

A Practical Appraoch to the Year 2038 Problem for

32-bit Embedded Systems

Hideyuki Oe

Osaka University

hideyuki.ooe@gmail.com

Makoto Matsushita

Osaka University

matusita@ist.osaka-u.ac.jp

Katsuro Inoue

Osaka University

inoue@ist.osaka-u.ac.jp

Abstract— Many UNIX-based operating systems are also

used for embedded systems. Many current embedded systems

use 32-bit system architecture, and 32-bit versions of UNIX-

based operating systems are often used. A 32-bit UNIX-based

OS manages time information as a 32-bit signed integer, and it

is known that an overflow of time information occurs in 2038.

There are not many reports of practical approach for this

problem. In this paper, we report our experience of successful

modification of a 32-bit FreeBSD embedded system by changing

the starting point of the UNIX time (epoch time). As a result, the

system is guaranteed to be used beyond 2038 and it is now in the

market.

Keywords—The Year 2038 problem, embedded system, 32-bit

system architecture, epoch time

I. INTRODUCTION

With the advancement of embedded systems, UNIX-based
operating systems such as Linux and FreeBSD are generally
used as the operating system [1]. These OSes are often
migrated from 32-bit to 64-bit as the target system evolves [2].

 However, in the development of embedded systems,
major concerns are to shorten the development period and
reduce costs, and new systems may be developed using the
software of the old systems. In the development of embedded
systems for mass production, slight differences in cost per unit
have a major impact on the business. Therefore, if there is no
reason to lead to user benefits, it is often decided to continue
to use a low-cost 32-bit system when developing a new system.

 The 32-bit version of the UNIX-based OS manages time
information as 32-bit signed data on January 1st, 1970 at 0
o'clock 0 minutes 0 seconds (UTC) (called epoch time) [3].
This data causes digit overflow in 2038, about 68 years later
[4] (hereinafter referred to as the Year 2038 problem).
Systems that handle time information need to avoid various
impacts caused by this problem.

 Necessity to cope with the 2038 problem also depends on
the operation guarantee period of the target system. For
example, if the operation guarantee period is 20 years, system
released in 2018 needs to be prepared for this problem.

 A similar problem, failure of systems running UNIX
happened on January 10, 2004 [5]. In this problem, two kinds
of elapsed seconds were added without considering overflow,
or the maximum number of digits of the elapsed seconds was
incorrectly set. As a result, the billing program caused
erroneous billing and the credit software did not work properly.
Another related issue is the Year 2000 problem[6]. When
dealing with the last two digits of the year in decimal, an
overflow occurs once every 100 years. In this state, when the
year 2000 is reached, since the year information is “00” inside
the system, it is indistinguishable from the year 1900, and
there is a risk of causing a calculation error. Both problems

are closely related to this paper, including how to deal with
them. However, there have been no concrete reports on
software modification methods and their results for the 2038
problems as presented in this paper.

 In this paper, we report the policy of our group's response
to the Year 2038 problem and the concrete correction method.
This finding can be applied to the repair of the Year 2038
problem of other similar systems, and to the time problems of
related operating systems.

II. REQUIREMENTS OF DEVELOPMENT TARGET

Figure 1 shows the configuration of the development
target system discussed in this paper.

Fig. 1. Development target system.

The development target system (hereinafter referred to as
the system) receives the data to be drawn by communication
along with the expiration date of the data, and saves it as a
drawing material with a time. It is known that the time
information received by communication is notified of the
correct time even after 2038. In the system, the data to be
drawn is selected according to the internally managed system
time and the user's operation of the system. Delete expired

materials. After formatting the selected display target material,
the information is displayed on the display device.

Fig. 2. Architecture overview

Figure 2 shows an overview of the software architecture of
the system. Here, the in-house developed part refers to the

Drawing material
(including time information)

(From other device)

Drawing material

Input device

(operation)

System time

Drawing decision

Append, delete

Current time

Drawing command

Data for display

Data flow

Control flow

Development target equipment

Display device

Drawing material
(including time information)

Kernel／Driver

UNIX base system (OS core)

init

UNiX
command

File

systemDevice driver

Boot

Boot
loader

Library Daemon

Application layer

Drawing
engine

Communication
Data

conversion
Data storage

Reshape drawing
Display
control

User I/F

Function
management

A

B

A : In-house development, B : OS part

group of modules originally developed to realize the function
of the relevant system, and the OS part refers to the group of
modules exposed by OSS such as UNIX OS core and device
drivers, standard libraries.

