
On the Variations and Evolutions of API Usage Patterns: Case
Study on Android Applications

Koki Ogasawara
k-ogaswr@ist.osaka-u.ac.jp

Osaka University
Suita, Osaka, Japan

Tetsuya Kanda
t-kanda@ist.osaka-u.ac.jp

Osaka University
Suita, Osaka, Japan

Katsuro Inoue
inoue@ist.osaka-u.ac.jp

Osaka University
Suita, Osaka, Japan

ABSTRACT
Software developers can reduce the implementation cost by calling
already provided functions through accessing library Application
Programming Interface (API). APIs are often used in combination
but how to combine them are not well-documented. Existing re-
searches focused on how to extract API usage patterns or how to
detect API misuse from existing software. This kind of research
might be affected by dataset to analyze, so to improvemining results
and to understand how the difference of API usage patterns affect
the software health are important tasks. We conducted an analysis
on variations of API usage pattern among software projects and
their version history with Android SDK APIs and Android applica-
tions. Based on our analysis results, we made some suggestions for
further API analysis. For example, there are many project-specific
API usage patterns and long-life uncommon API usage patterns
so that they might affect the mining result or checking software
health status.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware evolution.
KEYWORDS
APIs, API patterns, Android

ACM Reference Format:
Koki Ogasawara, Tetsuya Kanda, and Katsuro Inoue. 2018. On the Variations
and Evolutions of API Usage Patterns: Case Study on Android Applications.
In acmBooktitle. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION
The Application Programming Interface (API) is a set of functions
to communicate with libraries or platforms from client applications.
Software developers can reduce the implementation cost by calling
already provided functions through accessing library APIs [9, 14].
Well-maintained and widely-used APIs are reliable because main-
tainers of APIs and many users can find bugs or implement new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoHeal 2020, acmConference, acmConference
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

features. Users of APIs can receive these benefits by updating li-
braries. Thus, using reliable APIs also contributes to keeping client
applications’ good health.

APIs are often used in combination to implement a feature. So
the key to help developers to write a complex code and to avoid
reinventing the wheel is identifying how to combine APIs in exist-
ing software. To support developers to learn how to use APIs in
combination, repository mining technique is applied to extract API
usage patterns [27].

API misuse is a major cause of failure of software, including
vulnerability and performance bugs [5, 13]. However, APIs are
often used as variations of major patterns. For example, some APIs
have an optional method which developer can choose whether they
use or not. In some cases instance of the object is passed as an
argument so that a method to generate an instance is not called.
Considering these situations, minor API usage patterns are not
always the misuse. Another concern is that the reliability of API
usage patterns extracted automatically are depends on the analysis
target [28]. If a project in the dataset contains a large number
of specific API usage patterns, it becomes the major pattern and
will affect the extract result regardless of whether it is a project-
specific pattern or not. Despite these problems, it is not revealed
that whether the difference of software development projects affect
the API usage patterns.

We should also focus on the API uses in the history in the soft-
ware development project. The majority of API usage patterns can
be changed over time according with updating software. In addition,
libraries are also upgraded and deprecated or newly introduced
APIs will override existing API usage patterns. Thus, mining-based
approaches will be affected by target versions they choose. In ad-
dition, if the minor API usage patterns survive for a long time, it
may not have affected a significant impact to the software health.

To improve mining results and to understand how the difference
of API usage patterns affect the software health, we conducted an
analysis on variations of API usage pattern among software projects
and their version history. In this paper, we conducted a case study
with Android SDK as a source of APIs and Android applications as
an analysis target, and conducted project-wide and historical anal-
ysis to reveal the difference of API usage patterns among software
development projects and throughout their evolution history.

The followings are the summary of our case study results.

• While some of API usage patterns are frequently used but
there are many uncommon API usage patterns.

• Most of the API usage patterns consist of frequent API usage
pattern with additional API calls. However, there are still
many API usage patterns that are not the variant of frequent
API usage patterns.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SoHeal 2020, acmConference, acmConference Koki Ogasawara, Tetsuya Kanda, and Katsuro Inoue

• Frequent API usage patterns among projects are the major
part of patterns, but there is an API that most of API usage
patterns are project-specific. It depends on APIs.

• Frequent API usages are widely used in various projects,
even though most of API usage patterns are project-specific.

• With the new releases of the project, the number of API
usage patterns increases. However, not only an increase in
API usage patterns but also a decrease in API usage patterns
occur at the same time in most of the projects.

We describe related woks about API usage pattern mining and
analysis of APIs in Section 2. The case study is described in the Sec-
tion 3 and it includes more detailed results. And finally, we conclude
and make a suggestion for further API research in Section 4.

