
VOL. E101-D NO. 12
DECEMBER 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



3238
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

LETTER

Visualization of Inter-Module Dataflow through Global Variables
for Source Code Review

Naoto ISHIDA†a), Nonmember, Takashi ISHIO††, Member, Yuta NAKAMURA†††, Shinji KAWAGUCHI†††,
Tetsuya KANDA†, Nonmembers, and Katsuro INOUE†, Fellow

SUMMARY Defects in spacecraft software may result in loss of life
and serious economic damage. To avoid such consequences, the software
development process incorporates code review activity. A code review con-
ducted by a third-party organization independently of a software develop-
ment team can effectively identify defects in software. However, such re-
view activity is difficult for third-party reviewers, because they need to un-
derstand the entire structure of the code within a limited time and without
prior knowledge. In this study, we propose a tool to visualize inter-module
dataflow for source code of spacecraft software systems. To evaluate the
method, an autonomous rover control program was reviewed using this vi-
sualization. While the tool does not decreases the time required for a code
review, the reviewers considered the visualization to be effective for re-
viewing code.
key words: static analysis, dataflow analysis, software visualization, code
review, independent verification and validation

1. Introduction

Defects in spacecraft software may lead to loss of life and
serious economic damage. For example, the Ariane 5 launch
failure in June 1996 was the result of a runtime error in
its software system [1]. In 1999, the Mars Climate Orbiter
was lost because of an incorrect unit conversion in the soft-
ware system [2]. Both failures resulted in serious economic
losses.

To improve the reliability of a spacecraft’s software
system, a third-party organization reviews the design and
source code of the system independently of its development
team. This procedure is known as independent verification
and validation (IV&V) [3]. The technical independence of
IV&V allows a system to be evaluated from an objective
view point. This is a key factor in making a system safer [4].
However, a code review in IV&V is generally difficult, be-
cause reviewers must investigate a set of source files without
prior knowledge. Moreover, the budget and time available
for IV&V are limited, and hence it is important to perform
an effective code review [4].

Manuscript received May 17, 2018.
Manuscript revised August 2, 2018.
Manuscript publicized September 26, 2018.
†The authors are with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565–0871
Japan.
††The author is with the Graduate School of Science and Tech-

nology, Nara Institute of Science and Technology, Ikoma-shi, 630–
0192 Japan.
†††The authors are with the IV&V Research Laboratory, Japan

Manned Space Systems Corporation, Tokyo, 100–0004 Japan.
a) E-mail: n-isida@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.2018EDL8104

Fig. 1 An example of a control-flow cycle of modules of a spacecraft
software

A typical spacecraft software system consists of a
highly modularized C program. A module comprising a
number of functions plays a particular role in a spacecraft’s
system. Figure 1 presents an example of a control-flow cycle
of modules. The cycle starts with the sensor module, which
obtains values from hardware sensors. Then, the checker
module removes sensor noises. Next, the engine module
computes the state of the spacecraft using the data received
from the checker module. Finally, the actuator module con-
trols the hardware based on the recognized state.

Although the design is well organized, the implementa-
tion is not straightforward. In order to avoid runtime errors,
the system allocates memory statically. In other words, all
variables are global and we assume that all global variables
are declared extern in a common header file (e.g. global.h).
Every module can read and write arbitrary global variables,
while local variables and function parameters using a stack
are prohibited. Rather than a parameter of a function call,
a caller function stores a value as a global variable, and a
called function then reads that global variable. Because such
implicit dataflow paths are crucial to determining the behav-
ior of a program, reviewers must manually investigate the
global variables and then verify whether the dataflow paths
are complete.

The goal of this study is to enable reviewers to investi-
gate possible dataflow paths efficiently and exhaustively. To
achieve this goal, we propose a tool to visualize dataflow
paths among modules in a spacecraft software system. This
tool utilizes a reflexion model [5]. While all functions in a
system interact with one another using global variables, we
only visualize inter-module dataflow paths, so that review-
ers can easily compare their expected dataflow paths with
the actual dataflow paths.

To evaluate the tool, we performed an experiment using

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers



LETTER
3239

code review tasks with eight subjects engaged in IV&V. The
subjects recognized the tool as being effective, although it
did not decrease the time required for tasks.