III. DEVELOPMENT BACKGROUND AND PROBLEMS

A. Development Background

The system has been developed for over 10 years,
repeating function expansion and model change for a fixed
period. The installed OS is FreeBSD, a UNIX-based OS. At
the time of initial model development of the relevant system,
a 32-bit OS was mainstream, and extension development was
continued until the time of model development (2017) without
making major changes to the OS or architecture. This
contributes to shortening of development period and cost
control. The life of this product was 20 years, and even the
latest sales model had to cope with the Year 2038 problem.

B. Problems and Issues

In FreeBSD, time is managed by UNIX time. The UNIX
time is the number of seconds elapsed from 00:00:00 January
1st, 1970 UTC (hereinafter referred to as the 1970 origin) [3].
To manage this time information, 32-bit FreeBSD uses 32-bit
signed integers (signed int). The maximum value is 0x7FFF
FFFF (2,147,483,647), and when it exceeds 03:14:07 (UTC)
on January 19th, 2038, about 68 years after the starting point
[4]. Due to the overflow, the following problems were
expected to occur on the relevant system.

(1) Information to be displayed cannot be displayed: since the
drawing material with a time that does not contain the 2038
problem is received and displayed by the relevant system, if it
conflicts with the time managed in the relevant system, the
material cannot be displayed.

(2) The magnitude of the time is reversed because it becomes
a negative value: since the most significant bit of the 32-bit
signed integer is set by the overflow, it is misjudged at the
location where the new / old of information is judged by the
magnitude relationship.

(3) Anomalous processing works because it is a negative
value: since information that does not expect a negative value
by relevant system, anomalous processing is performed in
places where anomalous processing is implemented for
negative values.

It is necessary to identify the process that causes these
problems from the source code and correct it without omission.
In addition, the response to the Year 2038 problem is not the
main function of the product, and there is a financial demand
to minimize the cost of modification and development
(collectively referred to as the development costs). The
requirements are summarized below.

(a) Make corrections so as not to cause problems in product
operation even after 2038.

(b) The product lifetime should be 20 years from its release.

(c) In order to reduce development costs, adopt means that can
reduce the amount of development costs and the number of
test steps.

(d) To avoiding confusion in the maintenance phase after
development, modification of the OS kernel, drivers and other
parts of the OS is not changed as much as possible (including
data structures provided by the OS and API).

The volume of the development of the whole system is
large, and the scope of influence varies greatly depending on
the design policy. In order to reduce development costs, we
would like to limit the scope of correction as much as possible.

Table I shows the development volume of the entire relevant

system. In this table, the total lines is the number of source
code lines including comments, and the actual lines is the
number of source code lines excluding comments. From here
on, this paper uses the actual lines for counting source codes
lines.

TABLE I. OVERVIEW OF DEVELOPMENT VOLUME

 Total lines
(million lines)

Actual lines
(million lines)

In-house
development part

2.5 1.3

OS part 0.8 0.5

Total 3.3 1.8

IV. DEALING WITH THIS PROBLEM

The type of variable that manages time information in
FreeBSD is type “time_t.” In order to solve the Year 2038
problem, it is necessary to correct around time_t-type
variables. The developers of the system concerned conducted
a study meeting and listed and considered various approaches

as shown in Table II.

TABLE II. CONSIDERED APPROACHES

Approaches Development
volume

OS part
modification

Impact
range

(a) Modify time_t to 64-
bit.

Huge Needed Huge

(b) Modify time_t to
unsigned int (32-bit).

Huge Needed Huge

(c) Do not modify
time_t, and calculate
time correctly when
time digits overflow
occurs.

Huge Needed Huge

(d) Instead of modify
time_t, change the
“epoch” to appropriate
value using wrapper
functions, when we use
the time related APIs.

Medium Unnecessary Medium

When considering the approaches, it is necessary to pay
attentions to the restrictions specific to embedded systems. In
addition to reducing the development cost per unit, attentions
must also be paid to the maintenance cost. For example, if it
is necessary to modify the software for some reason, it is
generally expensive to change the software to embedded
systems that operate in various usage environments after mass
production. For this reason, maintenance costs become an
important concern.

The proposals in Table II are roughly divided into two:

proposals for changing time_t ((a), (b)) and proposals for
changing the handling of values managed by time_t ((c), (d)).
It became the methods for realizing these proposals are further
divided into those that assume a change to the OS part ((a), (b),
(c)) and those that assume a modification of the in-house
development part ((d)).

Plan (a) is to change the definition of time_t 64-bit while
the system architecture is still 32-bit. Since the bit width of the
data type of the OS definition is changed, it is necessary to
change and check the entire software. For this reason, it is
expected that the amount of development and the scope of the
impact of correction will both increase. As an alternative to
the proposal (a), 64-bit OS was also considered, but it could
not be selected because the development man-hours would
increase compared to the proposal (a).

