
Near-Omniscient Debugging for Java
Using Size-Limited Execution Trace

Kazumasa Shimari∗, Takashi Ishio†, Tetsuya Kanda∗, Katsuro Inoue∗
∗ Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

Email: {k-simari, t-kanda, inoue}@ist.osaka-u.ac.jp
† Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan

Email: ishio@is.naist.jp

Abstract—Logging is an important feature for a software sys-
tem to record its run-time information. Detailed logging enables
developers to collect information in situations where they cannot
use an interactive debugger, such as continuous integration and
web application server cases. However, extensive logging leads to
larger execution traces because a few instructions are repeated
many times. To record the detailed program behavior within
limited storage space constraints, we propose Near-Omniscient
Debugging, a methodology that records an execution trace using
fixed size buffers for each observed instruction. Our tool monitors
a Java program’s execution and annotates source code with
observed values in an HTML format. Developers can easily
investigate the execution and share the report on a web server.
In case of DaCapo benchmark applications, our tool requires
fewer than 1% of the complete execution traces to visualize all
runtime values used by 66% of instructions that are executed
less than 64 times. Developers also can obtain data dependencies
with precision 91.8% and recall 79.0% using this tool.

Index Terms—Dynamic Analysis, Logging, Software Visualiza-
tion

I. INTRODUCTION

Debugging is a method to identify defects in source code
from the diagnosis of its external software behavior. For
efficient debugging, developers monitor the execution order
of instructions and actual values of variables in source code
[12]. Developers may compare program behavior at various
points of executions where a failure does or does not occur
[2], [6]. Interactive visualization tools such as JIVE [4] and
break-point debuggers are useful for such analysis; however,
developers struggle to use those tools for systems running on
continuous integration and web application servers.

Logging is a common practice to record a program exe-
cution as a sequence of messages reporting the software’s
progress and its important data [7]. However, it may not
contain sufficient data for debugging since the data is specified
at the time of development [14]. To enable efficient debugging,
an automatic method to record a program’s execution in detail
is needed.

Omniscient debugging [8] is a technique to record all
the runtime events during program execution. Although the
technique enables developers to inspect the state of a program
at an arbitrary point in execution, it results in a huge execution
trace, in some cases growing as fast as 10 MB per second [11].
Developers have difficulty estimating the size of an execution
trace prior to execution. Therefore, developers have difficulty

determining what data should be logged to fix bugs in a
deployed environment [3].

In this work, we propose Near-Omniscient Debugging to
record and visualize an execution trace within limited storage
space constraints. Since a full execution trace includes many
uninteresting method calls such as utility functions [3], we
introduce a parameter k that specifies the maximum number of
recorded values for each instruction. The parameter limits the
size of an execution trace for repeatedly executed instructions
while keeping all actual values of variables associated with
instructions that are executed less than k times.

Our implementation records local variables and fields used
in a Java program’s execution and annotates source code with
the recorded values. The tool also provides a filtering feature
to display the values recorded in specific intervals. The feature
enables developers to investigate both control-flow and data-
flow among instructions.

In the remainder of the paper, Section II explains the back-
ground of the tool. Section III describes the implementation.
Section IV shows the performance of the tool. Section V
describes a use case example. Section VI concludes and
describes the future work.

II. BACKGROUND

Repetition of program instructions leads to larger execution
traces. To reduce the size of execution traces, compression and
sampling methods have been proposed.

Wang et al. [13] proposed an effective compression method
tailored for execution traces comprising a sequence of memory
address accessed by a program. This method employs delta
encoding because programs often repeat the same instruction
which manipulating consecutive data locations in memory.
Although the compressed trace is applicable to dynamic data-
flow analysis, this method is unsuitable for recording the
concrete runtime values of variables. In addition, the trace’s
size is hard to estimate prior to execution.

Cornelissen et al. [3] reported that execution traces exclud-
ing unimportant utility functions retain more information than
a trace filtered by a simple sampling algorithm using the same
storage space. The method does not directly reduce the size
of an execution trace because it assumes that a full execution
trace is recorded and filtered for each analysis. Our method
reduces the repetition of data during the recording process.