Section 2 describes the proposed tool, and Sect. 3
presents the results of the evaluation experiment. Finally,
the paper concludes with a summary and discussion of fu-
ture work.

2. Visualization Tool

In this work, we propose a tool to visualize inter-module
dataflow for source code of spacecraft (and satellite) soft-
ware systems. The tool supposes that the source code is
written in C using only statically allocated variables. The
tool also supposes that the development team provides a
high-level design model of the system, i.e. how modules
such as sensor, controller, and actuator interact to one an-
other, and how the modules are corresponding to functions
in the source code. In the beginning of a development
process, the development team designs a system as a set
of modules and their ideal relationships which the system
should follow. Since a module is often represented as a
number of functions in actual source code, our tool extracts
actual data-flow relationships from functions and translates
them into a module level so that reviewers can compare the
actual and ideal relationships of modules and find their in-
consistencies.

Our tool requires three inputs: the source code to be
analyzed, the mapping of modules and functions, and a set
of global variables of interest to reviewers (target variables).
The mapping provides a list of module names and how each
module is corresponding to functions in actual source code.
Then, the tool extracts and visualizes the dataflow paths re-
lated to the target variables.

The tool generates a directed graph, where each vertex
represents a module and each edge represents a dataflow re-
lationship between modules. Figure 2 presents an example
of such a graph. A label attached to an edge represents a tar-
get variable name related to the dataflow. The tool employs
two types of edges: solid and dotted.

• A solid edge from a module M1 to another module M2

exists with respect to a target variable g if M1 writes a
value to g and M2 reads the value of g.
• A dotted edge from M1 to M2 exists if M1 writes a value

to g and M2 does not read g, although M2 can read the
value in g written by M1.

No edges exist between M1 and M2 if the modules do not
interact with one another at all using target variables.

In Fig. 2, the solid edge from the SENSOR mod-
ule to the CONTROLLER module indicates that SEN-
SOR passes data to CONTROLLER using the variable
g_sensor_input.value. The dotted edge from SEN-
SOR to ACTUATOR indicates that ACTUATOR does not
read the value of g_sensor_input.value defined by
SENSOR, although the value reaches ACTUATOR exe-
cuted after SENSOR. The graph shows that this variable is

Fig. 2 An example of inter-module dataflow diagram generated by the
tool

only used for an interaction between SENSOR and CON-
TROLLER. The graph also shows that the additional vari-
able g_actuator_output.power is only used for an inter-
action between CONTROLLER and ACTUATOR.

The implementation of the tool employs two existing
OSS components: srcML and srcSlice. srcML [6] translates
source code into an XML-based representation. We em-
ployed srcML 0.9.5, which is available on the website†. src-
Slice [7] takes srcML’s output as input, and extracts dataflow
relationships for each variable in a program. Because src-
Slice provides line numbers where each variable is defined
and used, our tool extracts the dataflow information for the
target variables and translates it into solid and dotted edges
between modules. It should be noted that the version of
srcSlice that is available on the website†† does not support
global variables, and so we customized the implementa-
tion for our tool. This customized version is available on
GitHub†††.

3. Evaluation

In order to evaluate the effectiveness of our visualization,
we conducted an experiment consisting of code review tasks
using the visualization.

3.1 Procedure

3.1.1 Subjects

We selected eight people engaged in spacecraft software
IV&V as the subjects. We divided them into two groups
of four people, Group A and Group B, such that on average
the groups members have almost the same work experience.

†http://www.srcml.org/
††http://www.srcml.org/tools.html
†††https://github.com/MaxfieldWalker/srcslice-fork



3240
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

The subjects in Group A conduct code review tasks in their
usual environment, and the subjects in Group B perform the
same tasks using our visualization.

3.1.2 Target Program

We utilized an autonomous rover control program that runs
on Mindstorms EV3 [8] as a code review target. This system
has been developed for educational purposes, but is imple-
mented in the manner of real spacecraft software. Functions
are clearly separated for each role, in order to achieve a high
modularity. However, the system includes many global vari-
ables. The system comprises 11 C source files, and the total
size is about 500 lines of code.