Plan (b) is to change from signed int to unsigned int while
making the time_t 32-bit. Unlike the plan (a), there is no
change in bit width, but since the data type of the OS definition
is changed, the change / confirmation work is required for the
entire software. For this reason, it is expected that the amount
of development and the scope of the impact of correction will
both increase.

Plan (c) is to treat time_t-type variables as 2038 or later if
a carry occurs when comparing or reading values. It is
necessary to change and check the entire software that handles
time_t-type variables. For this reason, it is expected that the
amount of development and the scope of the impact of the
correction will both increase.

Plan (d) is the plan adopted in this project. The type of
time_t does not change, and by shifting the starting point
(epoch) from 1970; it is a plan to delay the overflow timing
from 2038 by the amount shifted. With a wrapper function that
changes the starting point and calling the API provided by the
OS part and using it as needed, the plan could be implemented
without changing the OS part at all. Both the amount of
development and the scope of influence are smaller than the
proposal to change the OS part.

In addition, we investigated locations where time_t was
explicitly used to grasp the revision volume of each proposal.

The results are shown in Table III.

TABLE III. WHERE WE NEED TO INVESTIGATE USING THE TIME VALUE

Where used Number of places

OS part (including device drivers, OSS
included, standard libraries)

2546

In-house development part 945

In plans (a) and (b) that change the time_t itself, it is
necessary to investigate how data is used in more than 3,000
locations including the OS part. In addition, for example, if
data of time_t is cast to 32-bit signed int data and any time
calculation is performed, extending the time_t alone will not
solve the Year 2038 problem. It is necessary to make sure that
there is no place to use such data. Furthermore, the OS part
may be changed for maintenance outside the company, and if
the OS part is modified in-house, it is necessary to allow for
the cost to follow the OS maintenance.

It was judged that it is difficult to take corrective action
and guarantee the operation in a limited period of time, as the
impact of the change on the proposal requiring changes in the
OS part is widespread to the whole source codes. We chose
plan (d) that does not presuppose a change in the OS part, in
consideration of the maintenance cost.

V. THE CORRECTION WORK

A. Examination of Correction Specifications

As shown in Section IV, the modified design adopted a

plan to delay for a certain period from the start of 1970. Here,
it is necessary to decide the delay period. The system has a
product life of 20 years. By setting the delay period to more
than 20 years, overflow will occur after 2058. Therefore, it is
possible to cope with system operation from any time from
2018 to 2038.

Also, the delay period should be a multiple of 4,
considering the leap year. If the delay period is 28 years, it is
known that the calendar matches up to the day of the week
until 2099, and no correction is necessary even when
obtaining the information of the day from the time. If
multiples of 28 years are used, the overflow period can be
further delayed without affecting the day of the week. 28 years
after 1970, which is the current starting point, is 1998, but after
28 years in 1998 is 2026. If 2026 is the starting point, it could
not be expressed of year 2020.

From the above, the delay period was determined to be 28
years, and it was decided to use January 1st, 1998 00:00:00
(UTC) as the starting point (referred to as the 1998 starting
point). Figure 3 shows the difference between the time_t-type
variable values for the 1970 and 1998 start points.

Fig. 3. time_t variable value when change the meaning of the epoch

As shown in Section IV, this plan does not change the OS

part, so in order to change the epoch time, it is necessary to
pay attention to the use of OS provided libraries that interpret
the value of time_t-type variables as the start point of 1970.
When converting values between other than the time_t outside
the system and the time_t internal to the system using the OS
provided libraries, there is no match to the time_t-type values
that were originally changed by the in-house development part.
This is avoided by changing the interpretation of the origin
according to how to handle the value.

(1) Locations where the change of origin interpretation is
necessary

 At the point where the time information outside the
system and the time_t value inside the system are converted
using the libraries of the OS part, it is necessary to change the
starting point interpretation. In the in-house development part
before the correction, there was a process to convert time
information of a character string input from the outside of the
system into a time_t-type value. Since this process is diverted
to obtain time information of numeric value from a character
string (unsigned int), the converted time information is the
time of the 1970 origin. From this value, if you use the OS-
provided library function settimeofday to create a value of
time_t-type inside the system, an incorrect value starting from
1970 is set. In order to make the correct time_t-type value as
the 1998 start point, a transformation that treats the difference
of the start point is required. Conversely, another
transformation is required to obtain a time information such as
the correct date from the time_t value starting from 1998.