2 RELATEDWORKS
API documentation is an important resource to find out how to
combine APIs to archive implementing a feature. However, docu-
mentation often lacks information and it is difficult to learn API
usages for developers of client applications. For example, learning
resources such as documentation do not describe enough informa-
tion, or each API call is easy to understand but it is not clear that
how to combine APIs to archive the developers’ task [8, 16, 17, 25].

To support developers to learn how to use APIs, various ap-
proaches are proposed based on mining existing codebase. MAPO
[27] is a method that extracts API usage patterns from source code.
Given the method name or the class name of API as a query, MAPO
collects source files related to the query and extract frequently
appearing API uses from them. Their result contains redundant
usages, so UP-Miner [24] introduced two-steps clustering to im-
prove mining results. They also proposed metrics to evaluate the
API usage mining result. MLUP [19] also detects the pattern of
API calls. This method focuses on the co-relationship with API
methods to clustering so that users can distinguish APIs always
used together or used in specific situations. AST-based API usage
mining approach is also proposed by Lämmel et al.

Online resources such as Q&A forum and blog posts are also
important learning and mining resources [18, 23]. Instead of mining
API usages from complete source code, Azad et al. proposed a
predictive model to predict changes in API usages from software
development history and Stack Overflow posts [2]. Library itself is
also combined with another library to use. LibRec [21] and LibCUP
[20] focuses on usage patterns of libraries to indicate which set of
libraries are co-used together to developers.

However, collecting API usage examples is a hard task, especially
for mining good examples or newly released libraries. Fowkes et al.
proposed a tool named PAM [6], a near parameter-free probabilistic
algorithm. PAM employs a machine learning technique to find out
the most interesting API call patterns. They also reported that hand-
written examples do not cover real API usages, only 27% coverage
in their experiment.

Lack of API documentation leads developers to misuse API. API
misuse is a major cause of failure of software, including vulnerabil-
ity and performance bugs [5, 13]. Zhang et al. studied code snippets
on Stack Overflow and found out that almost one-third of posts may
contain potential API usage violations [28]. To deal with the API
misuse problem, some researches focus on automatically finding

public void xyz(List<SomeClass> list) {
SomeClass s = list.get(7);
while (s.hasNext()) {

s.goToNext();
}
s.goToNext();

}

public void abc() {
SomeClass s = new SomeClass();
while (s.hasNext()) {

s.goToNext();
}

}

Someclass.new()
hasNext()
goToNext()

List.get()
hasNext()
goToNext()

hasNext()
goToNext()

(without instance)

:1

:1

:2

#use

Methods API usage patterns

Figure 1: An example: How to extract API usage patterns

misuse of method calls [1, 10, 15]. The mutation analysis technique
is introduced to this area and its evaluation result achieves high
precision in finding API misuses [26].

In this research, we investigated APIs from the Android Soft-
ware Development Kit (Android SDK) [4]. Android [7] is one of
the most popular platforms for mobile phones and tablets. Android
application developers use the Android SDK which includes APIs
to control a camera, a GPS device, a touch screen and so on. The
Android SDK and Android applications are very popular and widely
used for many areas of software engineering research [3, 11, 22].
The point of view of focusing on Android APIs and its usage, the
work by McDonnell et al. is a very important research [12]. They
analyzed API evolutions of the Android SDK and how client applica-
tions follow the updates. One big difference between their research
and our case study is that we are focusing on the changes in client
application by investigating a set of APIs while they were mainly
focusing on changes in the SDK.

3 CASE STUDY
We conducted a project-wide and historical analysis to reveal the dif-
ference of API usage patterns among software development projects
and throughout their evolution history.

In this paper, we use the terms “API usage pattern” and “#use
of the pattern”. The term API usage pattern is the sequence of
API calls. It is extracted from each method of application code and
contains the sequence of API calls of a specific class in the Android
SDK. The number of API usage patterns (#pattern) represents how
many API usage patterns are there in the project. The term #use
of the pattern (#use) represents how many instances of API usage
patterns appear in the project.

We conducted the case study to answer the following research
questions.
RQ1 How many API usage patterns are contained in Android

application projects and what is the difference between fre-
quent API usage patterns and uncommon ones?

RQ2 What is the difference in API usage patterns among projects?
RQ3 How the new releases of applications affect API usage pat-

terns and their #use?

