
Code-to-Code Search Based on
Deep Neural Network and Code Mutation

Yuji Fujiwara∗, Norihiro Yoshida†, Eunjong Choi‡, and Katsuro Inoue∗
∗Osaka University, Japan, {y-fujiwr, inoue}@ist.osaka-u.ac.jp

†Nagoya University, Japan, yoshida@ertl.jp
‡Nara Institute of Science and Technology, Japan, choi@is.naist.jp

Abstract—Deep Neural Networks (DNNs) have been often used
for the labeling of image files (e.g., object detection). Although
they can be applied for the labeling of code fragment (i.e., code-
to-code search) in software engineering, a large number of code
fragments are required for each label in the learning process
of DNNs. In this paper, we present an approach for code-to-
code search based on a DNN model and code mutation for
generating enough number of code fragments for each label.
The preliminary experiment shows high precision and recall of
the proposed approach.

Index Terms—Code-to-Code Search, Deep Neural Network,
Code Mutation

I. INTRODUCTION

Oftentimes, developers are looking for code fragments that
offer similar functionality than some other code fragments [1].
As an example, a developer may need to find implementations
that could be more efficient and/or reliable than the one she/he
has [1]. As another example, when a developer finds a code
fragment from OSS projects or discussion platforms such
as Stack Overflow1, he/she may need to not only identify
the license of the original code fragment but also find less
vulnerable one. So far, several approaches have been proposed
on code-to-code search to help developers to look for code
fragments that offer similar functionality [1] [2] [3].

So far, Deep Neural Networks (DNNs) has been used for
not only object detection in the computer vision field [4],
[5] but also code clone detection in the software engineering
field [6]–[9]. Our key insight is to use DNNs for labeling
code fragments according to their functionality from source
code. Once the labeling is successfully achieved by DNN, the
resultant labeling is able to be used for a code-to-code search.
This insight is gained from the DNN-based labeling of parts
of images according to their pixel characteristics.

In this paper, we present an approach for code block
search using a Feed-Forward Neural Network (referred
to as FFNN). Our approach is able to find similar code
fragments corresponding to a query code fragment. Our code
search approach is comprised of two steps, namely STEP L
(Learning) and STEP S (Search). In the STEP L, mutated
source code fragments are generated from the original source
code and these fragments are clustered based on original
source code. Their code blocks are extracted and then feature
vectors are generated from these code blocks. Unique labels

1https://stackoverflow.com/

1 public static void BubbleSort()
2 {
3 int temp;
4 for (int j = 0; j < num.length - 1; j++) {
5 if (num[j] > num[j + 1]) {
6 ;
7 num[j] = num[j + 1];
8 num[j + 1] = temp;
9 }
10 }
11 }

1 public static void BubbleSort()
2 {
3 int temp;
4 for (int j = 0; j < num.length - 1; j++) {
5 if (num[j] > num[j + 1]) {
6 temp = num[j];
7 num[j] = num[j + 1];
8 num[j + 1] = temp;
9 }
10 }
11 }

(a) (b)

Fig. 1. Example of the Mutation Operator mSDL

are given to these feature vectors for each cluster. Finally, the
feed-forward neural network model learns tuples consisting of
feature vectors and the corresponding labels with supervised
learning. In STEP S, the trained model calculates a label from
feature vectors generated from query code fragment, and the
original code blocks of the cluster corresponding to this label
is gained as a search result. In the case study, we applied
our approach into three OSS systems and then confirm the
effectiveness of our approach.

II. BACKGROUND

A. Mutation Operators for Cloning

Roy and Cordy presented mutation operators for cloning
which create new code clones by editing original code frag-
ments [10]. They also defined 13 kinds of the mutation
operators for generating different types of code clones. Figure
1 shows an example of applying the mutation operator mSDL,
small deletions within a line. Figure 1(b) was created by
deleting a part of a line of an original code fragment, shown
in Figure 1(a).

B. Feed-Forward Neural Network

Feed-Forward Neural Network (FFNN) is widely used
an artificial neural network, where the inner architecture is
organized in a subsequent layer of neurons [11]. It consists
of at least three layers, input, output, and hidden layer. The
weight values are associated with the neurons, and these values
are adjusted during a training process that compares input
values with output values. If a vector similar to the trained
input value is given to the FFNN model, a vector similar to
the trained output value is outputted from the FFNN model.

