
Investigating Vector-based Detection of
Code Clones Using BigCloneBench

Kazuki Yokoi∗, Eunjong Choi†, Norihiro Yoshida‡ and Katsuro Inoue∗
∗Osaka University, Japan, {k-yokoi, inoue}@ist.osaka-u.ac.jp

†Nara Institute of Science and Technology, Japan, choi@is.naist.jp
‡Nagoya University, Japan, yoshida@ertl.jp

Abstract—In a vector-based approach to detecting code clones
from source code, all code fragments in the source are mapped
to a vector space and then code fragments are detected as
code clones if they are neighbors in the vector space. So far,
our research group has developed a vector-based approach
using TF-IDF and cosine similarity. For the improvement of
the vector-based approach, we preliminary investigated what
kind of vectorization algorithms and similarity measurements are
effective in terms of recall and detection time. In this paper, we
present preliminary investigation results using BigCloneBench, a
large-scale code clone benchmark.

Index Terms—code clone, software maintenance, information
retrieval

I. MOTIVATION

Programmers often copy and paste code fragment so that

they can reuse existing code fragments. This causes code

clones (i.e, code fragments that are identical or similar code

fragments to each other). Generally, a code clone is regarded

as a factor that hinders software maintainability [1]. However,

it is difficult for developers to manually identify all code clone

from large-scale software systems.

To alleviate this problem, a multitude of code clone de-

tection approaches have been proposed [2], [3], [4]. One of

the representative approaches for detecting code clones is

a vector-based approach. The advantage of this approach is

that it detects syntactically dissimilar code clones. It also

can detect clones at high speed by clustering similar code

fragments. Our research group proposed a vector-based code

clone approach that detects similar functions in the source code

namely FLCCFinder (Function Level Code Clone Finder) [5].

FLCCFinder generates a feature vector from each function

based on the occurrence of identifiers and reserved keywords

using TF-IDF (Term FrequencyInverse Document Frequency).
It then clusters the generated vectors by means of locality-

sensitive hashing. Finally, it detects clones based on the

similarities between each pair of feature vectors using cosine
similarity. However, FLCCFinder has possibilities that the

generated vectors are high-dimensional vectors and vectors of

polysemy and synonym are missed.

To improve FLCCFinder, we preliminary investigated what

kind of vectorization algorithms and distance measures are

effective in terms of recall and detection time. In this pa-

per, we present preliminary investigation results using Big-
CloneBench [6], a large-scale code clone benchmark.

II. PRELIMINARLY INVESTIGATION

A. Vectorisation Algorithms and Similarity Measurements

Algorithms to vectorize documents are frequently used in

the field of information retrieval. Note that, in this study,

each function in the source code was regarded as a document

and vectorized. We selected seven vectorization algorithms,

namely BoW (Bag-of-Words), TF-IDF, LSI (Latent Semantic
Indexing), LDA (Latent Dirichlet Allocation), Word2Vec [7],

[8], FastText [9], Doc2Vec [10]. Among these algorithms,

BoW and TF-IDF have a high possibility that generate high-

dimensional vectors, whereas LSI and LDA represent doc-

uments as low-dimensional vectors by adopting dimension

compression. Word2Vec and FastText generate vectors that can

express the meaning of words using deep neural networks.

In this study, we defined the average vectors of Word2Vec
as WV-avg and the average vectors of FastText as FT-avg
respectively. Doc2Vec extends Word2Vec to entire documents.

Furthermore, to measure the similarity of vectors, we choose

cosine similarity and WMD (Word Mover’s Distance) [11]. In

this study, the parameters for each algorithm are determined

based on the default values of gensim [12]1, a python library

that is used for implementing the algorithms in this study.

B. Research Questions and Results

To investigate the impact of vectorization algorithms and

similarity measurements for detecting code clones, we set up

two research question(RQ)s as follows.

1) RQ1: Does the recall of code clone detection vary with
vectorization algorithms?: We set up this RQ to find out

vectorization algorithms that can accurately detect code clones.

To answer this RQ, we applied an approach using each selected

vectorization algorithm with FLCCFinder to 25,000 open-

source projects in BigCloneBench, consisting of 2.3 million

Java source files (365MLOC), and compared the recall of

each approach. In this study, we set the threshold of 0.9 for

cosine similarity because this threshold achieved high accuracy

in the previous study [5]. Note that we only used cosine
similarity to measure the similarity of vectors because it takes

approximately three months for WMD to detect code clones

from target projects. The results of the caparison are shown

in Table I. With respect to the definition of each clone type,

please refer to [6].