3.1 Extracting API Usage Patterns
Ourmethodology to extract API usage patterns is based on the static
analysis. Figure 1 shows a small example of how to extract API

On the Variations and Evolutions of API Usage Patterns: Case Study on Android Applications SoHeal 2020, acmConference, acmConference

Table 1: Target APIs

API Function
android.content.Context A global information about an application environment
android.content.Intent Interface to pass information among applications
android.database.Cursor Accessor to the search result of database

Table 2: Dataset

Project name LOC (latest version)
AmazeFileManager 47,065
AndroidUtilCode 42,116
bitcoin-wallet 24,905
cgeo 109,288
codenameone 591,149
collect 75,790
ExoPlayer 195,539
fresco 109,099
k9 125,541
mapbox 40,437
news-android 20,828
owncloud 63,162
owntracks 14,812
photoview 2,305
realm-java 136,333
RedReader 45,837
robolectric 4,972
Signal-Android 111,234
skytube 20,083
wikipedia 76,402
WordPress 151,074
Total 2,052,505

usage patterns from two methods. We got two methods abc() and
xyz() using SomeClass. Firstly, we find the instance of SomeClass.
In both methods, we can see that a variable s is created. Then we
extract themethod calls of s in order of appearance in the text. Some
API calls are included in the loop or are used repeatedly. However,
counting the loop makes many minor API usage patterns with a
non-essential difference so we extract only the first appearance
of each API call. Now we extracted two API usage patterns in the
upper right of the figure. Both API usage patterns appear once, so
their #use are both 1.

While conducting this research, we have noticed that many
API usage patterns have their variants which have common subse-
quence of API calls. We found that they are mainly caused by their
different initial method call to getting an instance. For example,
getting an instance from collections or creating a new instance.
Therefore, we also examined API usage patterns without methods
that getting or generating an instance (hereinafter referred to as
without instance). Following this method, we ignore the methods
that getting or generating an instance then only one API usage
pattern is extracted (lower right).

Table 3: API usage patterns we extracted

API class name #pattern (w/o instance) #use
android.content.Context 44 18 218
android.content.Intent 213 144 1233
android.database.Cursor 206 136 380

3.2 Analysis Target
In the case study, we analyzed Android APIs and their usage pat-
terns in client applications. In detail, we analyze API usage patterns
of 3 Android APIs. Table 1 shows the list of target Android APIs.
We have collected 21 Android application projects from GitHub to
mining API usage patterns. For each project, we picked up versions
that released every six months from January 2016 and collected six
versions. For each version, we analyzed Java source files to extract
API usage patterns. The list of projects and their LOC at the latest
version are shown in Table 2.

Before the detailed analysis, we explored how many API usage
patterns and their #use there are in our dataset. Table 3 shows the
result. Both Intent and Cursor have a large number of API usage
patterns while Context has a limited number of API usage patterns
despite their total #use is not so small.

3.3 RQ1
How many API usage patterns are contained in Android application
projects and what is the difference between frequent API usage patterns
and uncommon ones?

In RQ1, we focus on the frequency of API usage patterns and
reveal how the API usage pattern appears in client projects. We
analyzed the latest versions of each Android application project in
this part.

We investigated the distribution of #use. Figures 2, 3, and 4 are
the frequency distribution graph of each API usage patterns. The
horizontal axis represents #use, and the vertical axis represents
#pattern. Their common points are that most of the API usage
patterns are used 5 times or less but some of the API usage patterns
have a large number of #use. Context for example, top-5 API usage
patterns account for 65% and uncommon 36 API usage patterns
whose #use is 5 or less account for 25% of total #use.

Table 5 shows the top-5 API usage patterns for each APIs. We
can see that most of API usage patterns are only getting instance
or appending single API call with getting instance. Table 6 shows
the top 5 API usage patterns without instance. This result does not
contain the method calls to getting instance but these API usage
patterns also consist of one or two API calls.

As we can see that frequent API usage patterns contain a few
API calls, we made a hypothesis that uncommon patterns are the
variants of frequent patterns. The variants of API calls are classified

SoHeal 2020, acmConference, acmConference Koki Ogasawara, Tetsuya Kanda, and Katsuro Inoue

0

10

20

30

40

～5 ～10 ～15 ～20 ～25 ～30 ～35 ～40 41～

#p
at

te
rn

Context

#use
Context (w/o instance)

Figure 2: Frequency distribution of
Context API usage patterns

0

50

100

150

200

～5 ～10 ～15 ～20 ～25 ～30 ～35 ～40 41～

#p
at

te
rn

Intent

#use
Intent (w/o instance)

Figure 3: Frequency distribution of
Intent API usage patterns

0

50

100

150

200

250

～5 ～10 ～15 ～20 ～25 ～30 ～35 ～40 41～

#p
at

te
rn

Cursor

#use
Cursor (w/o instance)

