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ABSTRACT While compiling a native application, different compiler flags or optimization levels can
be configured. This choice depends on the different requirements. For example, if the application binary
is intended for final release, the flags and optimization settings should be set for execution speed and
efficiency. Alternatively, if the application is to be used for debugging purposes, debug flags should be
configured accordingly, usually involving minor or no code optimization. However, this information cannot
be easily extracted from a compiled binary. Nonetheless, ensuring the same compiler and compilation flags
is particularly important when comparing different binary files, to avoid inaccurate or unreliable analyses.
Unfortunately, to understand which flags and optimizations have been used, a deep knowledge of the target
architecture and the compiler used is required. In this study, we present two deep learning models used to
detect both compiler and optimization level in a compiled binary. The optimization levels we study are O0,
O1, O2, O3, and Os in the x86_64, AArch64, RISC-V, SPARC, PowerPC, MIPS, and ARM architectures.
In addition, for the x86_64 and AArch64 architectures, we also determine whether the compiler is GCC
or Clang. We created a dataset of more than 76000 binaries and used it for training. Our experiments
showed over 99.99% accuracy in detecting the compiler flags and between 92% to 98%, depending on
the architecture, in detecting the optimization level. Furthermore, we analyzed the change in accuracy when
the amount of data was extremely limited. Our study shows that it is possible to accurately detect both
compiler flag settings and optimization levels with function-level granularity.

INDEX TERMS Compilers, Deep Learning, Static Code Analysis, Reverse Engineering

I. INTRODUCTION

During the software development life-cycle of a natively
compiled application, the process of converting source code
to binary code performed by a compiler occurs frequently.
During this transformation, the compiler is passed several
flags via the “build” commands and settings contained within
a Makefile or equivalent. This informs the compiler of the
developer’s intent to retain or omit some information or to
modify the original code in an optimized version.

These flags can be used to optimize faster executions,
smaller sizes, and lower energy consumption [1]. However,
the flags are not explicitly recorded in the binary itself, as
they are completely unnecessary for the machine to execute
the binary code.

Moreover, the compiler itself is not easily identifiable.

There is no standard way to record this information, and
although some compilers write a comment in the binary
itself, it is easily skipped or duplicated and not guaranteed
to be parsable. For example, if a file compiled with the
Clang compiler is linked with a library compiled with GNU
compiler collection (GCC), this comment will contain both
signatures.

However, this information is extremely valuable for var-
ious applications, such as categorizing an older build, find-
ing vulnerabilities [2], finding similarities in binaries [3],
or providing accurate bug reports in case the compilation
environment cannot be controlled [4]. A simple example of
the latter case could be a library that has incompatibilities
only with a specific compiler, in a product published by a
different vendor than the library developer. Pallister et al.
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have shown that different optimization options can have a
significant impact on final energy consumption [5]. The use
of precompiled libraries could be problematic in embedded
applications where energy consumption is a concern.

Knowing the compilation flags could even be helpful when
performing binary analysis. In their work, Pewny et al. re-
ported that applying their analysis to different compilation
flags significantly affects accuracy [6]. In this case, our
work will help to provide confidence in the analysis results,
because the differences between the optimization levels of
O2 and O3 are much less pronounced than those of O0 and
O3.

Although there are several papers on detecting the com-
piler [4] and toolchain [7] used, these methods do not rely
on automatic learning approaches. Therefore, a significant
effort is required to detect the above information in different
architectures. The new architecture must be studied and un-
derstood to check if and how the information can be retrieved.
In contrast, with a machine learning-based approach, it is suf-
ficient to provide new data and re-run the training to detect a
new compiler or flag. With the automated dataset generation
provided in our work, the time required to generate this data
is a couple of hours for each optimization level that we want
to classify.

In this study, we present our approach for recognizing
both compiler and optimization levels using a long-short term
memory network (LSTM) [8] and a convolutional neural net-
work (CNN) [9] within different architectures. We analyzed
common optimization levels on Linux binaries, compiled
with either GCC or Clang in two different architectures, and
with GCC only in seven different architectures. We want
to identify optimization levels ranging from non-optimized
code (O0), code that is optimized for speed with different
levels of aggressiveness (O1, O2, O3) or code optimized
for small binary size (Os). Although we are not the first to
tackle this problem [10], the novelty of our research can be
summarized as follows:

• The creation of a huge dataset with automated replica-
tion scripts consisting of 76630 compiled files. These
files come from seven different CPU architectures and
two different compilers, with a combined total of 123
GB of stripped binary data.

