
Proactive Clone Recommendation System
for Extract Method Refactoring

Norihiro Yoshida†, Seiya Numata∗, Eunjong Choi‡, and Katsuro Inoue∗
†Nagoya University, Japan, yoshida@ertl.jp

∗Osaka University, Japan, {s-numata, inoue}@ist.osaka-u.ac.jp
‡Nara Institute of Science and Technology, Japan, choi@is.naist.jp

Abstract—“Extract Method” refactoring is commonly used for
merging code clones into a single new method. In this position
paper, we propose a proactive clone recommendation system for
“Extract Method” refactoring. The proposed system that has
been implemented as Eclipse plug-in monitors code modifications
on the fly. Once the proposed system detects an “Extract Method”
refactoring instance based on the analysis of code modifications,
it recommends code clones of the refactored code as refactoring
candidates. The preliminary user study shows that the users are
able to refactor a greater number of clones in less time compared
to a code clone analysis environment GemX.

Index Terms—Extract Method Refactoring, Code Clone, Rec-
ommendation System

I. INTRODUCTION

One of the causes of increases in software development

costs is the existence of code clones within the source code.

Code clones refer to identical or similar code fragments within

the source code, and these are mainly generated by copying

and pasting existing code fragments [1], [2]. Typically, the two

code fragments that make up the code clones are referred to

as a code clone pair, and the set of all of the code clones is

referred to as a code fragment set.

One approach of reducing the cost to maintain code clones is

clone refactoring [3], [4]. Clone refactoring performs “Extract

Method” and merges the code clones within the same code

clone set into a single method [5]. Through suitable clone

refactoring, it is possible to prevent the costs associated with

code clone maintenance. Thus far, several approaches have

been proposed for supporting clone refactoring by extracting

code clones that are opportunities for “Extract Method” refac-

toring from the source code [6], [7]. The clone refactoring

support approaches need to not only propose which code

clones should be refactored as a priority but also support

refactoring during a particular period based on the current

activity of the developer. The reason for this is that by

recommending refactoring candidates based on the current

activity of the developer, the clones to be refactored will be

fresh in the mind of the developer and hence the developer

can perform the refactoring more efficiently. Furthermore,

code fragments are recommended as the refactoring candidates

when the process of unit tests for the recommend code

fragments is finished and a developer works for other code

fragments, the developers memory of the recommended code

fragments may be ambiguous. Moreover, as, when refactoring

these code fragments, it is necessary to redo the unit tests for

confirming the appropriateness of the refactoring, this lead that

the maintenance cost related to clone refactoring will increase

[8], [9]. Additionally, developers may carry out “Extract

Method” refactoring without any awareness of the existence of

code clones. In such a case, there is an issue due to the fact that

code clones for which “Extract Method” refactoring should

be carried out at the same time may be overlooked. However,

as far as we know, in the clone refactoring support proposed

thus far, clone refactoring support has been carried out without

any consideration given to the work content of the developer.

To resolve this problem, in this study, we focus on “Extract

Method” refactoring and construct a system for supporting

code clone refactoring during a suitable period, depending

on the work content of the developer. More specifically, this

involves monitoring the source code editing work by the

developer on the Eclipse. Then, when it is detected that the

developer is performing “Extract Method” refactoring, present

the code fragment on which this “Extract Method” refactoring

was performed to the developer as a code clone and encourage

them to consider refactoring at the same time. In this way, the

developer is made aware of the existence of the code clone at

this point and can consider the refactoring in relation to the

presented code clone. In this study, we propose a proactive

clone recommendation system for Extract Method refactoring.

We also performed a preliminary user study for investigating

the effectiveness of clone refactoring support in the proposed

system. When we performed a comparative test with GemX,

which is the GUI of CCFinderX, we were able to confirm the

effectiveness of the clone refactoring support in the proposed

support system.

II. GEMX: CODE CLONE ANALYSIS ENVIRONMENT

The code clone analysis environment GemX [10] is the

GUI of the token-based code clone extraction tool CCFinderX
[11], and we were able to analyze the code clones extracted

by CCFinderX. When providing clone refactoring support

using GemX, the flow is such that the developer moves away

from the IDE during development, and detects code clones

from the target projects using GemX. Then, they search for

“Extract Method” refactoring candidates based on the code

clone detection results and then return again to the IDE where

the development work was taking place, and consider the

clone refactoring. However, as GemX detects an extremely

high number of code clones, it is not easy for the developer

67

2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR)

978-1-7281-2270-0/19/$31.00 ©2019 IEEE
DOI 10.1109/IWoR.2019.00020

to search for the candidates for simultaneous refactoring

from detected code clones. Additionally, GemX is used by

many developers to develop source code, and one problem

raised is that it cannot be used on IDE. For this reason, for

developers to be able to refactor code clones in parallel to

performing development work, they need to interrupt their

current development work, and open and operate GemX. This

is a very laborious work.