Figure 4: Frequency distribution of
Cursor API usage patterns

Table 4: Variants of frequent API usage patterns

API Frequent pattern (# use >=10) expand sub not a variant

Intent

setAction/ 30 -

52

setAction/putExtra/ 15 2
setData/ 15 -
putExtra/ 58 -
addFlags/ 20 -
setType/putExtra 14 -
setClass/setAction 1 1
setType/ 20 -
putExtra/addFlags/ 10 2
putExtras/ 1 -
setDataAndType/ 14 -

Cursor

moveToFirst/ 67 -

15
moveToNext/getString/ 40 2
moveToFirst/close/ 43 2
getCount/ 28 -
moveToNext/ 64 -

into expand which represents the API usage pattern is based on
the frequent API usage pattern and some more API calls are ap-
pended, and sub which represents the API usage pattern is a subset
of the frequent API usage pattern. We firstly extracted frequent
patterns (without instance) whose #use is 10 or higher, and then
we investigated how many patterns are their variants.

Table 4 shows the result. A column “not a variant” means they
are neither frequent API usage pattern nor their variants. Context
has a small number of API usage patterns so it is excluded from
this table. From this result, most of the frequent API usage patterns
have 10 or higher their expanded variants and there are few subsets
of the frequent API usage patterns. In this table, we can see that
8 of 9 subsets of the frequent API usage patterns also appear as
frequent API usage patterns. The reason why Intent has many
non-variant API calls is that frequent API usage patterns consist
of sending a message like setSomething or putSomething so that
APIs getting a message are considered as uncommon patterns in
this case study.

Here we conclude the result of RQ1:

• While some of API usage patterns are frequently used but
there are many uncommon API usage patterns. Top-5 API
usage patterns account for 65% of #use while about to 36

million API usage patterns are five or fewer #use in our
dataset.

• Most of the API usage patterns consist of the frequent API
usage pattern with additional API calls. However, there are
still many API usage patterns that are not the variant of
frequent API usage patterns.

3.4 RQ2
What is the difference in API usage patterns among projects?

In RQ2, we focus on the difference among the client projects. We
analyzed the latest versions of each Android application project in
this part.

We firstly investigated how many projects use each API usage
pattern. Figures 5, 6, and 7 show the results. Each dot represents
an API usage pattern and shows how many projects using it and
how many #use in total. In Context and Intent, the larger num-
ber of projects using API usage patterns, the larger #use in total
and their correlation coefficient are greater than 0.9. We should
note that there are also cases that an API usage pattern appears
in only one project but its #use is larger than 10, so there is some
dispersion. Cursor, on the other hand, the scatter plot is dispersed
and no strong correlation with a number of projects and their #use.

On the Variations and Evolutions of API Usage Patterns: Case Study on Android Applications SoHeal 2020, acmConference, acmConference

Table 5: Top 5 API usage patterns

Rank Context Intent Cursor
1 getContext/ Intent/putExtra/ query/
2 getApplicationContext/ Intent/ rawQuery/moveToFirst/
3 getContext/getString/ Intent/setAction/putExtra/ query/moveToNext/
4 getContext/getResources/ Intent/setData/ rawQuery/
5 getActivity/ Intent/setAction/ rawQuery/moveToFirst/moveToNext/

Table 6: Top 5 API usage patterns (without instance)

Rank Context Intent Cursor
1 getString/ putExtra/ moveToFirst/
2 getResources/ setAction/putExtra moveToFirst/close
3 startActivity/ setData moveToNext
4 getPackageName setAction/ moveToNext/getString
5 getSystemService/ addFlags getCount/

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

#u
se

#project

Figure 5: Howmany projects use each
Context API usage patterns

1

10

100

1000

0 5 10 15 20

#u
se

#project

Figure 6: Howmany projects use each
Intent API usage patterns

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6

#u
se

#project

Figure 7: Howmany projects use each
Cursor API usage patterns

Especially, some of the frequent API usage patterns appear in only
one project and those project-specific API usage patterns account
for a large percentage in the frequent API usage patterns.

Secondly, we investigated whether all of the projects in the
dataset use project-specific API usage patterns or not. We counted
#API use for top-5 API usage patterns and project-specific API
usage patterns. Table 7 shows the result. In Context and Intent,
top-5 API usage patterns are used over 60% in total #use and also
widely used in various projects especially in the project which
total #use is large. On the other hand, most of the projects have
their project-specific API usage patterns and it is 20% in total. In
Cursor we got a different result from those two APIs. Top-5 API
usage patterns appear in only 13% in total and over 70% of #use are
project-specific.

Here we conclude the result of RQ2:

• In some APIs, frequent API usage patterns among projects
are the major part of patterns, but there is an API that most of
API usage patterns are project-specific. It depends on APIs.