• The implementation and tuning of a neural network
structure that outperforms existing work in flag detec-
tion.

• An analysis that examines the minimum possible num-
ber of raw bytes that are required to obtain accurate
predictions.

This study is an extended version of our previous
work [11]. The main differences between our previous study
and the current study are as follows.

• The number of optimization levels test was increased
from {O0, O2} to {O0, O1, O2, O3, Os}.

• The number of architectures tested have increased from
{x86_64} to {x86_64, AArch64, RISC-V, SPARC,

PowerPC, MIPS, ARM32}. These additional architec-
tures require a completely different cross-compilation
approach for generating the dataset, as described in
Section IV-A. We also made considerable efforts to
automate the generation of the dataset. In our previous
work, compilation was a manual task, while now we
provide several scripts to automate the process. The
main advantage of this automated approach is the ability
to generate a different dataset with different compilation
flags without the user having to do anything. Although
this does not work for additional architectures, it still
provides an effortless way to generate the dataset with
additional flags.

• The evaluation has been completely reworked, con-
sidering the expanded category set. Moreover, in this
extended version, we tested the feasibility of our study
in a scenario with function-level granularity. We also
examined the distribution of flags in the Ubuntu and
MacOS operating systems.

The rest of our paper proceeds as follows. Section II
presents the motivation for our work. Section III discusses
related work in the field of binary file analysis with ma-
chine learning. Section IV presents the problem and our
approach and Section V presents the empirical evaluation.
Section VI compares our choices with another similar work
in the field and discusses them in terms of the results ob-
tained. Section VII describes the limitations of our study and
Section VIII concludes the paper. In addition, Section IX
provides instructions to download our dataset and source
code.

II. MOTIVATION
After briefly introducing the motivation behind our work
in Section I, we provide an example of the reasons behind
our work in this section. Although there are several reverse
engineering tools such as IDA1 or Ghidra2, these usually
do not detect the flags used during compilation or at link
time. This is because a user is interested in extracting and
collecting information from single binary files as part of
reverse engineering. In this case, the compilation flags are
of little to no interest, as the main goal is to understand the
behavior of a particular program.

In contrast, the decompilation scenario is slightly more
interesting. According to Katz et al. [12], the presence of op-
timizations reduces the success rate in correctly decompiling
an executable. Moreover, their results are based on recurrent
neural networks (RNNs), so we expect traditional approaches
with hand-crafted rules to be more susceptible to underlying
optimizations. With a higher level of optimization, we expect
the decompiler to output a higher amount of goto state-
ments. If this is the case, knowing the optimization flags may
give an indication of the expected accuracy of a decompiler,

1https://hex-rays.com/
2https://ghidra-sre.org/
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knowing that a heavily optimized code may decompile into
source code that is more difficult to analyze

Nevertheless, the focus of our study was on code analysis.
When comparing multiple binaries, knowledge of the com-
pilation flags becomes much more useful, almost mandatory.
As reported in Section I, Pewny et al. in their analysis of
cross-architectural binary code devoted an entire research
question investigating the presence of false/true positives at
different optimization levels [6]. Ultimately, they concluded
that comparing non-optimized to optimized code results in
significantly lower accuracy. In our internal study, we came to
a similar conclusion. Comparing control flow graphs (CFGs)
of functions, even within the same architecture but with
different compilers or optimization flags, is dominated by
false positives. The impact is so great that the comparison is
usually impractical when dealing with different compilers or
O0 versus O2, where it is perfectly fine when comparing O1
with O2 or O3. Thus, performing analyses or comparisons
between binaries may lead to results that are either good
or completely unusable, depending only on the compilation
flags used. These two contrasting results have led us to look
for a way to detect in advance the presence of optimizations.
This is a way to determine whether a comparison or analysis
between binaries is feasible, and if the results will be reliable.

In our previous study, we focused only on the pres-
ence/absence of optimizations, the most influential factor
in determining a poor comparison between two binaries. In
this extended version, we also tried to detect the degree of
optimization. In fact, we can expect a lesser loss of accuracy
when comparing, for example, an O1 optimized code to an
O3 optimized code.

III. PREVIOUS WORKS
Binary file analysis is widely used in the field of security.
Recently, machine learning techniques have been used to
aid malware detection. Pascanu et al. used recurrent neural
networks (RNNs) [13] to extract malicious features from
a binary file in an unsupervised manner, which was ex-
tended with convolutional neural networks by Athiwaratkun
et al. [14].