January 1, 1970
0:00:00

Date and time

（UTC）

Epoch (1970)

Epoch (1998)

0x0000 0000

－

January 1, 1998
0:00:00

0x34AA DC80

0x0000 0000

January 19, 2038
3:14:07

0x7FFF FFFF

0x4B55 237F

January 19, 2066
3:14:07

0xB4AA DC7F

0x7FFF FFFF

(time_t type variable value)

 Therefore, we decided to perform the transformation for
changing the starting point interpretation shown in Figure 3.
The conversion is performed as follows. To obtain the value
of the system time starting from 1998 from the external time,
subtract the 28-year time (0x34AADC80). On the contrary, in
order to obtain the correct time value from the system time
starting from 1998, the time for 28 years is added.

(2) Locations where no change of origin interpretation is
required

 As shown in the broken line arrow in “after modification”
of Figure 4, it is not necessary to change the starting point
interpretation where the time_t-type value is used only in the
in-house development part or in the OS part, since the time is
treated as the year 1998 in both cases. It is not necessary to
change the starting point interpretation because in order to
calculate the difference between the two times or to determine
the time of day, it is sufficient to compare the same time
information that share the same starting point. For example,
the difference between May 1st, 2018 (UTC) and May 22nd
is the same three weeks for both the 1970 and 1998 starting
points, so you can compare the time_t-type variables as they
are.

Fig. 4. Changing the meaning of the time_t variable value

In order to realize the above design proposal, it is
necessary to investigate the influence of correction for each of
data and functions that handle time.

B. Survey of Variables

In the case of the proposal (d) adopted this time, an
overflow will not occur in 2038 because the starting point is
changed. The problem does not occur in 2038, even if casting
from time_t to int etc., because the definition type is not
changed. If the in-house development part in Figure 2 controls
the system time to be the value starting from 1998, it is

possible to handle only the time that does not overflow,
including the OS part. Therefore, it is not necessary to
investigate the part using the time_t-type variable for the OS
part, and it is sufficient to investigate only 945 parts in the in-
house development part.

However, in addition to the variable that directly declares
the time_t, it is also necessary to investigate the case where
the structure members use the time_t-type in order to specify
the location to be modified. The types of data shown in Table
IV are to be surveyed.

TABLE IV. DATA TYPES THAT NEED TO BE INVESTIGATED

Number Type Abstraction

1 time_t Data type for storing system
time. It is defined in the standard
C library, and is defined as 32-bit
signed integer in 32-bit FreeBSD.

2 struct timeval A structure that has a time_t-
type variable (tv_sec) and a
suseconds_t-type variable
(tv_usec) as members. tv_sec
stores seconds, and tv_usec
stores microseconds.

3 struct tm A structure that stores time
information for each element
such as year, month, day, day of
the week as members, and
stores each member as an int.

For these data in the in-house development part, we
investigated to use data starting from 1998 so that time_t-type
variables would not cause overflow. We also investigated
what kind of data should be managed for struct timeval-type
and struct tm-type variables. As a result of the investigation, it
was judged that there was no need for correction other than
the libraries.

C. Survey of Functions

The survey was conducted at every point where a function
that handles time was used. In the function survey, the
functions defined in each header file (time.h) were surveyed
for the standard C library and the UNIX standard libraries
(hereinafter simply referred to as the libraries). Among the
functions to be surveyed, it is necessary to take corrective
action for the function used by the relevant system. Since no
modification of the OS part is made, it is decided to make

corrections at each library caller. Table V shows an example

of the libraries functions required for investigation.

 We set data starting from the year 1998 so that time_t-
type variables do not cause overflow for each function
argument and return value and investigated what data should
be managed with struct tm-type variables.

We decided to create a new wrapper function in a library
that checks all correction target data and functions found by
the survey and acquires and saves time data. The wrapper
function adds or subtracts 28 years from the time_t-type value
and then calls the libraries provided by the OS part. The in-
house development part calls the wrapper function. As a result,
we aimed to realize proposal (d) without changing the OS part
at all and minimizing the correction range of the original
system.

time value

(except
time_t type

variable)

time_t type

variable
(1970 Epoch)

Library

(1970 epoch)

time_t type

variable
(1970 Epoch)

time value

(except
time_t type

variable)

time_t type

variable
(1998 Epoch)

Library

(1970 epoch)

time_t type

variable
(1998 Epoch)

Change epoch

between 1970 and 1998

Before modification

After modification

External time value

External time value

Epoch interpretation change

Data flow

(Do not change epoch)

(Change epoch)

A

B

A

B

A : In-house development part

B : OS part

As a result of investigation, we decided to provide wrapper
functions for the 12 libraries indicated by “Required” in the

wrapper function creation column of Table V.