• Frequent API usages are widely used in various projects,
even though most of API usage patterns are project-specific.

3.5 RQ3
How the new releases of applications affect API usage patterns and
their #use?

In RQ3, we focused on the changes of API usage patterns and
their #use in the evolution history of client applications. We ana-
lyzed all versions in the dataset.

Figure 8 represents the transition of Context API usage patterns
and their #use with six versions we extracted by stacked line chart.
The horizontal axis represents the versions, and the vertical axis
represents #use. Each color represents API usage pattern and its
width along with vertical axis represents #use of the API usage
pattern. Frequent API usage patterns in the old version are also
frequent in the new version and their #use are keep increasing.
Uncommon API usage patterns, on the other hand, tend to repeat
the little increase and decrease. Figure 9 shows those uncommon
API usage patterns in detail. Inmany uncommonAPI usage patterns,
#use shifts from zero to a few or from a few to zero. Intent and
Cursor also follow a similar pattern.

Table 8 shows #pattern for each project comparing the oldest
and the newest versions in the dataset. Basically, #pattern is in-
creased from the old version to the new version, 1.5 times larger

SoHeal 2020, acmConference, acmConference Koki Ogasawara, Tetsuya Kanda, and Katsuro Inoue

#u
se

Versions (old new)

Figure 8: Context API usage patterns with version history

#u
se

Versions (old new)

Figure 9: Uncommon Context API usage patterns with ver-
sion history

in total. Source code is likely added and becomes larger in the
software development projects, and #pattern also becomes larger
accordingly.

However, when we count #pattern without instance, it is not in-
creased greatly. In Cursor there are a little increase and in Intent
and Context there are almost the same #pattern among old and
new versions. Looking into the newly appeared API usage patterns,
5 of 17 in Context, 34 of 55 in Intent, and 32 of 65 in Cursor are
caused by applying new method call to get an instance to existing
API usage patterns. In addition, many method calls to get an in-
stance are project-specific, 4 in Context, 53 in Intent, and 47 in

Cursor. We can see that there are project-specific manners to get
an instance and they affect the mining result of API usage pattern
and its historical analysis.

We also investigated how #use increases and decreases for each
project. As we described above, a method call to getting instance is
mostly project-specific so we analyzed API usage patterns without
instance. Figures 10, 11, and 12 show the increase and decrease of
API usage patterns while upgrading to new versions. The horizon-
tal axis represents the decreases, and the vertical axis represents
increases. Each dot represents each new release. From those plots,
not only an increase of API usage pattern but also a decrease of
API usage pattern occurs at the same time, while increases are
much larger than decreases. This result matches the phenomenon
we analyzed in Figure 9, API usage patterns newly appeared and
disappeared with new releases.

Here we conclude the result of RQ3:
• Frequent API usage patterns in the old version tend to in-
crease their #use with new releases. Uncommon API usage
patterns, on the other hand, newly appeared and disappeared
with new releases.

• With the new releases of the project, #pattern increases.
However, not only an increase in API usage patterns but also
a decrease in API usage patterns occur at the same time in
most of the projects.

• The increase of API usage pattern is mainly caused by ap-
plying a new method call to get an instance to the existing
API usage pattern, but this tendency depends on the API.

4 CONCLUSION
In this paper, we investigated API usage patterns and its #use with
3 APIs from the Android SDK and 24 client applications. From our
result, we can suggest the following topics.

• In some APIs, there are many project-specific API usage
patterns so API usage patterns extracted by mining will
be strongly affected by the target dataset. Popularity-based
misuse detection also might be affected.

• Some uncommon API usage patterns increase or decrease at
the same period among multiple applications. This kind of
trend would helpful for understanding the reliability of API
usage pattern.

• Most of the API usage patterns are consist of the frequent
API usage pattern with additional API calls and subsets of
the frequent API usage patterns also appear as frequent
API usage patterns. We should consider such variants when
mining API usage patterns.

We did not analyze whether such kind of variations of API usage
patterns are harmful or not, so we would like to expand this project-
wide and historical approach to other API usage pattern mining
techniques. We also would like to help developers to show how
many API usage patterns are there in their developing project and
whether the uncommon API usage patterns are long-life or not.

ACKNOWLEDGMENTS
This work has been supported by JSPS KAKENHI Nos. JP18H04094
and JP19K20239.