978-1-7281-1805-5/19/$31.00 c© 2019 IEEE IWSC 2019, Hangzhou, China1

Input Vector Output Vector

!
!!

!
!"

!
!#

!
"!

!
""

!
"#

!
#!

!
#"

Input
Layer

Hidden
Layer

Output
Layer

Fig. 2. Example of a Feed-Forward Neural Network (FFNN) Model

Figure 2 shows an example of a three-layered FFNN model
composed of 8 neurons n00, n01, . . . , n21. In this figure, the
input of FFNN is a 3-dimensional vector and the output is a
2-dimensional vector.

III. PROPOSED APPROACH

In this paper, we present an approach for code-to-code
search based on deep neural networks and code mutation.
Our approach searches syntactically similar code fragments to
input code fragments based on deep neural networks because
deep-learning based approaches are good at the mapping of
two elements. In addition, by using code fragments that were
incapable of being searched for learning the model they are
enabled to be searched and it is possible to reduce omission
of code search and erroneous code search. Our approach is
comprised of two steps; STEP L (Learning) and STEP S
(Search).

A. Definition of Terms
Code Block: A code fragment that satisfies one of the follow-
ing two conditions:
Condition 1. A mthod body
Condition 2. A code fragment between a pair of brackets of
if, else, for, while, do-while, or switch blocks

Similarity: Similarity between two normalized code blocks
t1, t2 is defined as follows:

Similarity(t1, t2) =
2 ∗ |t1 ∩ t2|
|t1|+ |t2|

where t1 ∩ t2 is the intersection between two code blocks t1
and t2 and |t| is the number of lines of t.

Similar Code Block: A pair of code blocks is syntactically
identical or similar code blocks (i.e. a pair of code blocks
whose Similarity value is greater than 0).

Similar Code Block Set: an equivalence class of similar code
blocks

Negative Data: When searching similar code to a given source
code, no search results might be obtained. In this study,
negative data for the “No code search results” are defined as
vectors that are generated from code blocks that satisfy the
following condition:
Condition 3. Code blocks whose label of feature vectors are
0 meaning “No code search results”.

Target Projects

!
!

"#$

!
!

"%$...
!
!

⋮
Similar Code Block Sets

Code Blocks
!
#

"#$

!
#

"%$...!
"

Feature Vectors
of Code Blocks

!
"

!
!

⋮

Tuple of Feature Vectors
and Correspond Label

the FFNN Model

STEP L1

STEP L2

STEP L3

STEP L4

STEP L5

Code Blocks
created by mutation

!
#

"#$

!
#

"%$...!
"

!
!

"#$

!
!

"%$...
!
!

⋮

!"

!"

!
#

Code Blocks
outside

Target Projects !
#

"#$

, … , !
#

&

, $!
#

#

, … , $!
#

"' $

!
!

"#$

, … , !
!

&

, $!
!

#

, … , $!
!

"' $

!
(

"#$

, … , !
(

)

!
(

"#$

, 0 , … , !
(

)

, 0

!
#

"#$

, 1 , … , !
#

&

, 1 , … , $!
#

#

, 1 , … , $!
#

'

, 1

!
!

"#$

, ' , … , !
!

&

, ' , … , $!
!

#

, ' , … , $!
!

"' $

, '

Fig. 3. Overview of the STEP L

Positive Data: In this study, positive data are defined as
vectors that are generated from code blocks that satisfy the
following condition:
Condition 4. Code blocks whose labels of the feature vectors
are other than 0 in the target projects and similar code block
to them created by applying mutation operators described in
Section II-A.

B. Deep Learning Using a Feed-Forward Neural Network

This section describes STEP L, a step for learning models
using deep learning. In this step, positive and negative data are
generated from the target projects and then an FFNN model
is trained by this data. Figure 3 shows an overview of STEP
L. This step consists of the following five steps:

STEP L1. At first, code blocks are extracted from the target
projects and then similar code block sets Si(1 ≤ i ≤ I) are
created by using CCFinder [12], a token-based code clone
detection tool and a block clone detection tool by Yokoi et al.
[13]. Similar code block sets Si contains similar code block
bi

(j)(1 ≤ j ≤ J). Positive data are generated from these
code block sets. Next, code blocks are extracted from projects
which are not included in the target projects. Negative data
are generated from these code blocks.