TABLE V. EXAMPLES OF LIBRARY FUNCTIONS THAT NEED TO BE

INVESTIGATED

Number Function name Wrapper
function
creation

1 clock_t clock(void) ―

2 int clock_gettime(clockid_t, struct
timespec *)

―

3 char *ctime(const time_t *) Required

4 char *ctime_r(const time_t *, char *) Required

5 double difftime(time_t, time_t) ―

6 int gettimeofday(struct timeval *, struct
timezone *)

Required

7 struct tm *gmtime(const time_t *) Required

8 struct tm *gmtime_r(const time_t *,
struct tm *)

Required

9 struct tm *localtime(const time_t *, struct
tm *)

Required

10 struct tm *localtime_r(const time_t *,
struct tm *)

Required

11 time_t mktime(struct tm *) Required

12 int nanosleep(const struct timespec *,
struct timespec *)

―

13 int setitimer(int, const struct itimerval *,
struct itimerval *)

―

14 int settimeofday(const struct timeval *,
const struct timezone *)

Required

15 size_t strftime(char *, size_t, const char *,
const struct tm *)

Required

16 time_t time(time_t *) ―

17 time_t timegm(struct tm *) Required

18 time_t timelocal(struct tm *) Required

・ ・ ・

・ ・ ・

60 void tzsetwall(voiod) ―

D. Outline of Correction Design

Figures 5 and 6 show the design outline before and after
correction.

Figure 5 outlines the management of the system time
before correction. System time is managed by data of time_t.
Since overflow does not occur until 2038, element-specific
time information such as number of month is extracted from
the 32-bit data. The application uses the extracted value.

Fig. 5. Design overview before modification

Figure 6 shows the outline of the design after correction.
In this correction, a wrapper function is prepared for the

libraries that handles time information. Applications use the
libraries via wrapper functions.

Fig. 6. Design overview after modification

The system time of the relevant system is managed with
the time_t-type value starting from 1998, that is, the time_t-
type value that adds 28 years from the interpretation of the
1970 starting point. This makes it possible to delay the
occurrence of overflow until 2066. In the CTIME function
group that returns the time information for each element such
as year, month and day, and the time information as a
character string, the wrapper function changes the
interpretation to the 1998 start time correctly because the time
is mainly used outside the relevant system (plus 28 years). In
functions like gettimeofday that return time information as a
32-bit value of time_t, the wrapper function returns the value
as it is. In addition, the time information received by
communication is also stored after changing the interpretation
to the time of the year 1998.

In summary, the system time of relevant system is set to
year 1998 as the epoch. When using the libraries that
calculates the time information for each element from the
time_t-type value or the time_t-type value from the time
information for each element, change the interpretation of the
starting point appropriately using the wrapper function. From
the above, the system time of relevant system can be managed
at the time starting from 1998 remain the OS part unchanged.

E. Implementation Example

An implementation example is shown below. First, we
define 28 years, which is the start change time, in years and
seconds (Figure 7).

Fig. 7. Definition of the time value when change the epoch

Fig. 8. The wrapper function of “settimeofday”

System time

settimeofday

Application

getttimeofday

Epoch(1970) time

CTIME functions

(localetime_r etc.）

Present time

Control flow

Data flow

Device driver ・・・

OS part

Device driver ・・・

OS part

System time

settimeofday

wrapper_settimeofday

Application

Decrease 28 years

wrapper_getttimeofday

getttimeofday

Epoch(1998) time

CTIME functions

(localetime_r etc.）

CTIME wrapper functions

(wrapper_localetime_r etc.）

Do not change the year valueIncrease 28 years

Present time

Calculate time : before 28 years

Control flow

Epoch(1998) time

Epoch(1970) time

DATE_OFFSET_YEAR is 28 years of the start change
time, and LEAP_DAYS shows the number of days of the leap
day within the 28-year period. DATE_OFFSET_SEC
calculated from these values is a value representing 28 years
(including the last day) of the start change time in seconds,
which is 883,612,800. A wrapper function is defined using
these values.

Figure 8 shows the wrapper function for the settimeofday
function. In this function, the system time is set using the
libraries’ settimeofday function, but at that time, it is set by
subtracting 28-year time (seconds) in order to make it the year
1998. The first argument, with “wrapper_timeval” as type, is
a type defined as like struct timeval, but its member tv_sec is
defined as unsigned int instead of time_t.