On the Variations and Evolutions of API Usage Patterns: Case Study on Android Applications SoHeal 2020, acmConference, acmConference

In
cr

ea
se

 o
f A

PI
 u

sa
ge

 p
at

te
rn

s

Decrease of API usage patterns

Figure 10: Increase and Decrease of
Context API usage patterns

In
cr

ea
se

 o
f A

PI
 u

sa
ge

 p
at

te
rn

s

Decrease of API usage patterns

Figure 11: Increase and Decrease of
Intent API usage patterns

In
cr

ea
se

 o
f A

PI
 u

sa
ge

 p
at

te
rn

s

Decrease of API usage patterns

Figure 12: Increase and Decrease of
Cursor API usage patterns

REFERENCES
[1] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira Mezini.

2019. Investigating next Steps in Static API-Misuse Detection. In Proceedings
of the 16th International Conference on Mining Software Repositories (MSR ’19).
265–275. https://doi.org/10.1109/MSR.2019.00053

[2] Shams Azad, Peter C. Rigby, and Latifa Guerrouj. 2017. Generating API Call Rules
from Version History and Stack Overflow Posts. ACM Trans. Softw. Eng. Methodol.
25, 4, Article Article 29 (Jan. 2017), 22 pages. https://doi.org/10.1145/2990497

[3] John Businge, Moses Openja, David Kavaler, Engineer Bainomugisha, Foutse
Khomh, and Vladimir Filkov. 2019. Studying Android App Popularity by Cross-
Linking GitHub and Google Play Store. In 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER 2019). 287–297. https:
//doi.org/10.1109/SANER.2019.8667998

[4] Google Developers. [n.d.]. Android API Reference. Retrieved February 5, 2020
from https://developer.android.com/reference

[5] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
2013. An Empirical Study of Cryptographic Misuse in Android Applications. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security (CCS ’13). 73–84. https://doi.org/10.1145/2508859.2516693

[6] Jaroslav Fowkes and Charles Sutton. 2016. Parameter-Free Probabilistic API
Mining across GitHub. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). 254–265. https:
//doi.org/10.1145/2950290.2950319

[7] Google. [n.d.]. Android. Retrieved February 5, 2020 from https://www.android.
com/

[8] Daqing Hou and Lin Li. 2011. Obstacles in Using Frameworks and APIs: An
Exploratory Study of Programmers’ Newsgroup Discussions. In 2011 IEEE 19th
International Conference on Program Comprehension. 91–100. https://doi.org/10.
1109/ICPC.2011.21

[9] Dino Konstantopoulos, John Marien, Mike Pinkerton, and Eric Braude. 2009.
Best Principles in the Design of Shared Software. In 2009 33rd Annual IEEE
International Computer Software and Applications Conference, Vol. 2. 287–292.
https://doi.org/10.1109/COMPSAC.2009.151

[10] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: Automatically Extracting
Implicit Programming Rules and Detecting Violations in Large Software Code.
SIGSOFT Softw. Eng. Notes 30, 5 (Sept. 2005), 306–315. https://doi.org/10.1145/
1095430.1081755

[11] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Denys Poshyvanyk. 2014. How Do API Changes Trigger Stack Overflow
Discussions? A Study on the Android SDK. In Proceedings of the 22nd International
Conference on Program Comprehension (ICPC 2014). 83–94. https://doi.org/10.
1145/2597008.2597155

[12] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of
API Stability and Adoption in the Android Ecosystem. In 2013 IEEE International
Conference on Software Maintenance. 70–79. https://doi.org/10.1109/ICSM.2013.
18

[13] Martin Monperrus and Mira Mezini. 2013. Detecting Missing Method Calls as
Violations of the Majority Rule. ACM Trans. Softw. Eng. Methodol. 22, 1, Article
Article 7 (March 2013), 25 pages. https://doi.org/10.1145/2430536.2430541

[14] Simon Moser and Oscar Nierstrasz. 1996. The effect of object-oriented frame-
works on developer productivity. Computer 29, 9 (Sep. 1996), 45–51. https:
//doi.org/10.1109/2.536783

[15] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and
Tien N. Nguyen. 2009. Graph-Based Mining of Multiple Object Usage Patterns.
In Proceedings of the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC/FSE ’09). 383–392. https://doi.org/10.1145/1595696.1595767

[16] Martin P. Robillard. 2009. What Makes APIs Hard to Learn? Answers from
Developers. IEEE Software 26, 6 (Nov 2009), 27–34. https://doi.org/10.1109/MS.
2009.193

[17] Martin P. Robillard and Robert DeLine. 2011. A field study of API learning
obstacles. Empirical Software Engineering 16, 6 (01 Dec 2011), 703–732. https:
//doi.org/10.1007/s10664-010-9150-8

[18] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. HowDevelopers
Search for Code: A Case Study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). 191–201. https://doi.org/
10.1145/2786805.2786855

