Journal of Information Processing Vol.29 296-304 (Apr. 2021)

[DOI: 10.2197/ipsjjip.29.296]

Regular Paper

Empirical Study on Dependency-related License Violation

in the JavaScript Package Ecosystem

2,b)

SHI Qu'® DaNEL M. GERMAN Karsuro Inoug!-®)

Received: August 3, 2020, Accepted: January 12, 2021

Abstract: Open source software (OSS) is software whose source code can be reused under some particular terms and
conditions. These terms and conditions are usually described by one or more software licenses written in the header
part of the source files. A license may violate another one according to the terms and conditions. Making software by
reusing OSS as dependency may cause dependency-related license violation if the developers overlook the license of
the dependency. In this paper, we first conduct an empirical study on npm - a JavaScript-based software ecosystem - to
study the prevalence of dependency-related license violation. The result suggests that only a few packages (0.644%)
in npm have dependency-related license violations. However, we also observe that including the packages licensed
under copyleft licenses in the dependency network potentially causes a high dependency-related license violation. We
then conduct a preliminary questionnaire on the authors of packages detected as having dependency-related license
violations to study the developers’ attitudes. The results reveal: 1) the developers’ overlooking and misunderstanding
of the dependency-related license violations; 2) the difficulties in managing dependency-related license violations and

the developers’ demands for help.

Keywords: software maintenance, open source software, software license, OSS ecosystem, license violation

1. Introduction

Software reuse has long been proved to be a good method to in-
crease software productivity [3], [15], [17]. As a practice, reusing
open source software (OSS) has become more and more popular.

Open source license describes the terms and conditions when
OSS is used, modified, and shared. OSS should be distributed un-
der one or multiple open source licenses so that it can be reused
by others. These licenses are usually included in the header com-
ments of source files. To standardize the use of open source li-
censes, the Open Source Initiative (OSI) determines the defini-
tion of open source licenses and publishes the list of all approved

licenses *!

. When developers reuse OSS, they should pay spe-
cial attention to open source licenses to prevent potential legal
risks [25].

As the definition of open source license describes, OSS can
only be reused as long as the particular terms and conditions are
satisfied. Therefore, the developed software should satisfy all
the terms and conditions in licenses of all reused OSS. In other
words, the developed software should select a license that does
not violate the licenses of all reused OSS. In this paper, we de-
fine license A violates license B as the situation that the software
licensed under license B cannot be combined into the software
licensed under license A according to their terms and conditions.

' Graduate School of Information Science and Technology, Osaka Univer-

sity, Suita, Osaka 565-0871, Japan

Department of Computer Science, University of Victoria, Victoria, BC
V8P 5C2, Canada

qiujitsu @ist.osaka-u.ac.jp

dmg@uvic.ca

9 inoue@ist.osaka-u.ac.jp

a)
b)

© 2021 Information Processing Society of Japan

If the selected license violates any license of the reused OSS, po-
tential legal risks may occur.

An OSS ecosystem consists of software projects that are de-
veloped and evolve together in a shared environment [14]. The
user-contributed OSS ecosystem is an ecosystem where software
projects are contributed by its users. When a developer devel-
ops a new software project, other software projects in the user-
contributed OSS ecosystem can be reused easily by being de-
clared as dependencies. In this paper, a dependency of a package
refers to the other packages in the user-contributed OSS ecosys-
tem used by this package. Meanwhile, this package is defined as
a dependent. Generally, the dependency can also refer to the de-
pendency relation between the packages [4], but note that in this
paper we define dependency as the “package” instead of the “re-
lation”. Introducing dependencies makes a project dependent on
them.

The license of the new software project under development
should not violate the licenses of any dependencies as well.
Dependency-related license violation occurs when the selected
license violates any license of the dependencies. In a user-
contributed OSS ecosystem, it is more difficult to judge whether
the selected license violates the licenses of its dependencies or
not.

To address the dependency-related license violation issue, in
this paper we propose an approach to detect dependency-related
license violations of software projects in such OSS ecosystems.
We are interested in studying the prevalence of dependency-
related license violation in user-contributed OSS ecosystems and

1

https://opensource.org/licenses/alphabetical

296

Journal of Information Processing Vol.29 296-304 (Apr. 2021)

the developers’ attitudes.

We select npm*? as the target in our research. npm serves as a
large repository of JavaScript-based software packages. It hosts
over 1.3 million JavaScript packages and becomes the largest
JavaScript ecosystem, with millions of packages being installed
from the npm repository on an everyday basis. We select npm
for 3 reasons: (1) npm is one of the most popular and successful
OSS ecosystems and hosts a large number of packages. (2) npm
has a perfect mechanism of including other packages as depen-
dencies, which make the usage of dependencies prevalent in npm.
(3) npm has a strict requirement of adding meta-data, for which
we can utilize the meta-file of packages conveniently. These fea-
tures make npm a suitable target to study dependency-related li-
cense violations. Studying dependency-related license violations
in such typical OSS ecosystems will benefit the practitioners. The
findings will also be a good baseline to study dependency-related
license violations in other OSS ecosystems.

Our research questions are set as follows:

RQ1: How prevalent are dependency-related license violations
in npm?

RQ2: What are the developers’ attitude towards dependency-
related license violation?

Many studies in software engineering have been done on
the software license. Some effective approaches and tools are
proposed to identify the license of source code files automati-
cally [7], [10]. Some works aim to detect and understand the li-
cense violation in code siblings or similar files [9], [24], but no
research has been done to understand the license violation occur-
ring in the dependencies of packages in the OSS ecosystem.