The function that acquires element-specific time
information of system time uses the acquired element for
display etc. In order to display the correct time, it is necessary
to add 28 years to elemental time information obtained by the
libraries such as OS. Figure 9 shows a wrapper function for
the localtime_r function.

Fig. 9. The wrapper function of “localtime_r”

Note that the gettimeofday function, which is paired with
the settimeofday function, takes an argument of the pointer of
time_t and can obtain the current time, but the time_t-type
variable stores the information from 1998 in the system. In this
system, a wrapper function (wrapper_gettimeofday) was
prepared to handle the information of the 1998 origin, but the
value of the 1998 origin returned by the gettimeofday function
is used as is, and the interpretation of the origin is not changed.

VI. THE WORK RESULTS

A. Test Phase

Table VI shows the number of items of unit test and

integrated test, and the number of defect items in the tests.

TABLE VI. THE NUMBER OF THE TEST ITEMS AND THOSE RESULT

 Test items Number of defects

Unit test 165 0

Integrated test 103 1

In the unit test, path coverage tests and function output
checks were performed based on the flowchart created for
each function. In the integrated test, we prepared time data
from 2038 or later to be input from the outside of the relevant
system and confirmed the use cases where the function
operates with the combination of the system status and the
user operation.

The integration test detected one defect. The content of the
defect was that the value “-1” returned by the error was
incorrectly recognized to be the actual time information, and
addition with another time data was calculated so that the
desired operation was not performed. There were no other

failure items, and the design and implementation as originally
planned were performed as planned.

B. Actual Efforts

Here we show the volume and man-hours at the time of
development. It should be noted that the response to the 2038
problem was a part of the requirements of the entire project
including other enhancements, and it was not possible to
obtain the man-hours for purely the 2038 problem. On the
other hand, in the exchange of opinions after the project was
completed, there was an impression from the development
staff that there was no particular difficulty in dealing with this
issue, and the work efficiency would be at the same level as
the development work for other requirements. From this, it
was judged that the number of man-hours could be calculated
using the development efficiency (step / man-hours) in all
project steps and the development and correction volume
required for the 2038 problem (collectively called the
correction volume). The work man-hours are calculated by the
following equation.

𝑀𝑎𝑛 ℎ𝑜𝑢𝑟𝑠

=
Correction volume

Development efficiency in all project processes

Table VII shows, for each library function, the volume of

the created wrapper function, the number of places where the
libraries’ function is called, and the correction volume for
changing the call to the wrapper function.

TABLE VII. THE VOLUME OF THE CORRECTION

Library function
name

Created lines
of wrapper
function

Number of
call
locations

Modification
lines of
calling part

1 ctime 11 0 0

2 ctime_r 11 0 0

3 gettimeofday 6 25 1262

4 gmtime 9 0 0

5 gmtime_r 9 1 21

6 localtime 9 2 12

7 localtime_r 9 30 1131

8 mktime 22 10 307

9 settimeofday 15 2 127

10 strftime 81 2 48

11 timegm 22 1 28

12 timelocal 22 0 0

13 Common

functions etc.※

38 - -

Total 264 73 2936

Modification lines 264 + 2936 = 3200

* Includes functions shared by multiple wrapper functions and “include” and

“define” statements.

In addition, when determining the volume of correction,
the company will also consider the affected code by the
correction. Specifically, the range of source code that needs to
be tested by modification is defined as the affected code. In
this project, since the minimum unit of the unit test is a
function, the calling function of the wrapper function is tested.
Therefore, the correction volume is the number of lines of the
whole function include calling the wrapper function.

Table VII also shows functions with zero calls. This is

because multiple systems (system models) can be developed
with the same software. The functions used in another model

development project are included in the functions in Table VII

although not used in this project, and in such case the
correction volume in this project is 0.

Next, the volume of development in this project including
the 2038 problem is divided by the number of man-hours spent
on development of that volume and calculate the development
efficiency in all steps of the project. The development
efficiency in this project was as follows.

Development efficiency: 3.45 steps / man-hours

From the above correction volume and the development
efficiency, the man-hours required for the correction of the
Year 2038 problem are as follows:

3,200 / 3.45 = 927.54 man-hours.

And if it is 8 hours a day, 20 days a month, it becomes:

927.54 / (8 * 20) = 5.80 man-months.

VII. DISCUSSIONS

A. Handling of Date and Time in Software

Generally, in computer systems, the OS manages the
elapsed time from the start time based on periodic interrupt
signals from timers or information obtained from the network.
This elapsed time may be displayed as it is in the OS itself or
other application programs as it is, or as it is converted to a
human-readable string (for example, 11:34:56 am, September
24, 2018). If the time_t-type variable that stores the elapsed
time has an enough word length, a long elapsed time can be
represented. However, many operating systems and computer
systems designed in the old days, have been developed and
used with insufficient word length due to lack of long-term
prospects and severe hardware and cost constraints. In this
case, a workaround as discussed in this paper is necessary to
cope with a long elapse time.