2

Name Quantity

boolean 1

flag 4

true 2

int 2

temp 3

while 1

false 1

for 1

Word_2 9

0 1

num 7

length 1

1 4

if 1

(1,4,2,2,3,1,1,1,9,1,7,1,4,1)

Metaword

{
boolean flag = true;
int temp;
while (flag) {

flag = false;
for (int j = 0; j < num.length – 1; j++) {

if (num[j] > num[j + 1])
{

temp = num[j];
num[j] = num[j + 1];
num[j + 1] = temp;
flag = true;

}
}

}
}

Fig. 4. Example of applying BoW to Source Code

STEP L2. Using the mutation operators described in Section
II-A, similar code blocks mbi

(k)(1 ≤ k ≤ K) to code blocks
bi

(j) included in similar code block sets Si are generated.
At this time, mutated code blocks mbi

(k)(1 ≤ k ≤ K) are
contained to the similar code block sets Si.

STEP L3. Feature vectors of positive and negative data are
generated from code blocks bi

(j) and mbi
(k). The approach

generating feature vectors is described in Section III-B1.

STEP L4. Label i is given to positive data generated from
code blocks belonging to similar code block sets Si. Moreover,
label 0 meaning “No code is included in the target project”
are given to negative data generated from code blocks b0

(l).

STEP L5. Using supervised learning, the FFNN model is
generated by using positive and negative data and given labels.

1) Generation of Feature Vectors: In the case study, BoW
(Bag of Words), the simplest approach to generating feature
vectors, or Doc2Vec [14], the approach based on deep learning,
are applied to STEP L3.

BoW: Feature vectors are generated based on reserved key-
words and identifiers extracted from positive data for training.
At this time, identifiers comprised of up to two letters are
considered as metaword. If feature vectors are generated
from the given source code, extracted reserved keywords and
identifiers are included in positive data for training. Figure
4 shows the example of the generation of a feature vector
using BoW. Word_2 represents metawords. Variables x and y
correspond to metawords.

Doc2Vec: Doc2Vec [14] is an approach for generating feature
vectors based on unsupervised learning, and its effectiveness
has been demonstrated for tasks targeting natural language.
We use gensim2 to use Doc2Vec. Figure 5 shows an example
of generation of a feature vector using Doc2Vec.

2https://radimrehurek.com/gensim/

{
List<Object> list = new ArrayList<Object>();

boolean present_tableName = true && (isSetTableName());
list.add(present_tableName);
if (present_tableName)

list.add(tableName);

return list.hashCode();
}

(0.0218349,0.002315,0.00297053,0.113292,0.0758721, …)

Lexical Analysis

Training And Output Vectors

⋱

⋱

⋱

{ List < Object > list = new ArrayList < Object > () ; …

Fig. 5. Example of Applying Doc2Vec to Source Code

First, lexical analysis of positive and negative data for
training is performed using ANTLR3. Next, the tokens of each
code block are placed on one line with a space between tokens.
Finally, the Doc2Vec model is trained by these lines. If one
line with a space between tokens of the input code block is
given to this model, embedding vector of the input code block
are obtained.

C. Searching Similar Code Blocks Using Trained Feed-
Forward Neural Network Model

This section explains STEP S, a step for searching similar
code block. In the STEP S, similar code search is performed
using the FFNN model trained in STEP L5. This step consists
of three steps. Figure 6 shows an overview of STEP S.

STEP S1. After parsing the input code fragment, its feature
vector is generated in the same method as STEP L3.

STEP S2. By inputting feature vector generated in STEP S1
to the model trained in STEP L5, the label of the input code
fragment is suggested.

STEP S3. Code blocks bx(j)(1 ≤ j ≤ J) belonging to similar
code block sets Sx corresponding to label x suggested in STEP
S2 are output. In the case of x = 0, there is no code search
result because the trained model suggests that the input is
similar to negative data for training.