The contributions of this study are as follows.

(1) An empirical study on npm to understand the prevalence
of dependency-related license violation with the proposed
method of detecting dependency-related license violation.

(2) A preliminary questionnaire on the authors of packages de-
tected as having dependency-related license violation to re-
veal the developers’ attitudes.

This paper is organized as follows. Section 2 first provides a
brief background on dependency-related license violation. Our
empirical study on npm is described in Section 3, followed by
Section 4 with the preliminary questionnaire. Section 5 describes
threats to validity. After a description of related work in Sec-
tion 6, Section 7 concludes this paper.

2. Background

2.1 License Violation

A software license permits software to be reused under certain
terms and conditions. An open source license is a software li-
cense that follows Open Source Definition ** and is approved by
Open Source Initiative. Here is an example of a license statement
abstracted from grunt package in npm, which states that the file
is licensed under MIT license:

Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the
Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the
Software.

Licenses can be basically grouped into two types - the per-
missive license and copyleft (protective) license. Some examples
of the permissive license are MIT License, BSD licenses, and
Apache license. A typical example of the copyleft ones is the
GNU General Public License. When OSS reuses another OSS,
if the reused OSS is licensed under a permissive license, the de-
veloped OSS does not need to open its source code. But if the
reused OSS is licensed under a copyleft one, the developed OSS
is enforced to open its source code. Usually, a permissive license
violates a copyleft one.

For example, MIT license *4, which is a permissive license, vi-
olates GPL-2.0+ license *>, which is a copyleft one. GPL-2.0+
license declares:

This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation;
either version 2, or (at your option) any later version.

According to the terms of GPL-2.0+ license, if OSS licensed
under MIT license reuses another OSS licensed under GPL-2.0+
license, illegal reuse occurs since OSS licensed under GPL-2.0+
license can only be redistributed and/or modified under the terms
of the GNU General Public License either version 2, or (at your
option) any later version as published by the Free Software Foun-
dation.

Furthermore, some licenses share the same name but are with
different versions. An example is the GNU General Public Li-
cense. GNU General Public License has versions 1, 2, and 3.
Each version has different terms and conditions. According to
these different terms and conditions, three versions violate each
other. Usually, licenses that share the same name are called a
license family. For example, the GPL family includes GNU Gen-
eral Public License versions 1, 2, 3, and some other versions and
MPL family includes Mozilla Public License versions 1, 1.1, 2.0,
and some other versions.

2.2 Package Dependency

Introducing other packages in the user-contributed OSS
ecosystem makes the package under development dependent on
them. At the same time, the introduced packages may have their
dependencies, seen as the indirect dependencies of the package
under development. In this paper, a direct dependency of package
A refers to package B whose name is explicitly recorded in pack-
age A’s meta-data as its dependency. The indirect dependencies

#2
=3

https://www.npmjs.com
https://opensource.org/definition

© 2021 Information Processing Society of Japan

#4
*5

https://opensource.org/licenses/MIT
https://opensource.org/licenses/GPL-2.0+

297

Journal of Information Processing Vol.29 296-304 (Apr. 2021)

Dependent \ I

\\
Direct Indirect
dependency dependency

Fig. 1 The examples of direct dependency and indirect dependency.

Commander
(MIT)

*—0

graceful-readlink
(MIT)

MIT]
wim walk-json

(MIT)

mucbuc-filebase
(ISC)

traverjs
(GPL-2.0)

inject-json
(MIT)

Fig. 2 A part of the dependency network of a cstar package in npm.

of package A refer to the transitive collection of package A’s de-
pendencies excluding package A’s direct dependencies. Figure 1
shows examples of direct dependency and indirect dependency.

Finally, direct dependencies and indirect dependencies could
form a dependency network. The dependency network is preva-
lent in the user-contributed OSS ecosystem [4]. For example, the
number of dependencies of packages in npm has grown 60% over
2016 and the mean number of the dependencies per package has
grown to 60.1[12]. Figure 2 shows an example of the depen-
dency network of a cstar package.

Developers are not likely to update the dependencies of their
packages [2], [13]. Developers might also overlook the indirect
dependencies since they do not include those dependencies by
themselves [12]. These problems harm the health of the OSS
ecosystem, causing problems such as security vulnerability, API
breaking conflicts, and illegal reuse.

2.3 Dependency-related License Violation

License violation related to dependency occurs when a pack-
age’s license violates any license of its dependencies. To achieve
our research goal, we will define dependency-related license vio-
lation.

We first construct a license compatibility network to specify
the compatibility between two licenses. Our license compatibil-
ity network is constructed based on the one created by David A.
Wheeler [23]. Our license compatibility network is shown in Fig-
ure 3. Each arrow denotes one-directional compatibility. An ar-
row pointing from license A to license B means that license B
does not violate license A. In other words, software licensed un-
der license A is allowed to be combined into the software licensed
under license B according to the proposed definition of violation
in Section 1.

© 2021 Information Processing Society of Japan

Permissive Copyleft

]]

[| \
Weakly Protective Strongly Protective

,{ LGPL-2.1 |r; -------)| GPL-2.0 |

/ i S :
Pub"iA?T"ma‘" ,| LGPL—2.1+|- -------- ﬁ GPL-2.0+
1SC T T
BSD M v
Apache-20 | N\ " TLGPL30 | GPL30 | Affero
\ | LGPL-3.0+ GPL-3.0+ GPL-3.0
\
5] MPL-1.0
Y mPL-11

MPL-2.0

Fig.3 License compatibility network.