In recent years, such problems are becoming widely
recognized, and there is a corresponding movement at the OS
and programming language level. For example, in many OSs,

plan (a) described in Section IV, an approach that expresses

the elapsed time in 64-bit, is taken. In Microsoft Windows,
elapsed time is represented by time_t, and in Visual C++
versions before Visual C++ 2005 and Microsoft C / C++, there
was a similar problem because it was 32-bit length, but now
expressed in 64-bit [9]. Also, NetBSD has been modified to
represent time_t in 64 bits on all supported architectures [13].
On Apple's macOS and iOS, time is expressed as the number
of seconds since January 1st, 2001 UTC [10], and it is
currently defined by regulations to allow only 64-bit
applications [11] [12]. Thus, expressing the elapsed time in
64-bit is a reliable way to solve the problem in practice, but it
involves hardware and API changes, so it is difficult to apply
it easily in an embedded system like the relevant system. In
FreeBSD, a 32-bit OS and a 64-bit OS are maintained at the
same time, and the 32-bit OS can be used continuously, but
the 2038 problem described in this paper will occur. Migration
to a 64-bit OS is difficult due to cost constraints and was not
adopted in this project.

Thus, for embedded systems that are difficult to migrate to
64-bit OSs like this project, the findings in this paper will be
useful. In this paper, we have discussed UNIX's Year 2038

problem, but in Sections VII.B and VII.C we will also discuss

similar time handling issues.

B. The UNIX’s Year 2004 Issues

The time 13:37:04, January 10th, 2004, (UTC) is a
halfway between the year 1970 epoch and year 2038 rollover.
After this time, cases have been reported where the Year 2038
Problem occurs [5]. The reported causes are as follows.

(a) The dates are added together without considering the
overflow.

(b) In a system that recognizes time in units of 0.5 seconds,
the maximum number of digits was not increased.

The year 2004 is in the middle of the year 1970 to 2038,
and the time_t-type value is around 0x4000 0000. (a) is a
phenomenon that exceeds 0x7FFF FFFF by adding two
time_t-type values, and (b) is an example where an overflow
occurs around 2004 because the count-up of the time_t-type
value occurs at twice the normal speed is. Both are problems
that occur with the same mechanism as the Year 2038 Problem,
and in fact are examples that occurred before year 2038 as an
obstacle.

Examples of failures caused by these are those in which
the day of the week was incorrectly identified in the call
charge billing system, the communication program was failed,
and some ATMs could not be used properly [5].

There are also cases where the occurrence of the
phenomenon has been prevented in advance, and the user has
been successful in minimizing the problem by calling for
upgrading to the countermeasure software [5]. Even in the
case of embedded software targeted in this paper, we have
recognized the problem and taken the action in advance, so
that we could minimize the problems.

C. The Year 2000 Problem

The Year 2000 problem is to represent four-digit year
information in the last two digits of the decimal number, and
the system also manages internally year information in the
two-digit decimal number. It is a problem that causes an
overflow after year 2000 [6]. The following is an example of
problems that can be caused by the Year 2000 problem.

(a) Date calculation error: period from 1996 to 2000: 0-96
= -96 years.

(b) Mistakes in date comparison: from 0 < 96, it is
misjudged that 1996 is newer than 2000.

(c) Errors due to input / output: register data in year 2000
as data older than year 1901.

These problems can be avoided by extending the two
digits to four digits, or by expressing the number with two or
more decimal numbers with two digits [6].

The Year 2000 problem was pointed out in advance in
terms of problems, risks, and scope, and was a major concern
globally. Even in Japan, each company formulates a response
plan, secures a budget, and responds by confirming the
progress of the action in each field such as finance, energy,
telecommunications, transportation, medical care, etc. Efforts
were made to disclose information.

As a result of such prior approaches, no major confusion
occurred. According to the information as of the morning of
January 5, 2000, there were only 27 relatively minor problems
related to the Year 2000 problem [7].

In the Year 2000 problem, there is a possibility that time
information to be managed in the system may exist in multiple
places other than the time_t-type value, and there is a
possibility that it cannot be solved only by conversion of input
/ output data of the libraries reported in this paper.