IV. CASE STUDY

This section describes a case study about our approach.
This case study shows the performance of our approach in
precision, recall, and F-measure using benchmark made of
three target OSS: HBase 2.04, OpenSSL 0.9.1· · · 1.1.05, and
FreeBSD 11.1.06. To use cross-version similar code blocks
caused by updates and so on. For evaluation, multiple versions
of OpenSSL are used.

3http://www.antlr.org/
4https://hbase.apache.org/
5https://www.openssl.org/
6https://www.freebsd.org/

3

STEP S3STEP S1

Trained Model
Query

!

the Similar Code Block Set
Corresponding to Label !

the Feature Vector

Input Output

Label

STEP S2

! ! ...

"
!

Transform

Not Found

#⃗

Fig. 6. Overview of the STEP S

A. Hyper Parameter

In this case study, the Feed-Forward Neural Network
(FFNN) model is implemented using deep learning framework
Chainer3.4.07. The network consists of three layers: an input
layer, a hidden layer, and an output layer. The dimension of
input is the dimension of the input feature vector and output is
the number of kinds of similar code block sets. The number
of unit of the hidden layer has been empirically decided to
200. The output layer is used softmax function.

B. Procedure of the Case Study

The case study consists of STEP E (Experiment) 1, 2 and
3.

STEP E1. Dataset for training and evaluation using each
target OSS are created.

STEP E2. The FFNN model is trained by code blocks of the
dataset for training.

STEP E3. Precision, recall, and F-score are calculated using
the dataset for evaluation.

C. Procedure of Creating Dataset

In the STEP E1, the dataset for training and evaluation are
created to follow the following steps.

STEP E1 (1). Similar code block sets are extracted from
target OSS and sets belonged by 100 or more code blocks
are selected in order to prepare many similar code blocks for
use in training and evaluation of the model.

STEP E1 (2). New similar code blocks are created by 20% of
similar code blocks in the selected sets being applied mutation
operators to and feature vectors generated from them are added
to positive data for training. The corresponding label is given
to each feature vector the following Section III-B STEP L4.

STEP E1 (3). 30000 feature vectors generated from code
blocks that are syntactically dissimilar to the positive data cre-
ated in STEP E1(2) are added to negative data for training. The
source code used at this time is acquired from BigCloneBench
[15] for HBase dataset, from FreeBSD for OpenSSL, and
OpenSSL for FreeBSD.

7https://chainer.org/

STEP E1 (4). Feature vectors generated from code blocks
extracted from each target OSS and 80% of similar code
blocks not used in STEP E1(2) are added to the dataset for
evaluation. If a feature vector is similar to a positive data for
training, the corresponding label is given to it. If not, label 0
is given.

Table I shows the number of positive data and negative data
in the dataset created using each target OSS. There is bias in
the dataset for evaluation because of using all code blocks in-
cluded in each target OSS and multiple versions of OpenSSL.
Also, to investigate the relationship between the degree of
syntactic difference between code blocks for training and input
code fragments and search performance, the similarity between
dataset for training and evaluation is changed for each target
OSS. Syntactically identical code blocks whose the similarity
is between 0.9 and 1.0 are extracted from Hbase, syntactically
mostly similar code blocks whose similarity is between 0.7
and 1.0 are extracted from OpenSSL, and semantically similar
code blocks whose similarity is between 0.1 and 0.2 are
extracted from FreeBSD.

D. Criteria of Search Performance

In this experiment, precision, recall, and F-measure are used
for evaluation of search performance. The following shows
these criteria.

Precision: This is a criterion about accuracy. In this experi-
ment, precision is defined as the ratio of the number of correct
results for labels of positive data for evaluation to the number
of results that the model calculated labels of positive data.

Recall: This is a criterion about comprehensiveness. In this
experiment, recall is defined as the ratio of the number of
correct results for labels of positive data for evaluation to
positive data for evaluation.

TABLE I
DATASET

for Training for Evaluation
OSS Positive Data Negative Data Positive Data Negative data

Hbase 28,822 30,000 740 12,688
OpenSSL 36,772 30,000 281 99,719
FreeBSD 27,852 30,000 747 8,177

4

Name
Expected

label
Output
label

A 0 0

B 0 1

C 1 1

D 2 2

E 3 3

F 4 3

!"#$%&%'()

3

5

) 0.6

"#$011)

3

4

) 0.75

Fig. 7. Example of Calculating Search Performance

F-measure: This is a synthetic criterion of precision and
recall. F-score is a harmonic mean of precision and recall.