In this paper, we define dependency-related license violation
of a package X licensed under license A for another package Y
licensed under license B, as the situation that Y is a dependency
of X but no path from B to A exists in the license compatibility
network (i.e., A violates B).

For example, walk-json package licensed under MIT license
has dependency-related license violation for traverjs package
licensed under GPL-2.0 license since traverjs package is a de-
pendency of walk-json package, as shown in Fig. 2, and there is
no path from GPL-2.0 license to MIT license in the license com-
patibility network (i.e., MIT license violates GPL-2.0 license), as
shown in Fig. 3. This is an example of dependency-related license
violation caused by direct dependency.

An example of dependency-related license violation caused by
indirect dependency is cstar package. cstar package has two
direct dependencies. The MIT license does not violate the li-
censes of these two direct dependencies. However, traverjs
package licensed under GPL-2.0 license is also reused by cstar
package as an indirect dependency. Because there is no path
from GPL-2.0 license to MIT license in the license compatibility
network, dependency-related license violation occurs in cstar
package as well.

Note that our detection method proposed in Section 3.2 only
detects dependency-related license violation using the depen-
dency network and the license compatibility network constructed
in this paper. Although we can define license violation in differ-
ent ways, we use the above definition for simplicity and clarity of
the implementation.

3. The Prevalence of Dependency-related Li-
cense Violation

In this section, we aim to answer RQ1.
We first introduce the proposed method and then report the re-
sults of our empirical study.

3.1 Data Collection

We collect the target packages in npm. The observation period
is from October 1st, 2010 to April 7th, 2017. We end up with
419,708 packages in total. Note that for each package, we only
count it once no matter how many versions it has. We use the
public APT*® of npm to get the historical meta-data of all versions

*6 https://registry.npmjs.org/-/all. Note that for some reason, npm has

stopped providing this public API. Therefore, we cannot get the his-
torical meta-data by using this API now.

298

Journal of Information Processing Vol.29 296-304 (Apr. 2021)

of the target packages. For each version, the license and direct
dependencies are recorded. For example, a part of the historical
meta-data of cstar package is shown as follows:

“version": "9.9.5",
"dependencies":
"commander": "*","mucbuc-filebase": "*"
"license": "MIT",
"version": "0.0.2",
"dependencies": "mucbuc-filebase": "*",
"license": "MIT",

3.2 Method

It is not easy to detect dependency-related license violations of
a package in the user-contributed OSS ecosystem. There are three
main challenges:

(1) A dependency is not always with the latest version, since
packages in the user-contributed OSS ecosystem usually
evolve frequently.

(2) Using dependencies is very common in the user-contributed
OSS ecosystem. As aresult, a package has a high probability
of having a deep and complex dependency network.

(3) The same license is not always written in the same ways. For
example, both GPL-2.0 and GPL version 2 refer to the same
license.

To address these issues, we proposed a method that consists of
five steps.

1) Constructing the license dictionary:

As mentioned above, the same license is usually written in dif-
ferent ways by different developers. We first construct a license
dictionary, with which we can transform different forms of a li-
cense into a normalized one. The license dictionary includes the
popular licenses published by the Open Source Initiative.

We collect all licenses written in the historical meta-data of
the collected packages in npm and remove the duplicate one. We
then use regular expression matching to do a preliminary classi-
fication. Regular expression matching is able to classify most li-
censes. We then manually check the results and move the license
wrongly classified into the correct one. For the licenses which can
not be matched by the regular expression, we manually classify
them into the correct category. Note that since the license is writ-
ten by the developer manually, some developers may not write
the version number of the license. For example, some developers
declare their packages are licensed under “GPL”, but no version is
declared. For these cases, we record them as “license no version”
such as “GPL no version” and “MPL no version”. “License no
version” is seen as not violating any license in its family, but if a
license violates any license in the family of “license no version”,
it will be detected as violating “license no version”. For licenses
that are not published by the Open Source Initiative, we classify
them into a special category named “unknown” license.

All the normalized forms of our selected licenses are listed in
Table 1. By constructing the license dictionary, we succeed in
solving the third challenge - the various ways of writing the same
license.

© 2021 Information Processing Society of Japan

2) Constructing the license compatibility network:

We implement the license compatibility network proposed in
Section 2.3. By searching this license compatibility network, we
can check whether or not a license violates another one.

3) Constructing the historical meta-data dataset:

OSS in the user-contributed OSS ecosystem usually evolves
frequently. With the evolution of software, the source code, li-
cense, and dependencies are also changing. However, OSS does
not always reuse the latest version of its dependencies, thus de-
ciding the proper version of dependencies is important. To accel-
erate the detection, we construct the historical meta-data dataset,
in which the license and the direct dependencies with the proper
versions of all historical versions of each package are recorded.

We have collected the historical meta-data of all versions of
the target packages. However, it is necessary to process histori-
cal meta-data. Firstly, for licenses, we normalize them according
to the license dictionary constructed in step 1. Secondly, for di-
rect dependencies, we list all direct dependencies and choose the
proper version for each direct dependency. Note that npm uses
the semantic versioning standard to manage versions. The first
release should start from 1.0.0. After this, changes should be
handled according to Table 2. Developers can specify acceptable
version ranges of the dependencies of their packages based on
the semantic versioning standard used by npm. The specification
is flexible by using different symbols to achieve different goals.
Table 3 shows some examples of how to specify the ranges. Note
that we identify the version of a dependency as the latest version
in the acceptable version ranges recorded in the meta-data of a
package, which is consistent with the mechanism of npm. The
details of the semantic versioning standard used by npm can be
found in the documents of npm*7.