The program first initializes the state of the system,
and then runs a control cycle including three steps: fetch-
ing sensor values, calculating the output power based on the
sensor values, and driving the motors. Each step is repre-
sented by a single function, corresponding to the modules:
SENSOR, CONTROLLER, and ACTUATOR, respectively.
We selected the structure variables g_in and g_out, which
store the sensor values and motor output, respectively, as
target variables.

3.1.3 Code Review Tasks

We asked the subjects the following questions as review
tasks.

Q1 Choose the correct roles of the structure variables g_in
and g_out in the program. (Three options are provided
with the question.)

Q2.1 The member values of g_in should be set only within
the SENSOER module. Answer whether or not an ex-
ceptional execution path exists where another module
overwrites the values.

Q2.2 The member values of g_out should only be set
within the CONTROLLER module, mainly based on
the values of g_in. Answer whether or not an excep-
tional execution path exists where a value of g_out is
defined without depending on g_in.

Q3 Draw dataflow paths among the three modules for the
variables g_in and g_out.

Q1 comprises a warm-up question for the subjects to
get used to the target program. The questions Q2.1 and Q2.2
comprise the main tasks. We only provided a visualization
result for the target program (Fig. 3) to Group B, so that we
could compare the results with those of Group A, who did
not have the diagram. The question Q3 aims to evaluate the
accuracy of the visualization result and the cost of drawing
a similar figure manually. We asked Q3 to Group A only.

We verified the correctness of each answer and mea-
sured the times required for Q2 and Q3. We excluded Q1
from the evaluation criteria, because Q1 represents a warm-
up question.

Fig. 3 The inter-module dataflow diagram for the target program

Table 1 The times required to answer the questions (Unit minute)

Q1 Q2.1 Q2.2 Q3 Sum of Q2

Whole avg. 9.4 18.3 21.5 21.0 39.8
Group A avg.

(w/o the diagram) 11.5 11.8 17.8 21.0 29.5
Group B avg.

(w/ the diagram) 7.3 24.8 25.3 N/A 50.0

3.1.4 Questionnaire

Following the completion of the tasks, we conducted a ques-
tionnaire with the subjects to evaluate the effectiveness of
the visualization. We asked the following questions.

• Is the inter-module dataflow diagram effective for
code comprehension? (Five-point scale ranging from
“Strongly Disagree” to “Strongly Agree”) Why do you
think so? (Free writing)
• Is it easy to understand what the inter-module dataflow

diagram shows? (Five-point scale)
• What is needed to improve the inter-module dataflow

diagram? (Free writing)

In the questionnaire, we provided the visualization re-
sult to all the subjects.

3.2 Results and Analysis

3.2.1 Code Review Tasks

All of the subjects correctly answered the code review ques-
tions. Table 1 presents the times required to answer the
questions. For Q2.1 and Q2.2, the average answering time
for Group B, working with the visualization, was longer
than that of Group A. In the experiment, the number of par-
ticipants is limited. Since individual ability of participants
may vary, it is possible that we were unable to perfectly bal-
ance the difference in ability between the two groups. Al-
ternatively, the visualization may have led the participants
in Group B to read the source code in more detail because
the visualization provides an exhaustive check list of data-
flow paths that should be reviewed. Since Group A has no
such a list, the participants in Group A could miss some of
the data-flow paths. It should be noted that we performed



LETTER
3241

Table 2 The questionnaire results

How effective for code
comprehension? (1∼5)

How easy to
understand? (1∼5)

Whole avg. 4.13 3.88
Group A avg.

(w/ the diagram) 4.25 4.00
Group B avg.

(w/o the diagram) 4.00 3.75

the Wilcoxon rank-sum test (2-sided) and the time differ-
ence is not statistically significant at five percent level (p-
value=0.2265).

The average answer time for Q3 was 21 minutes. Al-
though the subjects in Group A read the source code repeat-
edly to answer Q1 and Q2, they required a considerable time
to draw a dataflow graph manually. In addition, dataflow
edges are missing in the graphs created by three out of the
four subjects. From this result, we can confirm that a manual
dataflow inspection is time-consuming and error-prone.