III. PROPOSED SYSTEM

Many approaches have already been proposed for automati-

cally detecting for code clones from the source code [11]–[13].

However, many of the code clone maintenance work support

approaches proposed thus far involve the developers separating

themselves from their current work, detecting code clones

in relation to the source code, and performing maintenance

support. As far as we are aware, there are no approaches to

support code clone maintenance work by analyzing the work

content. As in source code for the version control system,

if the developer is aware of the existence of code clones in

source code for which unit tests are complete, and he/she

performs clone refactoring, it will be necessary to repeat

unit tests. This will significantly increase development costs.

Additionally, as the developer performs the development work

without grasping the existence of all of the code clones, it is

considered possible that he/she may not be aware of all of the

code fragments that can be refactored simultaneously.

Therefore, in this study, we propose a system in which, by

monitoring the development work of the developer, “Extract

Method” refactoring are detected, and the candidates for code

clones refactoring are recommended to the developer. In this

way, there is no need to separate the current work of the

developer from the work to detect code clones, and this

promises to enable software maintenance work to be carried

out efficiently. In other words, we believe that when a method

is extracted, the extracted code block is cloned elsewhere in a

system. More generally, our idea is that clones recommended

to developers should be dependent on the current activity of

each developer.

An overview of the proposed system is shown in Figure 1.

The proposed system generally has two functions. Function 1

is a monitoring and analysis function, and function 2 is a code

clone recommendation function. Function 1 is realized from

step 1 to step 3, and function 2 is realized in step 4 and step

5. We shall now explain these steps in more detail.

A. Keystroke tracking

To monitor the development environment of the developer,

in the proposed system, the keystrokes of the developer are

tracked. The necessary information when performing “Extract

Method” refactoring is one line or more of line differen-

tial information. Therefore, the proposed system tracks the

keystrokes of the developers and, using said keystrokes, take

the line differential every time a line is changed, enabling

detection of changes in 1 or more lines. When taking the

Developer Eclipse Editor

List of Code
Clones

List of Differential Nodes

Code clone
detection

Keystroke
tracking

Identification
of differential

nodes

Matching of
Clone sets

Detection of “Extract
Method” Refactoring

Instances of “Extract
Method” Refactoring

Code fragments in the
clone sets extracted by the

Refactoring

Proposed System

STEP 4STEP 1

STEP 2 STEP 3

STEP 5

Function 1
monitoring
and analysis

Function 2
Code clone

recommendation

Fig. 1. Overview of the proposed system

line differential, we applied the Myers differential detection

algorithm [14].

B. Identification of differential nodes

In case one or more line is changed in relation to the

source code, this differential is mapped to an AST node

and identified. We used the Eclipse ASTParser [15] for con-

structing AST. The differential is constructed from the pair

(delta type, ast node). The value taken from delta type is

either Insert or Delete. Insert expresses that one or more

lines have been added, whereas Delete expresses that 1

or more lines have been deleted. AST created using the

ASTParser can be reached by implementing the ASTVis-

itor class. In this way, the node can be identified from

AST. Therefore, an AST that matches the line differential

identified using the differential detection algorithm can be

identified from AST. ast node is formed from information

from the identified AST node, and this includes information

such as the node name, node type, node position, and node

contents. Here, the node types include information such as

MethodDeclaration, MethodInvocation, and VariableDeclara-

tionStatement. To detect “Extract Method” refactoring, as the

three items of information, (Insert,MethodDeclaration),
(Insert,MethodInvocation), and (Delete, code block) are

required, in this study we identify only these three types of

AST nodes, and save these as a node list.

C. Detection of “Extract Method” Refactoring

After the identification of differential nodes, it is necessary

to identify whether the accumulated differential nodes repre-

sents “Extract Method” refactoring. If differential nodes satisfy

the following condition, the proposed system recognizes that

“Extract Method” refactoring is performed.

68

Condition for “Extract Method” refactoring� �
(Insert,MethodDeclaration)

∧(Delete, code block)
∧(Insert,MethodInvocation)

where
position(code block) =

position(MethodInvocation)
∧ name(MethodDeclaration) =

name(MethodInvocation)
� �
In other words, with the proposed system, method extrac-

tion is detected once a new method is declared, a code

fragment is deleted, and a new method invocation state-

ment is added in the position in which the code frag-

ment is deleted. If we look at the above formula, Line 1

(Insert.MethodDeclaration) expresses that a new method

has been declared, and the second line (Delete, code block)
expresses that a particular code fragment has been deleted.