After we process the historical meta-data, we can build the his-
torical meta-data dataset for this package. The historical meta-
data dataset includes information on license and direct dependen-
cies of all versions of a package. Table 4 shows the historical
meta-data dataset constructed for cstar package in npm.

4) Constructing the dependency network: In this step, we con-
struct the dependency network. The direct and indirect depen-
dencies in the dependency network are attached to its version
and license. Figure 2 shows a part of the dependency network
constructed for cstar package in npm. For each dependency
in the dependency network, the attached information of version
and license is shown in Table 5. Note that the version of the
cstar package is the latest version. The version of the direct de-
pendency consists with the dependency’s version recorded in the
meta-data of the cstar package. The version of indirect depen-
dency is selected in a similar way.

By constructing the dependency networks for the packages in
npm, we succeed in solving the first and the second challenges
mentioned above - the variability of the dependencies’ versions
and the complexity of the dependency networks.

5) Dependency-related license violation detection:

Since we have constructed the dependency network and the
license compatibility network, it becomes possible to detect

*7 https://docs.npmjs.com/getting-started/semantic-versioning

299

Journal of Information Processing Vol.29 296-304 (Apr. 2021)

Table 1 The list of the selected licenses.

License Normalized form | License family
Public Domain License Public Domain None
MIT License MIT None
ISC License ISC None
Apache License 2.0 Apache-2.0 None
3-clause BSD License/”New” or “Revised” license BSD-3-Clause BSD family
2-clause BSD License/”Simplified” or "FreeBSD” license BSD-2-Clause BSD family
Mozilla Public License version 1.0 MPL-1.0 MPL family
Mozilla Public License version 1.1 MPL-1.1 MPL family
Mozilla Public License version 2.0 MPL-2.0 MPL family
GNU General Public License version 2 GPL-2.0 GPL family
GNU General Public License version 2 or any later version GPL-2.0+ GPL family
GNU General Public License version 3 GPL-3.0 GPL family
GNU General Public License version 3 or any later version GPL-3.0+ GPL family
GNU Lesser General Public License version 2.1 LGPL-2.1 GPL family
GNU Lesser General Public License version 2.1 or any later version LGPL-2.1+ GPL family
GNU Lesser General Public License version 3.0 LGPL-3.0 GPL family
GNU Lesser General Public License version 3.0 or any later version LGPL-3.0+ GPL family
GNU Affero General Public License version 3 AGPL-3.0 GPL family
Table 2 The rules of how changes should be handled in npm.
CODE STATUS STAGE RULE EXAMPLE
First Release New Product Start with 1.0.0 1.0.0
Bug fixes, other minor changes Patch Release Increment the third digit 1.0.1
New feature that don’t break existing features | Minor release | Increment the middle digit 1.1.0
Changes that break backward compatibility Major release Increment the first digit 2.0.0

Table 3 The examples of how to specify the ranges.

Table 6 The top 10 dependency-related license violations.

TYPE

EXAMPLE

All patch releases of major release 1.0

1.0 or 1.0.x or "1.0.0

All minor releases of major release 1

lorl.xorl.0.0

All releases *or x

Table 4 The historical meta-data dataset constructed for cstar package in

npm.
Version | License Direct dependency (Version)
0.0.5 MIT commander (2.9.0), mucbuc-filebase (0.0.4)
0.0.4 MIT commander (2.9.0), mucbuc-filebase (0.0.4)
0.0.3 MIT mucbuc-filebase (0.0.4)
0.0.2 MIT mucbuc-filebase (0.0.4)
0.0.1 MIT mucbuc-filebase (0.0.4)
0.0.0 GPL-2.0 mucbuc-filebase (0.0.4)

Table S The attached information of version and license for the dependen-
cies in the dependency network constructed for cstar package.

Dependency Version | License
cstar 0.0.5 MIT
mucbuc-filebase 0.0.4 ISC
walk-json 0.0.2 MIT
commander 2.9.0 MIT
graceful-readlink 1.0.1 MIT

traverjs 0.0.7 GPL-2.0
inject-json 0.0.9 MIT

dependency-related license violations. We detect whether or not
the license of this package violate the licenses of direct and in-
direct dependencies in the dependency network according to the
license compatibility network. Dependency-related license viola-
tion is detected when the violation is found.

For example, by observing the dependency network con-
structed for cstar package (Fig. 2 and Table 5), we can find that
MIT license - the license of cstar package - violates GPL-2.0
license - the license of traverjs package which is an indirect
dependency. Therefore, cstar package is detected as having a
dependency-related license violation.

The details of the proposed method can be found here [16].