4

9 9

void methodA (int var) {

var = methodB(var);

while (var > 0) 

var = methodC(var);

System.out.println(var);

}

Time Series

Proposed
Recording

Time Series

Recording

11

2

3

4

5

6

7

8

6 85 7 9

2

7

6

8

Fig. 1. The proposed recording image

Hizrel et al. [5] proposed Bursty Tracing, a sampling method
that periodically turns monitoring on and off. This method can
record rich information about program control flow compared
with other sampling techniques. However, this method is not
designed to collect values of variables. This method also
cannot estimate the size of a trace prior to execution.

Another approach to minimizing runtime overhead and
storage space is a specialized execution trace tailored for a
specific purpose. Liu et al. [9] proposed an analysis method to
collect detailed information about suspicious behavior such as
buffer overflows and memory leaks using lightweight memory
access monitoring techniques. Zhang et al. [15] proposed a
method to analyze data dependencies by converting execution
traces to the program slice dynamically, which reduces storage
usage drastically. Since those approaches are specialized for
their purposes, they are inapplicable to variable values.

III. PROPOSED METHOD

Our tool records a partial execution trace of a Java program
and generates HTML files to interactively explore the recorded
trace. Figure 1 illustrates the key idea of our tool. In this figure,
we have a limited storage space that can record up to six steps
of program execution. Suppose an execution comprises of nine
steps, as indicated by numbers in yellow boxes. A naive time-
series logging records the last six steps as indicated in the
bottom of the figure. On the other hand, our tool prepares
buffers for each line of code to record the latest step for each
line, as shown on the right side of the figure. This approach
discards an execution trace for repeated instructions in the loop
but retains the other information completely. By recording the
latest observed values, abnormal behaviors are likely recorded
in case a program crashes. Since the trace retains the program’s
initialization process which is executed only once, developers
also can analyze the configuration parameters of the execution.

Our tool comprises two components: Near-Omniscient
Trace Recorder and Interactive View Generator. The following
subsections explain each component in detail.

A. Near-Omniscient Trace Recorder

Our recorder component is an extension of the existing
trace recorder for REMViewer [10], an omniscient debugging
tool. An execution trace includes (1) method entry and exit
events with their arguments, return values, and exceptions and
(2) values read from and written to local variables, fields,

Fig. 2. Trace view Fig. 3. Trace view (filtering)

and arrays. The recorder component assigns an object ID to
distinguish each object reference.

The tool injects logging instructions to a target program us-
ing bytecode instrumentation. An execution trace is a sequence
of events ⟨d, t, v⟩ where d represents a data element (e.g., a
local variable) used by an instruction, t represents a thread
of control that executed the instruction, and v represents an
observed value. An instruction may have several data elements,
e.g., arguments of a method.

Our tool records the latest k events for each data element
d. Our tool takes buffer size k as a parameter, allocates
buffers for each data element, and accumulates the observed
events alongside their timestamps. When the program has
finished, the tool writes the accumulated data to storage using
a shutdown hook function in the Java virtual machine. The
maximum trace size is k×N where N is the number of data
elements used by instructions in a program. Our method with
k = ∞ is conceptually equivalent to omniscient debugging.

To enable users to investigate how objects are manipulated,
our tool assigns object IDs for each object reference. For String
and Exception objects, the tool records their textual contents
with IDs for ease of debugging. Our current implementation
simply records the textual contents as is. An effective record-
ing of textual contents is a future work.

B. Interactive View Generator

The interactive view generator translates an execution trace
obtained by the trace recorder into an interactive view rep-
resented by HTML files corresponding to each source. This
view displays the source code, whose variables are highlighted.
The variables are linked to the actual values recorded in the
trace. By hovering a mouse cursor on a highlighted variable,
the values of the variable are displayed. For example, Figure 2
shows a screenshot of an interactive view displaying the values
of var in ascending order by time.

This interactive view can filter values by specifying a time
interval. For example, in Figure 2, a user can click on radio
buttons shown in the left and right sides of each value. A click
on the left button specifies a start point of an interval and the
right one specifies an end point. Figure 3 shows the interactive
view showing values observed after var was 32 at line 15.
If no values are recorded for a variable during the specified
time interval, the highlighting of the variable is turned off. In
the figure, the highlighting for var at line 13 disappeared as
a result of the filtering.