Related works dealing with compiler flags, instead, fo-
cuses on the effects of these flags rather than their detection.
Work performed by Triantafyllis et al. focused on exploring
optimal compiler flags [15] as did the work of Hoste et al.
[1]. In recent years, several machine learning-based tech-
niques have been developed [16] [17]. Older techniques focus
on the use of machine learning to reduce the number of iter-
ative compilations required to obtain a good set of flags [18]
and to help approximate NP-hard problem efficiently, like
phase ordering [19]. Instead, more recent techniques use deep
learning to detect function boundaries, a work by Bao et
al. [20], which was then extended by Shin et al. [21]. Chua et
al. instead detected function types using RNNs [22] whereas
He et al. attempted to recover the debug symbols from a
stripped binary [23].

To the best of our knowledge, the only work attempting to

detect flags in an existing binary, rather than optimizing them,
is that of Chen et al. [10]. The main differences between their
study and our work are as follows:

• We investigate the detection of not only flags but also
compilers.

• We investigate the detection in seven different architec-
tures instead of only one.

• Our analysis aims not only to maximize the accuracy but
also to minimize the required input.

• Our dataset is more than 100 times larger [24], disprov-
ing some claims of previous research.

IV. APPROACH
The problem we are trying to solve is to identify the optimiza-
tion level and possibly the original compiler used to compile
from source code to binary code, when only a portion of the
binary code is available. Specifically, given a sequence of
bytes v of arbitrary length coming from a binary, we want
to train a classifying functionMflags capable of predicting
the compilation flags and a classifying function Mcompiler

predicting the compiler used.
With Mflags, we try to classify the optimization level

used in the input binary. In our study, we target the com-
monly used optimization levels {O0, O1, O2, O3, Os} 3. We
trained differentMflags for each of the seven architectures
we studied, namely x86_64, AArch64, ARM32, MIPS,
PowerPC, RISC-V, and SPARC, and expect a user to select
the prediction model according to the input architecture. The
architecture of a binary is easily recognizable by tools such as
file, so this fact is not a limitation and simplifies training.

Similarly, with Mcompiler we classify the compiler be-
tween gcc and clang, which means that the compiler
analysis is a binary classification. This is done only for
the natively generated architectures, such as x86_64 and
AArch64, for reasons explained in Section IV-A2. Thus, we
have trained two differentMcompiler.

Our goal is not only to maximize accuracy, but also to
keep the sequence of bytes v as small as possible; as such,
we dedicate Section Section IV-B to explain how the binary
code is transformed into v (or several vs), the input expected
by our learning network. To compare the performance of
different models, we trained all the aforementioned config-
urations using a feed-forward Convolutional Neural Network
MCNN and a Long-Short Term Memory NetworkMLSTM ,
producing in total 7MCNN

flags , 7MLSTM
flags , 2MCNN

compiler and 2
MLSTM

compiler. These networks are trained in several different
datasets, explained in detail in Section IV-A, and their pre-
diction results are compared.

More details about the network models can be found in
Section IV-D.

A. DATASET
To train our networks, we must first collect the data. Our
networks perform supervised learning, so it is necessary to

3Note that some applications might use additional “hand-picked” flags.
This limitation is discussed in Section VII
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Source A gcc -O0

Source B gcc -O2

A.o

libB.a

Linker a.out

FIGURE 1. Linking an executable may include binary data compiled with
different flags

partition the binary code by optimization level and compiler
used.

Although this task may seem trivial, as there are plenty
of open-source software programs that can be compiled with
the desired flags, several precautions are required during the
linking phase. This is because although we can choose both
the optimization level and compilers, we have no guarantees
about the environment that performs the compilation. There
are several libraries available to be statically linked, and we
know nothing about the compilation settings used for these
libraries. This problem is highlighted in Figure 1.

When a library is statically linked, its binary code is copied
inside the final executable during the linking phase. As such,
in most build systems, pre-existing libraries could be linked
while generating the dataset. In Figure 1, this is shown in the
Source B path, where, a source originally compiled with an
optimization level of O2 is linked within the same binary with
an optimization level of O0. This implies that these libraries
could irreversibly contaminate our build, because we lack
information about their creation.