© 2021 Information Processing Society of Japan

Package Dependence Number | Proportion
MIT GPL-3.0 582 16.1%
MIT LGPL-3.0 349 9.6%

Public Domain GPL-3.0 300 8.3%
MIT LGPL no version 281 7.8%
ISC GPL-3.0 231 6.4%
MIT GPL no version 224 6.2%
MIT LGPL-2.1 159 4.4%
MIT GPL-2.0 134 3.7%
Public Domain GPL no version 114 3.1%
Public Domain LGPL-3.0 104 2.9%

3.3 Results and Discussion

We detect dependency-related license violations in the col-
lected 419,708 packages in npm. As a result, only 2,704 packages
are detected as having dependency-related license violations, ac-
counting for 0.644% of all packages. The result suggests that only
a few packages (0.644%) in npm have dependency-related
license violations. We also observe that among these 2,704
packages, 3,624 dependency-related license violations are de-
tected. Table 6 shows the top 10 list of those violations classi-
fied by licenses. The result shows that most dependency-related
license violations are caused by the violation between the permis-
sive licenses and copyleft licenses, while usually copyleft licenses
do not violate each other.

A potential reason is the developers’ manner of choosing li-
censes for their packages. To ascertain this reason, we count the
proportion of the different licenses in npm. Table 7 shows the
result. We observe that the permissive licenses take a large part
of all licenses while the copyleft licenses are not widely used in
npm. The preference of the permissive licenses may be the rea-
son for the low proportion of the packages detected as having
dependency-related license violations in npm.

Furthermore, because of the high proportion of the permis-
sive licenses and low proportion of the copyleft licenses used in

300

Journal of Information Processing Vol.29 296-304 (Apr. 2021)

Table 7 The proportion of the selected licenses in npm.

License Number | Proportion
MIT 254,972 60.75%
None 80,331 19.14%
ISC 33,827 8.06%

Apache-2.0 13,598 3.24%

BSD family 17,794 4.24%

GPL family 9,158 2.18%
Unlicense/Public Domain 2,098 0.50%
MPL family 1,132 0.27%
Unknown 6,798 1.62%

All 419,708 100%

npm, we could assume that including the packages licensed under
copyleft licenses in the dependency network potentially causes a
high dependency-related license violation. To ascertain it, we se-
lected GPL family licenses as the target to study. We collected the
packages having direct or indirect dependencies with GPL fam-
ily licenses. As a result, we collected 4,067 packages. Among
them, 2,704 packages are detected as having dependency-related
license violations, accounting for 66.84%. Note that all packages
detected as having dependency-related license violations in the
detection of 419,708 packages are included in these 4,067 pack-
ages. The result proves our assumption. A possible explanation
is that the developers do not understand the copyright notice well
and overlook the license violation when they use a package as
a dependency. Another possible explanation is that the develop-
ers overlook the indirect dependencies since they do not include
those packages by themselves. To ascertain it, we calculate the
proportion of the dependency-related license violations caused by
direct and indirect dependency respectively. As a result, among
2,704 packages detected as having dependency-related license vi-
olations, 2,115 packages are detected as having violations caused
by direct dependencies, accounting for 78.2%. Meanwhile, 1,507
packages are detected as having violations caused by indirect de-
pendencies, accounting for 55.7%. The result suggests that both
direct dependency and indirect dependency play an important role
in the occurrence of dependency-related license violations.
We will study more on developers’ attitudes in Section 4.
Hence, we answer RQ1:

Only a few packages (0.644%) in npm have dependency-
related license violations. However, including the packages
licensed under copyleft licenses as dependency is closely re-
lated with the occurrence of dependency-related license vi-
olations.

4. Preliminary Questionnaire

In this section, we aim to answer RQ?2.
We first introduce the preliminary questionnaire we conducted
and then report the results.

4.1 Questionnaire Design

Our preliminary questionnaire targets the authors of packages
detected as having dependency-related license violations. There-
fore, our questionnaire first describes how the license of the target
package violates the licenses of its dependencies by explaining
the terms and conditions of the licenses. The second part of the

© 2021 Information Processing Society of Japan

questionnaire then asks developer opinions on the following two
questions: 1) Do you think this is a kind of risk? If so, were you
aware of this kind of risk when you were developing your pack-
ages? 2) In this question, you can share anything you want to say
with this kind of risk with us.

For the analysis, we first record the responses of the first
question according to whether or not the developer thinks the
dependency-related license violations in their packages to be is-
sues. We then analyze the responses of the second question
through a systematic method: (i) reading of each response, (ii)
checking, summarizing and categorizing text, and (iii) looking
for similarities or differences in other responses. We finally end
up with a list of important observations in the responses.

4.2 Data Collection

In Section 3, 2,704 packages are detected as having
dependency-related license violations. ~We randomly select
100 packages and send their authors email invitations for our
preliminary questionnaire. In the end, we received 20 responses

which equals a response rate of 20%.

4.3 Results and Discussion
4.3.1 Question 1

For the first question in our questionnaire, 11 participants out
of 20 participants regard the dependency-related license viola-
tions as risks. On the contrary, 6 participants do not regard the
dependency-related license violations as risks and 3 participants
are not sure whether or not the dependency-related license vio-
lations are risks respectively. The results suggest the divergence
of developers towards dependency-related license violations. To
study the reasons why developers regard or do not regard the
dependency-related license violations as risks, we also analyze
the developers’ explanations for their choices.

Among 11 participants regarding the dependency-related li-
cense violations as risks out of all 20 participants, 5 partici-
pants were aware of the dependency-related license violation is-
sue when they were developing their packages while 6 partici-
pants were not. Only one participant out of 6 participants who
was not aware of this issue explains the reason: as an individ-
ual developer, this participant will not take time to properly study
the licenses in dependencies, especially when the package is not
developed for commercial use. Meanwhile, 4 participants out of
5 participants who were aware of this issue explain the reasons:
1) Developers will not check the licenses of the dependencies for
personal projects. 2) The project is weakly maintained so the li-
cense violation issue is not addressed carefully. 3) The developer
is the author of both the detected package and its dependency. 4)
The developer knows the license violation issue but is not well in-
formed. The results suggest that the developers potentially over-
look the dependency-related license violations even though they
regard them as risks.