[19] Mohamed Aymen Saied, Omar Benomar, Hani Abdeen, and Houari Sahraoui.
2015. Mining Multi-level API Usage Patterns. In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER). 23–32.
https://doi.org/10.1109/SANER.2015.7081812

[20] Mohamed Aymen Saied, Ali Ouni, Houari Sahraoui, Raula Gaikovina Kula, Kat-
suro Inoue, and David Lo. 2018. Improving reusability of software libraries
through usage pattern mining. Journal of Systems and Software 145 (2018), 164 –
179. https://doi.org/10.1016/j.jss.2018.08.032

[21] Ferdian Thung, David Lo, and Julia Lawall. 2013. Automated library recom-
mendation. In 2013 20th Working Conference on Reverse Engineering. 182–191.
https://doi.org/10.1109/WCRE.2013.6671293

[22] Miryung Kim Tyler McDonnell, Baishakhi Ray. 2013. An Empirical Study of
API Stability and Adoption in the Android Ecosystem. In Proceedings of the
2013 IEEE International Conference on Software Maintenance (ICSM 2013). 70–79.
https://doi.org/10.1109/ICSM.2013.18

[23] Medha Umarji, Susan Elliott Sim, and Crista Lopes. 2008. Archetypal Internet-
Scale Source Code Searching. In Open Source Development, Communities and
Quality. Springer US, Boston, MA, 257–263.

[24] Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie, and Dongmei
Zhang. 2013. Mining succinct and high-coverage API usage patterns from source
code. In 2013 10th Working Conference on Mining Software Repositories (MSR).
319–328. https://doi.org/10.1109/MSR.2013.6624045

[25] Wang Wei and Michael W. Godfrey. 2013. Detecting API usage obstacles: A study
of iOS and Android developer questions. In 2013 10th Working Conference on
Mining Software Repositories (MSR). 61–64. https://doi.org/10.1109/MSR.2013.
6624006

[26] MingWen, Yepang Liu, RongxinWu, Xuan Xie, Shing-Chi Cheung, and Zhendong
Su. 2019. Exposing Library API Misuses Via Mutation Analysis. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE) (ICSE 2019). 866–877.
https://doi.org/10.1109/ICSE.2019.00093

[27] Tao Xie and Jian Pei. 2006. MAPO: Mining API Usages from Open Source
Repositories. In Proceedings of the 2006 International Workshop on Mining Software
Repositories (MSR 2006). 54–57. https://doi.org/10.1145/1137983.1137997

[28] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are Code Examples on an Online Q&A Forum Reliable? A
Study of API Misuse on Stack Overflow. In Proceedings of the 40th International
Conference on Software Engineering (ICSE 2018). 886–896. https://doi.org/10.1145/
3180155.3180260

https://doi.org/10.1109/MSR.2019.00053
https://doi.org/10.1145/2990497
https://doi.org/10.1109/SANER.2019.8667998
https://doi.org/10.1109/SANER.2019.8667998
https://developer.android.com/reference
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2950290.2950319
https://doi.org/10.1145/2950290.2950319
https://www.android.com/
https://www.android.com/
https://doi.org/10.1109/ICPC.2011.21
https://doi.org/10.1109/ICPC.2011.21
https://doi.org/10.1109/COMPSAC.2009.151
https://doi.org/10.1145/1095430.1081755
https://doi.org/10.1145/1095430.1081755
https://doi.org/10.1145/2597008.2597155
https://doi.org/10.1145/2597008.2597155
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1145/2430536.2430541
https://doi.org/10.1109/2.536783
https://doi.org/10.1109/2.536783
https://doi.org/10.1145/1595696.1595767
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1109/SANER.2015.7081812
https://doi.org/10.1016/j.jss.2018.08.032
https://doi.org/10.1109/WCRE.2013.6671293
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1109/MSR.2013.6624045
https://doi.org/10.1109/MSR.2013.6624006
https://doi.org/10.1109/MSR.2013.6624006
https://doi.org/10.1109/ICSE.2019.00093
https://doi.org/10.1145/1137983.1137997
https://doi.org/10.1145/3180155.3180260
https://doi.org/10.1145/3180155.3180260

SoHeal 2020, acmConference, acmConference Koki Ogasawara, Tetsuya Kanda, and Katsuro Inoue

Table 7: #use of top-5 API usage patterns and project-specific API usage patterns