1

10

100

1,000

10,000

100,000

1,000,000

16 32 64 128 256 ALL

Tr
ac

e 
Si

ze
 (

M
B

)

Buffer Size k

avrora

fop

luindex

lusearch

Fig. 4. The data size of execution traces

TABLE I
SIZE OF BENCHMARK PROGRAMS AND THEIR EXECUTION TRACES

Name #Class #Method #Element Size (All) Size (k=64)
avrora 527 3,456 122,513 174.2 GB 7.2 MB
fop 1,161 10,178 433,810 7.8 GB 18.8 MB
luindex 231 2,467 111,643 43.5 GB 4.1 MB
lusearch 199 2,140 88,785 140.3 GB 3.9 MB

It should be noted that interactive views share a single
filter within multiple tabs. A user can investigate an inter-
procedural data-flow by selecting an arbitrary pair of source
code locations in a program.

IV. PERFORMANCE

We evaluate the performance of our tool from the following
aspects: The size of execution traces, time to collect execution
traces, and accuracy of execution traces. To evaluate those
aspects, we use full execution traces for omniscient debugging
as a baseline. We selected four benchmarks that we could
complete executions of DaCapo Benchmarks 9.12-bach [1].
We executed our tool to collect execution traces varying
k: 16, 32, 64, 128, and 256. The traces contain standard
library calls in the target benchmarks but do not contain the
internal behavior of the Java standard libraries. Performance
was measured on Windows 10 running a Xeon(R) W-2123
processor, 32 GB DRAM, and an HDD.

A. Size of Execution Traces

Figure 4 shows the storage size of execution traces varying
k. ALL indicates the size of full execution traces. Table I
shows the program size of each benchmark. The column
#Class is the number of loaded classes to execute the bench-
mark, excluding the Java standard libraries identified by the
prefix of the package names (java, javax, and sun).
The columns #Method and #Element show the numbers of
methods and data elements used in their instructions, including
both executed and non-executed components. The columns
“Size (All)” and “Size (k=64) indicate the size of execution
traces. The traces for our tool consume less than 1% of the
space taken by full traces.

TABLE II
EXECUTION TIME OF OUR TOOL (MILLISECONDS)

Name Normal Near-Omni. (k = 64) Omni.
avrora 9,397 2,229,917 6,704,254
fop 1,528 32,549 129,229
luindex 6,049 89,556 608,175
lusearch 7,496 1,870,915 5,508,298

TABLE III
EVALUATION OF DATA DEPENDENCIES (SUM OF FOUR BENCHMARKS)

k #Depend. Precision Recall F-measure Complete ratio
16 41,184 0.918 0.748 0.824 0.565
32 42,130 0.920 0.767 0.837 0.596
64 43,476 0.918 0.790 0.849 0.662
128 44,425 0.917 0.807 0.858 0.696
256 45,528 0.916 0.826 0.869 0.725
ALL 50,502

B. Time to Collect Execution Traces

Table II shows the execution time of benchmarks with
our trace recorder. The columns show the time of execution
without recording, with our recording (k = 64), and with
recording for omniscient debugging, respectively. Our Near-
Omniscient Debugging takes 130 times longer than normal
executions on average but is faster than omniscient debugging
because smaller traces require a shorter time to be recorded
in storage.

C. Accuracy of Data Dependencies in Execution Traces

To analyze the accuracy of our trace, we evaluated data
dependencies among instructions. The data dependency is de-
fined as an assignment-reference instruction pair that accesses
the same memory address using local, field, or array variables.
Table III shows the number of data dependencies varying k
and its precision, recall, and F-measure. The table shows that
our method achieves high precision and recall with avarages
of 0.9 and 0.8 respectively, using fewer than 1% of the space
consumed by full execution traces. The right-most column,
“Complete ratio”, indicates the ratio of instructions that are
executed less than k times; i.e. values for those instructions
are completely recorded. In case of k = 64, the trace retains
variable values for 66% of all instructions in the programs.

V. USE CASE EXAMPLE

To demonstrate the usefulness of the tool, we use it to debug
a small program. The program’s goal in this case study is
to select the maximum number from three given numbers.
Figure 5 shows test cases of the target method that provide
parameters 10, 20, and 30 in different orders to the target
method. The last test case at line 17 fails and a log message
for the test case shows that the expected return value is 30 but
the actual return value is 20.

To debug the target method, we collect an execution trace
of the test and generate interactive views of the program using
the following commands.