Figure 7 shows an example of calculating search perfor-
mance. In this example, the model output the label of the
similar code block set for five blocks B to F as search results,
but the correct output is for three blocks C to E, so precision
is 3/5. Also, among code blocks given as input, code blocks
similar to four blocks C to F are learned by the model, but
the correct output is for three blocks C to E, so recall is 3/4.
F-score is a harmonic mean of precision and recall, so it is
2/3.

E. Result of the Experiment

Table II shows precision, recall, and F-score. Recall in
experiments using Hbase and OpenSSL is 1.000, so the model
learning code blocks in advance can search syntactically
similar code blocks with high accuracy.

Figure 8 and 9 show examples of code blocks which are
successfully found. The code blocks in Figure 8 (b) and Figure
9 (b) are used as positive data for training. The trained model
suggested that a feature vector generated from Figure 8 (a)
and Figure 9 (a) is similar to one generated from Figure 8
(b) and Figure 9 (b). The bold texts in Figure 8 and Figure
9 indicate the differences between each of query code and a
search result.

Figure 10 shows the example of an incorrect search result.
These code blocks are dissimilar although the trained model
suggested that these are similar. The differences in Figure 10
are possible to cause a case that the model suggested these are
similar. The consideration for it is described by Section IV-F.

F. Discussion

At first, we consider the search performance of the proposed
approach. Recall in experiments using Hbase and OpenSSL
was 1.000, so if code blocks have high similarity to input, the

TABLE II
SEARCH ACCURACY

BoW Doc2Vec
OSS Precision Recall F-score Precision Recall F-score

Hbase 0.924 1.000 0.960 0.830 1.000 0.907
OpenSSL 0.733 1.000 0.846 0.652 1.000 0.789
FreeBSD 0.497 0.822 0.620 0.519 0.529 0.524

List<Object> list = new ArrayList<Object>();

booleanpresent_message = true && (isSetMessage());
list.add(present_message);
if (present_message)

list.add(message);

return list.hashCode()

(a) Input Query

List<Object> list = new ArrayList<Object>();

booleanpresent_tableName= true && (isSetTableName());
list.add(present_tableName);
if (present_tableName)

list.add(tableName);

return list.hashCode();

(b) Search Result

Fig. 8. Example of Successful Search (Match)

model suggests correct search result. However, precision was
slightly lower. About the cause of lower precision, we consider
that the model tends to suggest a label based on local features.
For example, when the model is trained by dataset including
the code block which has the sentence “List<Object> list
= new Arraylist<Object>();” and is included in the target
project, the model often suggest that it is similar to code
blocks including the sentence to create list type objects such
as “List<Object> list = new Arraylist<Object>();” if these
code blocks are syntactically dissimilar on the whole. In this
experiment, the differences in Figure 10 are possible to cause
an incorrect suggestion that Figure 10 (a) and (b) are similar.
The result of the experiment using FreeBSD is worse than
HBase and OpenSSL, so dataset including syntactically less
similar code block and our approach are incompatible.

G. Case Study of the Effect of Mutation

In this section, we describe a case study of the effect of the
mutation. The model output probability of each label using
softmax function. In this case study, the effect of mutation
was described by investigating the relationship between the
number of positive data for training and the probability of
correct label which trained model output when similar code
blocks to positive data for training was given to it.

1) Steps of the Case Study: The case study consists of
STEP M (evaluation of Mutation) 1, 2, 3, and 4.

STEP M1. The function f which included in over 200
versions of OpenSSL and similar code blocks fn(n =
1, 2, · · · , N) to exist in other versions is selected and using
the mutation operators syntactically similar code blocks are
generated from it. Feature vectors of them are generated using
Doc2Vec and they are given label ‘1’.