The third line (Insert,MethodInvocation) invokes a new

method and inserts a statement. However, because this is not

enough for us to determine whether “Extract Method” refac-

toring has performed, further conditions are added and the line

4, 6 position(code block) = position(MethodInvocation)
determines whether the position of the deleted code fragment

and the position where the method invocation statement was

inserted are the same. The name(MethodDeclaration) =
name(MethodInvocation) in lines 7 and 8 determines

whether the newly declared method name and the newly

inserted method invocation statement method name are the

same. When the above five conditions are satisfied, this is

detected as an instance of “Extract Method” refactoring.

D. Code clone detection

The proposed system uses CCFinderX in the proposed

system to detect code fragment code clones on which “Extract

Method” refactoring has taken place [11]. To detect code

fragments in the code clones on which “Extract Method”

refactoring has performed, it is necessary to detect code clones

in source code immediately before “Extract Method” refac-

toring. It is also necessary, therefore, to detect that “Extract

Method” refactoring has started. Thus, in the proposed system,

in relation to the timing at which a developer newly creates

a method, the possibility is considered that “Extract Method”

refactoring will be performed after this; therefore, code clone

detection is performed at this time.

E. Matching of Clone sets

Once “Extract Method” refactoring is detected, it is then

necessary to detect the code fragment clone set extracted by

“Extract Method” refactoring. The code fragment on which the

“Extract Method” refactoring took place and the code clone

matching the position information can be searched from the

CCFinderX output results in Section III-D. Then, all of the

code clones for the clone set to which this code clone belongs

are detected, and the code fragments on which “Extract

Method” refactoring was performed at the same time as this

clone set are presented to the developer in Eclipse view. As

simultaneous refactoring candidates are displayed, the display

is split between recently modified code clones within the file

(Modified File Clone) and code clones other than those in the

modified file (Between Clone Set). This is because the code

clones within the file have a higher priority for refactoring

than the code clones between the files, and are considered

to be easily refactored. Each code clone has a clone set ID,

clone information, and line information. The clone set ID is

an ID for identifying the clone set to which this code clone

belongs, and the clone information expresses information on

which file it belongs to and the code clone section offset. The

line information expresses the line of the code clone section.

Additionally, if the developer selects one code clone from

the code clone list, the file that includes that code clone is

opened, and that code clone section is highlighted, enabling the

developer to easily grasp what code clone it is. Looking at the

highlighted code clone, the developer is able to decide whether

to perform simultaneous “Extract Method” refactoring.

IV. PRELIMINARY USER STUDY

We conducted a preliminary user study to investigate the

effectiveness of the clone refactoring support in the proposed

system. In the user study, we compared the results of clone

refactoring supports with 8 master course students studying

information science using the proposed system and GemX, the

GUI of CCFinderX. All of them have Java programming skill.

For the study, we used two datasets from the following two

projects written in Java:

• JFreeChart1 (260 KLOC with 990 classes)

• JUnit2 (43 KLOC with 449 classes)

JFreeChart is a graph library that allows a user to draw

graphs of various statistical charts and functions. JUnit is a

framework for automating unit tests. From these projects, we

created datasets by selecting methods that are statically called

the same number of times and then in-lining these methods

In the datasets, the methods that were inlined are defined as

targets of “Extract Method” refactoring. The dataset contains

three targets for each project.

During the study, we requested participants to perform “Ex-

tract Method” refactoring for code clones using the proposed

system and GemX, respectively, with the datasets. Moreover,

we investigated (1) the number of code clones that were refac-

tored and (2) overall time for performing clone refactoring

with the datasets. We conducted the study with two phases, the

first phase was the code clone refactoring using the proposed

system and the second phase was conducted using GemX. In

the study, we provided one of three candidates for “Extract

Method” refactoring and asked participants to identify the

other two candidates by using the project system and GemX,

respectively. Moreover, we did not tell the number of code

clones that can be targets of “Extract Method” refactoring.

1http://www.jfree.org/jfreechart/
2https://junit.org/junit4/

69

Therefore, the participants found the targets for clone refac-

toring using the proposed system and GemX.