Possible options for solving this problem would be:
1) Use a dataset composed of object files prior to linking.
2) Edit the build script for the generated binary to exclude

static linking.
3) Cross-compile from a different architecture.
4) Create a system with only shared libraries. Then use

this system to build the dataset.
In our study, we chose options 3 and 4 for the following

reasons: Option number 1 would not provide a realistic case
study, as several optimizations can also be performed at link
time [25]. Option 2, could be “too risky” as it involves
manually checking various compilation settings written in
different languages and styles in order to ensure dynamic
linking and has an high risk of error. For example, in our
experiments, we found that some build scripts use hard-
coded parameters, others use environment variables, and oth-
ers recursively integrate files. Checking, understanding, and
modifying all these build scripts correctly is entirely possible
but carries a high risk of error. Option 3 solves the linking
problem. The compiler cannot statically link binary code for
different architectures. This ensures that every link action
uses the object files generated by us. However, the drawback
is that the build architecture and the target architecture must
be different. If this is not the case, the build tools would
probably prefer linking libraries in default paths, increasing
the likelihood of linking external files. Option 4 requires
the build architecture and the target architecture to match.
We want to use a system without static libraries as build

environment, which means that we need to run this system
natively.

Following the dualism of option numbers 3 and 4 regarding
native compilation and cross compilation, we can take two
different approaches depending on the target architecture.
The final dataset is publicly available on Zenodo at the
following link [24].

1) Dataset: Native compilation
The dataset we use for the native compilation contains all
software listed in the Linux from Scratch book4, version
9.1-systemd, published on March 1, 2020. In addition, we
added to every dataset the LLVM suite version 10.0.0, which
is required for building Clang5. To solve the static linking
problem within a native build system we performed the
following steps:

1) We built a toolchain with no particular compiler and
optimization level from the host machine. We ensured
that only shared libraries were built in this toolchain.

2) We created a chrooted environment containing only the
toolchain to isolate it from the original build system.

3) We built the actual dataset, with the desired compiler
and optimization level.

After building all software binaries, we then strip and use
each ELF file.

2) Dataset: Cross compilation
The cross-compilation approach we use is based on the pres-
ence of readily available toolchains in the Ubuntu Package
repository6. For the following study, we need the gcc, g++
and binutils packages for each architecture we want to target.
For cross-compiled architectures, we did not build a Clang
dataset and limit our analysis to GCC only.

Unlike the native compilation presented in Subsec-
tion IV-A1, chrooting is not needed because the linker is not
capable of linking different binaries of different architectures.
Moreover, the lack of chrooting means that we can fully
automate the entire building process, which normally ends
with the execution of the chroot command. Pointers to the
script used to perform this automated building can be found
in Section IX.

However, not all software used in the native building sup-
ports cross-compiling. Despite heavily editing most scripts,
some software, such as Perl, fails to cross-compile. For this
reason, when cross-compiling, we use a slightly different
dataset and limit our study to the GCC compiler. This new
dataset comprises all the software from LFS that supports
cross-compilation as well as some software coming from Be-
yond Linux from Scratch7. Due to space limitations, we can-
not list every piece of software used in this building process.
For a comprehensive list see the resources/scripts
folder in the repository listed in Section IX.

4http://www.linuxfromscratch.org/lfs/index.html
5https://releases.llvm.org/10.0.0/
6https://packages.ubuntu.com
7http://www.linuxfromscratch.org/blfs/index.html

4 VOLUME 4, 2016

http://www.linuxfromscratch.org/lfs/index.html
https://releases.llvm.org/10.0.0/
https://packages.ubuntu.com
http://www.linuxfromscratch.org/blfs/index.html


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132950, IEEE Access

As with native compilation, each ELF file generated is
stripped and used in the dataset.

B. PREPROCESSING
In this section, we explain the additional preprocessing be-
fore the input vector is fed into the networks. In the evalua-
tion, we prove that advanced encoding is unnecessary, but we
report it here anyway because previous research has used it.

The goal of this preprocessing is to transform a binary file,
usually composed of a sequence of data and instructions, into
one or more input vectors for the automated learning step. We
are naturally interested in correctly classifying the smallest
possible input, with the finest grain being the function grain.
We compare two approaches: one using a stream of bytes
without prior knowledge of the underlying data and one
that requires disassembly and precise function boundaries.
The effectiveness of these two approaches is analyzed in
Section V-C.

The first approach, referred to as “raw bytes” throughout
the paper, has been shown to be effective for learning func-
tions boundaries in previous research [20].