STEP M2. Only a of feature vectors created in STEP M1 are
added to positive data for training, 30000 negative data for
training given label ‘0’ are prepared, and the models Ma are
trained by positive and negative data. The value of a is changed

5

{
int num,len,i;
char *p;
(omission)
for (;;)

{
(omission)
if (num >= arg->count)

{
arg->count+=20;
arg->data=(char **)OPENSSL_realloc(arg->data,

sizeof(char *)*arg->count);
if (argc == 0) return(0);
}

arg->data[num++]=p;
(omission)
}

*argc=num;
*argv=arg->data;
return(1);
}

(b) Search Result

{
int num,i;
char *p;
(omission)
for (;;)

{
(omission)
if (num >= arg->count)

{
char **tmp_p;
int tlen = arg->count + 20;
tmp_p = (char **)OPENSSL_realloc(arg->data,

sizeof(char *)*tlen);
if (tmp_p == NULL)

return 0;
arg->data = tmp_p;
arg->count = tlen;
for (i = num; i < arg->count; i++)

arg->data[i] = NULL;
}

arg->data[num++]=p;
(omission)
}

*argc=num;
*argv=arg->data;
return(1);
}

(a) Input Query

Fig. 9. Example of Successful Search (Similarity)

as a = 1, 100, 1000, 2000, 3000, 4000, 5000, 7000, 10000, so 9
models are created.

STEP M3. Feature vectors are generated from code blocks
fn(n = 1, 2, · · · , N) similar to f , they are input to 9 models
M1,M100, · · · ,M10000.

STEP M4. The probability of label ‘1’PMa(f⃗n, 1) which the
models Mn output and the relationship between the number
of positive data a and the probability PMa(f⃗n, 1).

2) Result of Experiment: Table 11 and Figure III show
result of the case study based on Section IV-G1. averagea
and mina are defined by the following two formula. They are
the average and minimum value of the probability of label ‘1’
calculated by the model Ma when f⃗n(n = 1, 2, · · · , N) are

List<Object> list = new ArrayList<Object>();

booleanpresent_tableName = true && (isSetTableName());
list.add(present_tableName);
if (present_tableName)

list.add(tableName);

return list.hashCode()

(b) Search Result

ArrayList<Long> timestamps = new ArrayList<>(filterArguments.size());

for (int i = 0; i<filterArguments.size(); i++) {
long timestamp =

ParseFilter.convertByteArrayToLong(filterArguments.get(i));
timestamps.add(timestamp);
}

return new TimestampsFilter(timestamps);

(a) Input Query

Fig. 10. Example of Failed Search

input to Ma.

averagea =
1

N

N∑

n=1

PMa(f⃗n) (1)

mina = min
n=1,2,··· ,N

{PMa(f⃗n)} (2)

Larger the number of positive data for training a, more
increase in averagea and mina.

3) Discussion: The approach that the training data are
created using mutation is inspired by the problem of image
classification such as MNIST which is an introduction to deep
learning. In this problem, in order to increase the training data,
operations such as enlargement, reduction, and movement are
performed on the original image and similar images slightly
different from the original image is often created and added
to the training data. In our approach, this idea is applied to
the source code using mutation.

In the case study of this section, the models using more than
2000 positive data for training output over 99% averagea, and
the models using more than 7000 positive data for training
output over 90% mina. This result shows that increasing
training data using mutation helps to advance training.

TABLE III
RELATIONSHIP TABLE BETWEEN THE NUMBER OF POSITIVE DATA AND

JUDGMENT PROBABILITY

positive data averagea mina

1 0.000 0.000
100 0.000 0.000

1000 0.000 0.000
2000 0.973 0.173
3000 0.992 0.675
4000 0.989 0.731
5000 0.998 0.871
7000 0.999 0.955

10000 0.999 0.978

6

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9
1

1 100 1000 2000 3000 4000 5000 7000 10000

Pr
ob
ab
ili
ty

the	Number	of	Positive	Data

Average Min

Fig. 11. Relationship between the Number of Positive Data and Judgment
Probability

V. RELATED WORK

Code search and code clone detection are similar tasks.
Code search takes input code fragment as a query to check
whether code clones of the query exist in the target projects.
Therefore several code search engines such as Ichi Tracker
[16] use code clone detection tools for code search. Kamiya
et al. [12] developed a code clone detection tool namely
CCFinder. This tool parses the source code, converts user-
defined names to special characters, and then detects token
strings that match with a length longer than the threshold
as code clones. In this research, reusable source code in
component and file units are detected based on the signature
(class name, method signature, field name, etc.) of the class
included in the component, the Jaccard coefficient between
the files included in the component, or the longest common
subsequence between the files. In this paper, we present a
search approach of code fragments which are finer-grained
than components and files based on deep learning.