All 6 participants who do not regard the dependency-related
license violations as risks out of all 20 participants explain their
reasons. There are two main reasons: 1) There is no need to care
about the license violation issue if the package is not developed
for commercial use. 2) Reusing other packages as dependencies

301

Journal of Information Processing Vol.29 296-304 (Apr. 2021)

is not “redistribution”.

The first reason is obviously wrong since the terms and con-
ditions in licenses are effective whether the package is devel-
oped for commercial use or not. For the second reason, judging
whether or not reusing other packages as dependencies is “redis-
tribution” is a complicated legal problem and may differ in dif-
ferent countries. However, even if reusing other packages as de-
pendencies is not regarded as “redistribution”, it could potentially
become a risk for the end-users who will reuse these packages for
various purposes.

The results reveal the developers’ overlooking and misunder-
standing of the dependency-related license violations.

4.3.2 Question 2

We analyze the responses of the second question through a sys-
tematic method and make the following important observations:

1) It is not easy to understand the terms and conditions of the
licenses. Most participants describe their understanding of the
terms and conditions of the licenses. For the same license, par-
ticipants may have a different understanding. The most important
problem is understanding the meaning of particular words in the
licenses such as “redistribute”, “reuse”, and “modify”. It is also
difficult for developers to identify the difference between two li-
censes in the same license family, such as “GPL-2.1” and “GPL-
3.0”. The difficulties in understanding the terms and conditions
also hinder developers in choosing the proper licenses.

2) Managing dependency-related license violations is difficult
in practice. Some participants describe the difficulty in managing
dependency-related license violations in practice. One partici-
pant says that a lot of open source components are reused in his
project, and the collection of dependencies grows and changes
during the life cycle of the project. He usually generates re-
ports on the licensing requirements for dependencies manually
and thus it takes a lot of time. Another participant says that he
always has to re-write his packages because of the license of the
dependencies. Note that the licenses of the dependencies may
change during the life cycle and it is difficult to trace them [13].
The dependency-related license violations may also occur when a
developer is required to change the license of his package to meet
the requirement of the end-users.

3) Help in managing the dependency-related license violations
is demanded. Some participants agree that tools that help to man-
age the dependency-related license violations will help a lot. The
following functions are wanted: 1) detecting the dependency-
related license violations; 2) tracing the change of the licenses
of the dependencies; 3) choosing the proper license.

The results highlight the difficulties in managing dependency-
related license violations and the developers’ demands for help.

Hence, we answer RQ2:

The attitudes of developers towards dependency-related
license violations vary. The dependency-related license vio-
lations are overlooked and misunderstood by the developers
for various reasons. Managing dependency-related license
violations is difficult and the developers are demanding help.

© 2021 Information Processing Society of Japan

5. Threats to Validity

This section discusses the threats to the validity of our research.
Threats to construct validity concern the relationship between
theory and outcome, and relate to possible measurement impreci-
sion when extracting data we used in this study. npm hosts over
1.3 million JavaScript packages. This number is still increasing
rapidly every day. It is impossible to conduct the empirical study
on packages of this large number, especially considering that the
packages depend on each other. Otherwise, because of the rapid
increment of the packages in npm, the public API we use to get
the historical meta-data is not accessible. The collected data is
the only one we can use to study dependency-related license vi-
olations in npm. We set the observation period from October 1st,
2010 to April 7th, 2017, and collected the meta-data of 419,708
packages in total. 419,708 packages are enough to represent all
packages in npm statistically. Furthermore, these 419,708 pack-
ages only depend on each other and do not depend on other pack-
ages in npm, which makes the empirical study executable.

Threats to internal validity concern factors internal to the study
that could impact our results. Such threat does not affect an ex-
ploratory study like the one in this paper. The only case worth-
while being discussed is our answer to RQ2, where we observe
and understand the responses manually based on our knowledge.

Threats to external validity are related to the ability to gener-
alize the findings in our study. Our empirical study is only con-
ducted on npm. npm is one of the most popular and successful
OSS ecosystems, which makes itself a suitable target to study
copyright inconsistencies. However, we find that the developers
in npm prefer not to choose copyleft licenses for their packages,
which is a possible reason for the low proportion of packages
having dependency-related license violations. But according to
the different situations, other OSS ecosystems may have different
results. As the first work focusing on dependency-related license
violations in OSS ecosystems, our findings could be a good base-
line to study dependency-related license violations in them. We
agree that it is necessary to replicate our empirical study on dif-
ferent OSS ecosystems.

Another threat worth discussion is the scale of our preliminary
questionnaire. Our preliminary questionnaire only selects 100
packages from 2,704 packages detected as having dependency-
related license violations. Compared with the large numbers of
packages and developers in npm, the scales of the target pack-
ages and developers are not enough to achieve a result with sta-
tistical sense. However, as a preliminary qualitative analysis of
dependency-related license violations, it can still reveal develop-
ers’ attitudes, some of which are important. But we also agree
that a large-scale developer survey is necessary in our future
works.