D. Evaluation of Corrective Work

After the project was concluded, the development
members held a review meeting on the project activities. At
the meeting, we confirmed that there were no major
confusions, as the correction points and the scope of impact
were sufficiently confirmed in advance for the Year 2038
Problem.

Regarding our approach here, the developers were able to
depict the work volume and the amount of work without any
particular points of uncertainty, so we could finish the
response according to our schedule. Since neither the OS nor
the standard libraries have been modified, there is no need to
take any special action on this issue when updating the OS or
standard libraries in the future. The completed source code is
incorporated into the released product and is operating
normally.

The method selected this time could not express time
before year 1998. Therefore, this method cannot be selected
by systems that manage information before the changed start
point. This method can be selected in the relevant system since
the system handles only current and future information. In this
case, when setting the system time, there is a part that handles
the time starting from 1970 at the caller of the
wrapper_settimeofday function. When setting the system time,
when using the time starting from the year 1970, it is
necessary to check thoroughly the possibility of overflow.
Although similar problems will occur in 2066, it is possible to
easily re-apply the method by changing the wrapper function
used in this method. In addition, the proposals (a) to (c)

examined in Section IV could not be selected in the

development of the system because of the corresponding man-
hours and maintenance costs.

The handling of time information and the input and output
of time information are not specific to the system and are
generally used in computer systems other than embedded
systems. Also, the wrapper function using in the method could
be implemented on another systems. Therefore the selected
method is applicable to systems other than this one.

VIII. CONCLUSION

In this project, due to constraints of available man-hours
and delivery date, we chose a method to set the starting point
of the system time to 28 years delayed 1998 based on the plan
(d) in Section IV. After clarifying the scope of the survey and

its results, we conducted a steady survey and finally prepared
the environment after 2038 in the test and confirmed that no
problems occurred.

Date and time overflow problems do not have to be
considered practically on 64-bit systems [8]. If you plan to
convert a currently operating 32-bit system to 64-bit, it will
not be a problem if you make sure that no overflow will occur
by 2038 and migrate according to the plan. However, for a
relatively inexpensive 32-bit system that is not scheduled to
be 64-bit and a system that is operating as of year 2038, which
has a long operation period, some approaches need to be taken.

Since the method reported in this paper can cope with this
problem relatively inexpensive, it would be fine if it could be
useful for examining our approach for the Year 2038 problem
with system and for estimating the development period and
cost on other systems. We want to apply it to the 2038 problem
of other information system.

ACKNOWLEDGMENT

We deeply appreciate the developers of 2nd Engineering
Department at Persol AVC Technology Co., Ltd. for
providing data related to this project.

REFERENCES

[1] Brown, E.: Embedded Linux Keeps Growing Amid IoT
Disruption, Says Study, Linux.com News, 2015.

[2] Apple: 64-bit Transition on macOS, Apple Developers News and
Update, https://developer.apple.com/news /?id=0411018a, April
11, 2018.

[3] FreeBSD: time(3), FreeBSD 11.1-RELEASE manual, 2003.

[4] Holzmann, G.: Out of Bounds, IEEE Software, Vol32, No.6,
pp24-26, 2015.

[5] Takatomo Suzuki, Kensuke Nakamura : Troubles in “year 2038
problem”, Nikkei Computer (2004-4-1), http://tech.nikkeibp.co.jp/it/
members/NC/ITARTICLE/20040325/1/, 2004 (in Japanese).

[6] Takao Yokota : Meaning of the year 2000 problem and
countermeasures, Computer Software, Vol.13, No.5, pp.412-419, 1996
(in Japanese).

[7] Cabinet Computer Year 2000 Problem Management Office, “Report on
the year 2000 problem”, https://www.kantei.go.jp/jp/pc2000/
houkokusyo/honbun.html, 2000 (in Japanese).

[8] Harshini, S. and Kavyasri, K. R.: Digital World Bug : Y2k38 an Integer
Overflow Threat-Epoch, International Journal of Computer Sciences
and Engineering, Vol.5(3), Mar 2017, E-ISSN : 2347-2693 , 2017.

[9] Microsoft: Microsoft Docs: Time Management, https://
docs.microsoft.com/en-us/cpp/c-runtime-library/time-management

[10] Apple: NSDate - Foundation | Apple Developer Documentation,
https://developer.apple.com/documentation/foundation/nsdate

[11] Apple: 64-bit Requirement for Mac Apps, https://developer.apple.com/
news/?id=06282017a

[12] Apple: 64-bit Apps on iOS 11, https://developer.apple.com/
news/?id=06282017b

[13] NetBSD Foundation: Announcing NetBSD 6.0, https://
www.netbsd.org/releases/formal-6/NetBSD-6.0.html

