10.1109/
ICSM.2013.47

[31] Bennet P Lientz and E Burton Swanson. 1980. Software maintenance management.
Addison-Wesley.

[32] Thomas M Pigoski. 1996. Practical software maintenance: best practices for man-
aging your software investment. Wiley Publishing.

[33] Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming 74, 7 (2009), 470–495. https://doi.org/10.1016/
j.scico.2009.02.007

[34] Harry M Sneed. 1995. Planning the reengineering of legacy systems. IEEE
software 12, 1 (1995), 24. https://doi.org/10.1109/52.363168

[35] Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue. 2013. Active support for
clone refactoring: A perspective. In Proc. of WRT 2013. 13–16. https://doi.org/10.
1145/2541348.2541352

[36] Michael Joseph Zastre. 1995. Compacting Object Code via Parameterized Procedural
Abstraction. Master’s thesis. Department of Computer Science, University of
Victoria. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.4235&
rep=rep1&type=pdf

360