6. Related Work

6.1 Software License

Many studies in software engineering investigate software li-
censes. There are some studies that are devoted to identifying
licenses [7], [10], [18]. Based on these studies, some researchers
analyzed software licenses in open source projects and revealed

302

Journal of Information Processing Vol.29 296-304 (Apr. 2021)

some license issues. Di Penta et al.[5] provided an automatic
method to track changes occurring in the licensing terms of a sys-
tem and did an exploratory study on license evolution in six open
source systems and explained the impact of such evolution on the
projects. German et al. [8] proposed a method for understand-
ing licensing compatibility issues in software packages. They
mainly focused on the compatibility between licenses declared in
packages and those in source files. Different from their work, we
mainly focused on the compatibility between licenses declared in
packages and its dependencies in this paper. In another research
by Di Penta et al.[9], they analyzed license inconsistencies of
code siblings (a code clone that evolves in a different system than
the code from which it originates) between Linux, FreeBSD, and
OpenBSD, but they did not explain the reasons underlying these
inconsistencies. Wu et al. proposed an approach to find license
inconsistencies in similar files [24]. By investigating the revision
history of these files, they summarized the factors that caused
these license inconsistencies and tried to decide whether they are
legally safe or not. References [9] and [24] focused on the license
violations on the source file level and source code level, while
we focused on the package level. Alspaugh et al.[1] proposed
an approach for calculating conflicts between licenses in terms of
their conditions. Vendome et al. [21] performed a large empirical
study of Java applications and found that changing a license is
a common event and that there is a lack of traceability between
when and why the license of a system changes. Vendome et al.
performed a study on GitHub and found that developers adopting
a license may depend on various factors and they discovered the
lack of traceability of when and why licensing changes are made
and highlighted the need for better tools to support in guiding de-
velopers in choosing and changing licenses and in keeping track
of the rationale of license changes [20].

6.2 License Compliance

License compliance is an important area of research that draws
attention from many researchers. Zhang et al. have developed a
tool named LCheck that utilizes Google Code Search service to
check whether a local file exists in an OSS project and whether
the licenses are compatible [25]. German et al. proposed a tool
named Kenen that checks license compliance for Java compo-
nents that uses component identification, provenance discovery,
license identification, and licensing requirements analysis [6].
Van der Burg et al. proposed an approach that can uncover license
compliance inconsistencies by analyzing the Concrete Build De-
pendency Graph of a software system [19]. They proposed an ap-
proach to construct and analyze the Concrete Build Dependency
Graph of a software system by tracing system calls that occur at
build-time. Kapitsaki et al. proposed an approach of automating
license compliance with a process that examines the structure of
Software Packages Data Exchange [11]. Different from the above
works, we mainly focused on dependency-related license viola-
tions in OSS ecosystems. We utilize the meta-data of the pack-
ages to detect license violations, which is an important character-
istic of OSS ecosystems. Vendome et al. studied the rationale of
developers in choosing and changing licenses and investigated the
problem of traceability of license changes [22]. They provided a

© 2021 Information Processing Society of Japan

vision of ensuring license compliance of a system.

7. Conclusion

In this paper, we propose a method to detect dependency-
related license violations in OSS ecosystems, with which
we conduct an empirical study on npm to study the preva-
The result
suggests that only a few packages (0.644%) in npm have

lence of dependency-related license violations.

dependency-related license violations, but including
the packages licensed under copyleft licenses in the dependency
network still potentially causes a high dependency-related license
violation. We also conduct a preliminary questionnaire on the au-
thors of packages detected as having dependency-related license
violations, revealing the developers’ overlooking and misunder-
standing of the dependency-related license violations, the difficul-
ties in managing dependency-related license violations, and the
developers’ demands for help. Our work highlights the impor-
tance of the dependency-related license violation issue, and also
creates the possibility of studying dependency-related license vi-
olations in OSS ecosystems, which is overlooked by the software
engineering researchers.

In our future work, we plan to extend our study on dependency-
related license violations to other OSS ecosystems. Furthermore,
based on the results of the preliminary questionnaire, we also con-
sider a new large-scale developer survey as our future work. We
also plan to implement some tools to help developers in maintain-
ing licenses and managing license violations.

Acknowledgments This work was supported by JSPS KA-
KENHI Grant Number 18H04094.

References

[1] Alspaugh, T., Asuncion, H. and Scacchi, W.: Intellectual Property
Rights Requirements for Heterogeneously-Licensed Systems, Proc.
17th International Requirements Engineering Conference (RE2009),
pp-24-33 (2009).

[2] Bavota, G., Canfora, G., Di Penta, M., Oliveto, R. and Panichella, S.:
How the Apache community upgrades dependencies: An evolutionary
study, Empirical Software Engineering, Vol.20, No.5, pp.1275-1317
(2015).

[3] Boehm, B.W.: Improving Software Productivity, Computer, Vol.20,
No.9, pp.43-57 (1987).

[4] Decan, A., Mens, T. and Grosjean, P.: An empirical comparison of de-
pendency network evolution in seven software packaging ecosystems,
Empirical Software Engineering, Vol.24, No.1, pp.381-416 (2019).

[5] Di Penta, M., German, D.M., Guéhéneuc, Y.-G. and Antoniol, G.:
An Exploratory Study of the Evolution of Software Licensing, Proc.
32nd International Conference on Software Engineering (ICSE2010),
pp.145-154 (2010).

[6] German, D. and Di Penta, M.: A method for open source license com-
pliance of java applications, IEEE Software, Vol.29, No.3, pp.58-63
(2012).