Fig. 5. Test cases of a program

Fig. 6. The interactive view of use case

Fig. 7. The result of the filtering

java -javaagent:NearOmniTracer.jar=size=32,
output=trace-dir -jar getMax.jar

java -jar NearOmniVis.jar trace-dir *.java

The first command traces a program with our recorder. The
second command translates the generated trace and source files
into HTML files.1

Figure 6 shows the view of the target method. It shows
all cases return a value on the variable max at line 26. We
can confirm that the sixth return value, 20, caused the test
failure. To visualize the computation for this invalid return
value, we filter the execution with a time interval from the
initialization of max at line 9 to the final value of max at
line 26, by clicking on the left radio button of the sixth value
at line 9 and the right button at line 26. Figure 7 shows the
filtering result. The highlighted variables show that the max
was incorrectly assigned at line 12. We can fix this bug by
changing the variable num1 to num2 at line 11.

In this example, the target method includes a loop at lines
23–25 that is irrelevant to the test cases. Although the loop
results in a large number of steps in a full execution trace, our
tool excludes those steps from the trace.

VI. CONCLUSION

We proposed Near-Omniscient Debugging to monitor and
visualize detailed software with reducing storage space con-
sumption. Our method takes as input k to specify the number
of recorded values for each instruction. It retains actual values
for 66% of instructions and accurate data dependencies using
fewer than 1% of the full execution traces. Developers can
use our tool to monitor remote program execution, such as
testing on continuous integration servers, and to visualize the
behavior of test failures.

In future work, we would like to investigate effective
logging for textual contents such as strings and exceptions.
We also would like to evaluate the usability of the tool.

1The generated view files are available at
http://sel.ist.osaka-u.ac.jp/people/k-simari/ICSME2019/

ACKNOWLEDGMENTS

We thank anonymous reviewers and Dr. Raula Gaikovina
Kula for their editorial help.

This work has been supported by JSPS KAKENHI Nos.
JP18H03221, JP18H04094 and JP19K20239.

REFERENCES

[1] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo benchmarks: Java benchmarking development and analysis,” in
Proc. OOPSLA, 2006, pp. 169–190.

[2] H. Cleve and A. Zeller, “Locating causes of program failures,” in Proc.
ICSE, 2005, pp. 342–351.

[3] B. Cornelissen, L. Moonen, and A. Zaidman, “An assessment methodol-
ogy for trace reduction techniques,” in Proc. ICSM, 2008, pp. 107–116.

[4] P. V. Gestwicki and B. Jayaraman, “JIVE: Java interactive visualization
environment,” in Companion Proc. OOPSLA, 2004, pp. 226–228.

[5] M. Hirzel and T. Chilimbi, “Bursty tracing: A framework for low-
overhead temporal profiling,” in Proc. of the 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization, 2001.

[6] N. M. Johnson, J. Caballero, K. Z. Chen, S. McCamant, P. Poosankam,
D. Reynaud, and D. Song, “Differential Slicing: Identifying Causal
Execution Differences for Security Applications,” in Proc. of the 32nd
IEEE Symposium on Security and Privacy, 2011, pp. 347–362.

[7] S. Kabinna, C.-P. Bezemer, W. Shang, and A. E. Hassan, “Logging
library migrations: A case study for the apache software foundation
projects,” in Proc. MSR, 2016, pp. 154–164.

[8] B. Lewis, “Debugging backwards in time,” CoRR, cs.SE/0310016, 2003.
[9] T. Liu, C. Curtsinger, and E. D. Berger, “Doubletake: Fast and precise

error detection via evidence-based dynamic analysis,” in Proc. ICSE,
2016, pp. 911–922.

[10] T. Matsumura, T. Ishio, Y. Kashima, and K. Inoue, “Repeatedly-
executed-method viewer for efficient visualization of execution paths
and states in java,” in Proc. ICPC, 2014, pp. 253–257.

[11] G. Pothier, E. Tanter, and J. Piquer, “Scalable omniscient debugging,”
in Proc. of the 22nd ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications, 2007, pp. 535–552.

[12] D. Spinellis, Effective Debugging: 66 Specific Ways to Debug Software
and Systems. Addison-Wesley Professional, 2016.

[13] T. Wang and A. Roychoudhury, “Using compressed bytecode traces for
slicing java programs,” in Proc. ICSE, 2004, pp. 512–521.

[14] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software
diagnosability via log enhancement,” SIGARCH Comput. Archit. News,
vol. 39, no. 1, pp. 3–14, 2011.

[15] X. Zhang, R. Gupta, and Y. Zhang, “Efficient forward computation
of dynamic slices using reduced ordered binary decision diagrams,” in
Proc. ICSE, 2004, pp. 502–511.