API Context Intent Cursor
Project top-5 (%) peoject-specific (%) top-5 (%) peoject-specific (%) top-5 (%) peoject-specific (%)
AmazeFileManager 2 (40%) 1 (20%) 31 (65%) 6 (12%) 0 (0%) 15 (65%)
AndroidUtilCode 0 (0%) 10 (100%) 47 (58%) 15 (18%) 0 (0%) 0 (0%)
bitcoin-wallet 3 (75%) 1 (25%) 15 (51%) 10 (34%) 0 (0%) 1 (100%)
cgeo 2 (50%) 1 (25%) 68 (72%) 14 (14%) 3 (20%) 6 (40%)
codenameone 20 (90%) 1 (4%) 26 (50%) 15 (29%) 0 (0%) 6 (54%)
collect 0 (0%) 1 (25%) 45 (54%) 25 (30%) 0 (0%) 55 (96%)
ExoPlayer 2 (66%) 0 (0%) 4 (36%) 5 (45%) 0 (0%) 0 (0%)
fresco 7 (100%) 0 (0%) 4 (57%) 1 (14%) 0 (0%) 2 (66%)
k9 37 (80%) 5 (10%) 77 (52%) 45 (30%) 6 (8%) 49 (68%)
mapbox 5 (62%) 2 (25%) 1 (100%) 0 (0%) 0 (0%) 0 (0%)
news-android 0 (0%) 0 (0%) 32 (80%) 3 (7%) 2 (20%) 8 (80%)
owncloud 1 (33%) 2 (66%) 67 (68%) 8 (8%) 0 (0%) 12 (80%)
owntracks 1 (100%) 0 (0%) 5 (29%) 2 (11%) 0 (0%) 2 (100%)
photoview 0 (0%) 0 (0%) 1 (100%) 0 (0%) 0 (0%) 0 (0%)
realm-java 3 (60%) 1 (20%) 8 (88%) 0 (0%) 0 (0%) 0 (0%)
RedReader 6 (60%) 4 (40%) 34 (52%) 11 (16%) 0 (0%) 2 (40%)
robolectric 0 (0%) 0 (0%) 0 (0%) 1 (100%) 0 (0%) 0 (0%)
Signal-Android 20 (71%) 4 (14%) 102 (61%) 31 (18%) 9 (11%) 51 (64%)
skytube 0 (0%) 1 (100%) 23 (76%) 2 (6%) 0 (0%) 17 (80%)
wikipedia 5 (45%) 4 (36%) 24 (51%) 16 (34%) 10 (55%) 5 (27%)
WordPress 28 (65%) 9 (20%) 140 (66%) 31 (14%) 22 (45%) 40 (83%)
Total 142 (65%) 47 (21%) 754 (61%) 241 (19%) 52 (13%) 271 (71%)

Table 8: #pattern for Each Projects

API Context Intent Cursor
Project old new old new old new
AmazeFileManager 0 4(3) 15(14) 17(15) 7(7) 9(9)
AndroidUtilCode 0 2(2) 6(6) 20(16) 1(1) 0
bitcoin-wallet 4(4) 4(4) 11(8) 12(8) 6(5) 1(1)
cgeo 1(1) 3(2) 26(20) 28(21) 10(10) 12(11)
codenameone 3(3) 6(4) 21(18) 24(19) 10(9) 10(9)
collect 1(1) 2(2) 14(14) 23(20) 9(7) 44(25)
ExoPlayer 3(3) 3(3) 4(4) 8(5) 0 0
fresco 0 3(2) 1(1) 5(4) 2(2) 3(3)
k9 8(5) 11(7) 36(33) 49(33) 27(24) 44(39)
mapbox 3(3) 4(2) 2(2) 1(1) 0 0
news-android 1(1) 1(1) 9(8) 10(9) 6(6) 6(6)
owncloud 0 2(2) 26(24) 25(24) 8(6) 9(6)
owntracks 0 1(1) 15(14) 10(10) 3(3) 2(2)
photoview 1(1) 1(1) 1(1) 1(1) 0 0
realm-java 2(2) 3(2) 3(2) 3(2) 0 0
RedReader 5(3) 5(3) 15(14) 21(19) 5(5) 4(4)
robolectric 1(1) 0 2(2) 1(1) 0 0
Signal-Android 8(5) 10(5) 31(23) 44(34) 16(8) 56(40)
skytube 0 1(1) 5(4) 9(8) 0 11(9)
wikipedia 1(1) 8(5) 14(9) 19(12) 3(3) 7(7)
WordPress 9(4) 13(7) 26(25) 41(33) 54(34) 22(21)
Total 27(15) 44(18) 158(123) 213(144) 141(96) 206(136)

(): w/o instance

	Abstract
	1 Introduction
	2 Related Works
	3 Case Study
	3.1 Extracting API Usage Patterns
	3.2 Analysis Target
	3.3 RQ1
	3.4 RQ2
	3.5 RQ3

	4 Conclusion
	Acknowledgments
	References