3.2.2 Questionnaire

Table 2 presents the questionnaire results. The average
score for the question asking how effective the inter-module
dataflow diagram is for code comprehension was 4.13. The
average score for the question asking how easy it is to un-
derstand the content of the inter-module dataflow diagram
was 3.88.

The reasons why the subjects thought the inter-module
dataflow diagram is effective for code comprehension are
presented below.

• The diagram helps to understand the essential process-
ing flow, ignoring indirectly related variables such as
g_status (the variable to store the state of the pro-
gram).
• The diagram visually shows how a value influences

others between modules and helps with clear thoughts.
• Using the diagram, it becomes easier to find a starting

point for checking how variables are used and in what
condition variables are set.

The answers to the question concerning what is needed
to improve the inter-module dataflow diagram are presented
below.

• The difference between directed edges represented by
solid lines and dotted lines is not clear.
• When the size of the source code increases, the dia-

gram will be difficult to see because of the increase
in the number of dotted line directed edges. Dotted
line directed edges may be useless for a large software
project.

In the questionnaire, many favorable answers were re-
ported in answer to why the inter-module dataflow diagram
is effective for code comprehension, such as that the diagram
helps to understand the essential processing flow. From
this, it can be confirmed that the inter-module dataflow dia-
gram helps with code comprehension for people engaged in
IV&V.

As a proposal for improvement, participants stated that
the difference between directed edges represented by solid
lines and dotted lines is not clear, and that it would be dif-
ficult to understand the diagram because of too many dot-
ted line direct edges as the program becomes larger. Thus,
we should refine the tool by adding the option to switch to
showing dotted line directed edges.

4. Conclusion

In this study, we developed a tool that helps to verify
dataflow paths for the safety of spacecraft software, and per-
formed an evaluation experiment involving participants who
are engaged in IV&V.

In the experiment, we obtained many favorable an-
swers from the subjects engaged in IV&V. The results
demonstrate the potential effectiveness of the visualization
method. In future work, we would like to make the tool
more practical by considering the opinions reported in the
evaluation experiment.

References

[1] J.L. Lions, “Ariane 5 flight 501 failure,” Technical report, European
Space Agency. http://www.esrin.esa.it/htdocs/tidc/Press/Press96/
ariane5rep.html, 1996.

[2] A.G. Stephenson, D.R. Mulville, F.H. Bauer, G.A. Dukeman, P.
Norvig, L.S. LaPiana, P.J. Rutledge, D. Folta, and R. Sackheim,
“Mars climate orbiter mishap investigation board phase I report,”
NASA, Washington, DC, 1999.

[3] IEEE Standard for Software Verfication and Validation, IEEE Std.
1012-2004, IEEE Standard Association, 2005.

[4] R. Ujiie, M. Katahira, Y. Miyamoto, H. Nakao, and N. Hoshino,
“Measurement of JAXA’s IV&V activity effectiveness based on find-
ings,” Software Measurement, 2011 Joint Conference of the 21st Int’l
Workshop on and 6th Int’l Conference on Software Process and Prod-
uct Measurement (IWSM-MENSURA), pp.291–296, IEEE, 2011.

[5] G.C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion mod-
els: Bridging the gap between source and high-level models,” ACM
SIGSOFT Software Engineering Notes, vol.20, no.4, pp.18–28, 1995.

[6] J.I. Maletic, M.L. Collard, and A. Marcus, “Source code files as struc-
tured documents,” Proc. 10th International Workshop on Program
Comprehension, pp.289–292, IEEE, 2002.

[7] H.W. Alomari, M.L. Collard, J.I. Maletic, N. Alhindawi, and O.
Meqdadi, “srcSlice: Very efficient and scalable forward static slic-
ing,” Journal of Software: Evolution and Process, vol.26, no.11,
pp.931–961, 2014.

[8] “31313 mindstorms ev3.” https://www.lego.com/en-us/mindstorms/
products/mindstorms-ev3-31313.

http://dx.doi.org/10.1109/iwsm-mensura.2011.39
http://dx.doi.org/10.1145/222132.222136
http://dx.doi.org/10.1109/wpc.2002.1021351
http://dx.doi.org/10.1002/smr.1651