[71 German, D.M., Manabe, Y. and Inoue, K.: A sentence-matching
method for automatic license identification of source code files, Proc.
25th International Conference on Automated Software Engineering
(ASE2010), pp.437-446 (2010).

[8] German, D., Di Penta, M. and Davies, J.: Understanding and Audit-
ing the Licensing of Open Source Software Distributions, Proc. 18th
International Conference on Program Comprehension (ICPC2010),
pp-84-93 (2010).

[9] German, D., Di Penta, M., Gueheneuc, Y.-G. and Antoniol, G.:
Code siblings: Technical and legal implications of copying code be-
tween applications, Proc. 6th Working Conference on Mining Software
Repositories (MSR2009), pp.81-90 (2009).

[10] Gobeille, R.: The FOSSology Project, Proc. 5th Working Conference
on Mining Software Repositories (MSR2008), pp.47-50 (2008).

[11] Kapitsaki, G.M., Kramer, F. and Tselikas, N.D.: Automating the li-
cense compatibility process in open source software with SPDX, Jour-

303

Journal of Information Processing Vol.29 296-304 (Apr. 2021)

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

P
.

nal of Systems and Software, Vol.131, pp.386—401 (2017).

Kikas, R., Gousios, G., Dumas, M. and Pfahl, D.: Structure and Evo-
lution of Package Dependency Networks, Proc. IEEE/ACM 14th In-
ternational Conference on Mining Software Repositories (MSR2017),
pp-102-112 (2017).

Kula, R.G., German, D.M., Ouni, A., Ishio, T. and Inoue, K.: Do de-
velopers update their library dependencies?, Empirical Software En-
gineering, Vol.23, No.1, pp.384-417 (2018).

Lungu, M., Lanza, M., Girba, T. and Robbes, R.: The small project
observatory: Visualizing software ecosystems, Science of Computer
Programming, Vol.75, No.4, pp.264-275 (2010).

Mcllroy, M.D., Buxton, J., Naur, P. and Randell, B.: Mass-produced
software components, Proc. st International Conference on Software
Engineering (ICSE1968), pp.88-98 (1968).

Qiu, S.: Empirical Studies on License Compliance and Copyright In-
consistency Risks in Open Source Software, Master’s thesis, Osaka
University, Japan (2018).

Standish, T.A.: An Essay on Software Reuse, IEEE Trans. Software
Engineering, Vol.SE-10, No.5, pp.494-497 (1984).

Tuunanen, T., Koskinen, J. and Karkkainen, T.: Automated software
license analysis, Automated Software Engineering, Vol.16, No.3-4,
pp-455-490 (2009).

Van der Burg, S., Dolstra, E., Mclntosh, S., Davies, J., German, D.M.
and Hemel, A.: Tracing software build processes to uncover license
compliance inconsistencies, Proc. 29th ACM/IEEE International Con-
ference on Automated Software Engineering (ASE2014), pp.731-742,
ACM (2014).

Vendome, C., Bavota, G., Di Penta, M., Linares-Vasquez, M.,
German, D. and Poshyvanyk, D.: License usage and changes: A large-
scale study on gitHub, Empirical Software Engineering, Vol.22, No.3,
pp.1537-1577 (2017).

Vendome, C., Linares-Vdsquez, M., Bavota, G., Di Penta, M.,
Germdn, D.M. and Poshyvanyk, D.: License Usage and Changes: A
Large-Scale Study of Java Projects on GitHub, Proc. 23rd IEEE Inter-
national Conference on Program Comprehension (ICPC2015) (2015).
Vendome, C. and Poshyvanyk, D.: Assisting developers with license
compliance, Proc. 38th International Conference on Software Engi-
neering Companion, pp.811-814, ACM (2016).

Wheeler, D.A.: The Free-Libre/Open Source Software (FLOSS) Li-
cense Slide (2017), available from (https://www.dwheeler.com/essays/
floss-license-slide.html).

Wu, Y., Manabe, Y., Kanda, T., German, D.M. and Inoue, K.: A
method to detect license inconsistencies in large-scale open source
projects, Proc. 12th Working Conference on Mining Software Reposi-
tories (MSR2015), pp.324-333 (2015).

Zhang, H., Shi, B. and Zhang, L.: Automatic checking of license com-
pliance, Proc. 2010 IEEE International Conference on Software Main-
tenance (ICSM2010), pp.1-3, IEEE (2010).

Shi Qiu received his B.E. degree of soft-

ware engineering from Jilin University in

2013 and his M.E. degree of information

' science and technology from Osaka Uni-
—— _! versity in 2017. At present, he is a Ph.D.
N student in the Graduate School of Infor-
‘\- mation Science and Technology at Osaka

University. His research interests include

mining software repositories, software license/copyright analysis,

and software ecosystem.

Daniel M. German is Professor in the
Department of Computer Science at the
University of Victoria, where he does re-
search in the areas of mining software
repositories, open source software ecosys-
tems and the impact of intellectual prop-
erty in software engineering.

© 2021 Information Processing Society of Japan

Katsuro Inoue received his Ph.D. from
Osaka University in 1984. He was an
associate professor of the University of
Hawaii at Manoa from 1984 to 1986.
After becoming an assistant professor of
Osaka University in 1986, he has been
a professor since 1995. His research in-
terests include software engineering, es-

pecially software maintenance, software reuse, empirical ap-
proach, program analysis, code clone detection, and software li-
cense/copyright analysis.

304