1https://radimrehurek.com/gensim/

699

2018 25th Asia-Pacific Software Engineering Conference (APSEC)

978-1-7281-1970-0/18/$31.00 ©2018 IEEE
DOI 10.1109/APSEC.2018.00095

TABLE I
RECALL FOR EACH VECTORIZATION ALGORITHM

Clone Type BoW TF-IDF LSI LDA Doc2Vec WV-avg FT-avg
Type-1 (T1) 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Type-2 (T2) 0.84 0.82 0.92 0.85 0.91 0.95 0.94

Very-Strongly Type-3 (VST3) 0.90 0.82 0.91 0.95 0.83 0.97 0.93
Strongly Type-3 (ST3) 0.45 0.37 0.61 0.61 0.46 0.84 0.79

Moderately Type3 (MT3) 0.06 0.03 0.09 0.23 0.04 0.55 0.43
Weakly Type-3/Type-4 (WT3/T4) 0.00 0.00 0.00 0.02 0.00 0.08 0.05

TABLE II
CALCULATION TIME FOR EACH VECTORIZATION ALGORITHM (IN SECONDS)

vectorisation algorithms BoW TF-IDF LSI LDA Doc2Vec WV-avg FT-avg Word2Vec FastText
similarity measurements Cosine similarity WMD

generation time (seconds) 5.1 10.0 9.7 60.3 44.7 42.7 196.1 29.5 187.7
similarity calculation time (seconds) 5.5 5.1 1.1 1.1 1.6 1.1 1.1 497.5 538.1

2) RQ2: Does the selection of vectorization algorithms
and distance scale affect detection speed?: We set up this

RQ to identify the algorithms that detect code clones with

high speed. To investigate the speed of calculation vector,

we built 1MLOC dataset by randomly selecting files from

BigCloneBench. We then measured the time to generate the

vectors (i.e., generation time) and the time to calculate the

similarity between one function and all other functions in the

source code (i.e., similarity calculation time) with different

algorithms and similarity measurements with FLCCFinder.
The results are shown in Table II.

III. DISCUSSION

Regarding RQ1, T2 clones were detected with a recall of

more than 0.9 in LSI, Doc2Vec, WV-avg and FT-avg. From

these results, we can assume that T2 clones can be accurately

detected by using dimensional compression and deep neural

networks. Surprisingly, the recall of TF-IDF was lower than

BoW except for T1 clones. This is because the weights of

identifiers tend to be higher than reserved words in TF-IDF,

and these code clones contain different identifier names. Due

to the difference in the dimensional compression, LSI detects

T2 clones with high recall, meanwhile LDA detects MT3
clones with high recall. Doc2Vec had relatively high recall in

detecting T2 clones, however, it was not able to detect many

Type-3 code clones such as ST3 and MT3 clones. WV-avg
and FT-avg had the highest recall, but there is a possibility

that these algorithms achieved the highest recall due to the

large numbers of detected clones.

Regarding RQ2, BoW is the fastest in the generation time

followed by LSI and TF-IDF. Meanwhile, algorithms using

deep neural networks such as FastText are slower than other

algorithms. Word2Vec achieved the highest speed among al-

gorithms using deep neural networks. In the algorithms using

dimensional compression, LDA is the slowest, whereas LSI
is the fastest. In the algorithms using deep neural networks,

WV-avg is the fastest. FT-avg is slower than WV-avg (Table

I) even though they achieved the the same recall. In the

similarity calculation time, algorithms using dimension com-

pression showed the highest speed. On the other hand, WMD
is much slower than the cosine similarity. In particular, the

similar calculation time calculates the time to measures the

similarity between one function and all other functions, that is,

calculation of O(n). However, actual clone detection requires

the similar calculation of all functions and all functions, that

is, calculation of O(n2). This revealed that it is not practical

to use WMD for detecting code clones.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-

bers JP25220003, JP18H04094 and JP16K16034.

REFERENCES

[1] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
Software Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[2] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[3] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proc. of ICSE, 2007,
pp. 96–105.

[4] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Proc. of
ICSE, 2016, pp. 1157–1168.

[5] S. Numata, N. Yoshida, E. Choi, and K. Inoue, “On the effectiveness of
vector-based approach for supporting simultaneous editing of software
clones,” in Proc. of PROFES, 2016, pp. 560–567.

[6] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in Proc. of ICSME, 2015, pp. 131–140.

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” Proc. of ICLR, 2013.

[8] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” Proc.
of NIPS, 2013.

[9] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[10] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. of ICML, 2014, pp. 1188–1196.

[11] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger, “From word
embeddings to document distances,” in Proc. of ICML, vol. 37, 2015,
pp. 957–966.

[12] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proc. of LREC , May 2010, pp. 45–50.

700