White et al. [8] proposed an approach of code clone de-
tection that feature vectors are generated from abstract syntax
tree of source code using recurrent neural networks (RNN) and
autoencoder and the l2 norm of each vector are calculated.
Gu et al. [17] proposed “API Learning”, the approach of
generating examples of API usage order from the query in
natural language using RNN Encoder-Decoder model which
are used for machine translation. Unlike these research, our
research aims at searching similar code blocks based on deep
learning and we use the Feed-Forward Neural Network which
is a network with a simpler structure than RNN.

VI. CONCLUSION

In this paper, we propose a code search approach using
a Feed-Forward Neural Network (FFNN). In the learning
step, the dataset for training are generated from code blocks
of target source code and syntactically similar source code to
it created by mutation and using created dataset the FFNN
model is trained using supervised learning. In the search step,
similar code blocks corresponding to the label which the model

calculated based on feature vectors of input code fragments
are output. The case study shows that our approach enables to
search syntactically similar source code with high accuracy.
Future works are shown as follows.

• This approach only uses FFNN, so we are going to use
other deep networks such as RNN.

• It is necessary to evaluate whether our approach can
manage larger projects by increasing the number of
similar code block sets for training.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers JP25220003, JP18H04094 and JP16K16034.

REFERENCES

[1] Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi,
Li Li, Jacques Klein, and Yves Le Traon. FaCoY: A code-to-code
search engine. In Proc. of ICSE 2018, pages 946–957, 2018.

[2] Norihiro Yoshida, Takeshi Hattori, and Katsuro Inoue. Finding similar
defects using synonymous identifier retrieval. In Proc. of IWSC 2010,
pages 49–56, 2010.

[3] Yoshiki Higo, Yasushi Ueda, Shinji Kusumoto, and Katsuro Inoue.
Simultaneous modification support based on code clone analysis. In
Proc. of APSEC 2007, pages 262–269, 2007.

[4] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proc. of CVPR,
pages 779–788, 2016.

[5] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single shot
multibox detector. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling, editors, Proc. of ECCV 2016, pages 21–37. Springer
International Publishing, 2016.

[6] Gang Zhao and Jeff Huang. Deepsim: Deep learning code functional
similarity. In Proc. of ESEC/FSE 2018, pages 141–151, 2018.

[7] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and
Cristina V. Lopes. Oreo: Detection of clones in the twilight zone. In
Proc. of ESEC/FSE 2018, pages 354–365, 2018.

[8] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshy-
vanyk. Deep learning code fragments for code clone detection. In Proc.
of ASE 2016, pages 87–98, 2016.

[9] Hui-Hui Wei and Ming Li. Supervised deep features for software func-
tional clone detection by exploiting lexical and syntactical information
in source code. In Proc. of IJCAI-17, pages 3034–3040, 2017.

[10] Chanchal K Roy and James R Cordy. A mutation/injection-based
automatic framework for evaluating code clone detection tools. In Proc.
of ICSTW 2009, pages 157–166, 2009.

[11] Howard Demuth, Mark Beale, and Martin Hagan. Neural network
toolbox 6 User’s Guide. Mathworks, 1994.

[12] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a
multilinguistic token-based code clone detection system for large scale
source code. IEEE Trans. Softw. Eng., 28(7):654–670, 2002.

[13] Kazuki Yokoi, Eunjong Choi, Norihiro Yoshida, and Katsuro Inoue.
Investigating vector-based detection of code clones using bigclonebench.
In Proc. of APSEC 2018, pages 699–700, 2018.

[14] Jey Han Lau and Timothy Baldwin. An empirical evaluation of doc2vec
with practical insights into document embedding generation. arXiv
preprint arXiv:1607.05368, 2016.

[15] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy,
and Mohammad Mamun Mia. Towards a big data curated benchmark
of inter-project code clones. In Proc. of ICSME 2014, pages 476–480,
2014.

[16] Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe. Where does
this code come from and where does it go?-integrated code history
tracker for open source systems. In Proc. of ICSE 2012, pages 331–341,
2012.

[17] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim.
Deep api learning. In Proc. of FSE 2016, pages 631–642, 2016.

7