TABLE I
MINIMUM, MAXIMUM AND AVERAGE VALUES OF THE NUMBER OF CODE

CLONES (I.E., CODE FRAGMENTS IN EACH CLONE SET WITHIN A PROJECT)
THAT WERE REFACTORED

Proposed system GemX

Maximum 3 3
Minimum 1 0
Average 2.75 2

TABLE II
MINIMUM, MAXIMUM AND AVERAGE VALUES OF OVERALL TIME FOR

PERFORMING CLONE REFACTORING IN SECONDS

Proposed system GemX

Maximum 2,040 2,610
Minimum 101 1,080
Average 1043 1,602

The results of user study are shown in Table I and Table II.

Table I shows the minimum, maximum and average values of

the number of code clones that were refactored during the user

study. Table II presents the minimum, maximum and average

values of time for performing clone refactoring.

As you can see in the Table I, the average number of code

clones (i.e., code fragments in each clone set within a project)

that were refactored for the proposed system is 2.75 and GemX
is 2. This indicates that the proposed system was able to

support “Extract Method” refactoring for code clones more

effectively than the GemX. We also confirmed the significant

differences between these numbers by conducting t-test with a

confidence level of 0.05. From these results, we can conclude

that the proposed system effectively support clone refactoring

regarding finding the targets of clone refactoring.

Moreover, as you can see in the Table II, the average time

for performing clone refactoring with the proposed system in

seconds is 2,040. Whereas, the average time in seconds with

the GemX is 2,610. This indicates that it takes shorter time to

perform clone refactoring with the proposed system than the

GemX. We also confirmed the significant differences between

these time by conducting t-test with a confidence level of 0.05.

From these results, we can conclude that the proposed system

can support clone refactoring within less time.

V. THREATS TO VALIDITY

In the preliminary experiment, we assumed that clones are

simultaneously refactored by Extract Method refactoring and

created the dataset using Inline Method refactoring. We need

to investigate how often clones are simultaneously refactored

in practice.

Also, we assumed that if several clones are found, all of

the clones can be refactored simultaneously. In other words,

we assumed that classes containing clones have a shared

association with the class to which the method will be moved.

We need to investigate what kinds of clones can be supported

by the proposed system.

VI. SUMMARY

In this position paper, to analyze the development work

carried out on Eclipse, we searched for “Extract Method”

patterns, presented the extracted code fragment code clones

to the developer, and constructed a system for supporting

clone refactoring. When comparing the time taken for clone

refactoring and frequency on the proposed system and the

code clone analysis environment GemX, we could confirm a

significant difference. We plan to perform a large-scale user

study to show the effectiveness of the proposed system. One

of the future works is increasing the number of supported

refactoring patterns that can be applied to reducing code

clones.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-

bers JP25220003, JP18H04094 and JP16K16034.

REFERENCES

[1] B. S. Baker, “Finding clones with dup: Analysis of an experiment,” IEEE
Trans. Softw. Eng., vol. 33, no. 9, pp. 608–621, 2007.

[2] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proc. of ICSM, 1998, pp. 368–
377.

[3] N. Tsantalis, D. Mazinanian, and G. P. Krishnan, “Assessing the refac-
torability of software clones,” IEEE Trans. Softw. Eng., vol. 41, no. 11,
pp. 1055–1090, Nov 2015.

[4] N. Yoshida, T. Ishizu, B. Edwards, and K. Inoue, “How slim will my
system be?: estimating refactored code size by merging clones,” in Proc.
of ICPC, 2018, pp. 352–360.

[5] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[6] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “On
refactoring support based on code clone dependency relation,” in Proc.
of METRICS, 2005, pp. 16:1–16:10.

[7] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano, “Extracting code
clones for refactoring using combinations of clone metrics,” in Proc. of
IWSC, 2011, pp. 7–13.

[8] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano, “Applying
clone change notification system into an industrial development process,”
in Proc. of ICPC, 2013, pp. 199–206.

[9] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Clone management for evolving software,” IEEE Trans. Softw.
Eng., vol. 38, no. 5, pp. 1008–1026, 2012.

[10] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue, “Gemini: Mainte-
nance support environment based on code clone analysis,” in Proc. of
METRICS, 2002, pp. 67–76.

[11] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, 2002.

[12] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proc. of ICSE, 2007,
pp. 96–105.

[13] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“SourcererCC: Scaling code clone detection to big-code,” in Proc. of
ICSE, 2016, pp. 1157–1168.

[14] E. W. Myers, “AnO (ND) difference algorithm and its variations,”
Algorithmica, vol. 1, no. 1-4, pp. 251–266, 1986.

[15] Program Creek, “Use JDT ASTParser to parse Single Java
files.” http://www.programcreek.com/2011/11/use-jdt-astparser-to-parse-
java-file/.

70