To generate this representation, we use readelf to dump
the .text section of the executable and divide it into fixed-
size chunks. We chose a-priori 2048 bytes as the maximum
size of this chunk of bytes v. However, we also evaluated
the precision of the networks in detecting the compilation
settings for these chunks as their size varied, in order to
simulate a case where we want to detect the optimization of
a single function.

One drawback of this representation is that we do not
know whether the raw data represents instructions or stack
data. In contrast, if we want to classify an entire executable,
disassembly is not required, a step that usually requires
several minutes. Even when we want to classify at function
granularity, based on the research of Bao et al. [20], we
can extract function boundaries and perform classification
without disassembling the executable, which is not only slow,
but is also inherently difficult and prone to error in some
architectures [26].

In the second representation, the one that requires disas-
sembly, radare28, is used to extract each function from the
executable. The results are shown in Figure 2.

In the figure, the left column represents the raw bytes
written in the binary and the right column their translations in
Intel Assembly syntax. The example is taken from x86_64
disassembled code. We can see many bytes specifying that
the registers to be used should have a length of 64 bits,
represented by the red bytes in figure, preceding every
instruction involving rax, rsi, rsp registers. This is a
problem, because real functions can be of arbitrary length,
but our networks support fixed-length vectors as input. We
expect these extra bytes to contribute almost nothing to the
final result and thus decide to remove them and keep only the
byte(s) representing the operations to be performed, without

8https://rada.re/

4889442418  mov qword [rsp+0x18], rax
31C0        xor eax, eax
4885FF      test rdi, rdi
7423        je 0x25
488B4208    mov rax, qword [rdx+0x8]
48893424    mov qword [rsp], rsi
4889E6      mov rsi, rsp
4889442408  mov qword [rsp+0x8], rax
488B02      mov rax, qword [rdx]
4889442410  mov qword [rsp+0x10], rax
E85A0E0000  call 0xE5F
4885C0      test rax, rax
0F95C0      setne al

FIGURE 2. Portion of a disassembled function

parameters. Unlike the previous research, we also remove the
operands in our representation, in order to save more space
and accomodate even more “valuable” instructions inside the
limited length vector [10]. Finally, only the blue bytes in
Figure 2 were encoded in our representation. Extra data are
pre-truncated, because we expect the most useful operations
are at the end of a function and not at the beginning, which
contains the initialization. Insufficiently long functions are
pre-padded with zeroes, as pre-padding has been proved to
be better for LSTMs [27]. From now on, we will refer to this
representation as “encoded”.

In both representations, we feed our data to the
networks as a time series, where each point in time
is actually a byte of data from the binary file.
For example, the first two instructions of Figure 2
would have this vector in the raw byte approach:
[0x48,0x89,0x44,0x24,0x18,0x31,0xC0]. In
the encoded representation instead they would be
[0x89,0x31].

C. PADDING
For the encoded representation presented in Section IV-B, the
input vector length is equal to the function length. This makes
it necessary to pad the data, as the function length is always
different. However, the raw data approach, requires a fixed
amount of sequential data from the binary. As any data in any
part of the .text binary section can be used as an input, in
principle, no padding is strictly required.

However, we determined that by always providing un-
padded vectors, both CNN and LSTM are unable to deal
with padded data during evaluation. The experimental data in
Section V-D shows that when training with unpadded inputs,
the inference of a vector padded with zeroes by more than
60% of its length results in a 10% accuracy drop. This can
be detrimental in a real case, as it would be necessary to train
different models for different input sizes if we want to infer a
smaller amount of data or just a portion of the executable.

To solve this problem, we truncate a random number of
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f0 25 14 de af 8c 85 c3    00 f0 25 14 de af 8c 85  
85 bf 5b cf e0 f2 63 0b    00 00 00 00 85 bf 5b cf 
92 af 97 0b 06 84 1d 5d    00 00 00 92 af 97 0b 06 
e3 14 bc ac a8 de 21 e7    00 00 00 00 00 00 e3 14 
73 11 27 9a ff 4f d9 73    00 00 00 00 00 73 11 27 
03 d6 ce de 8b 0d af 46    00 00 03 d6 ce de 8b 0d 
74 37 35 f2 49 c3 e5 69    00 00 00 74 37 35 f2 49 
8c 47 4a 57 d2 cf 7e 46    00 8c 47 4a 57 d2 cf 7e 
 

FIGURE 3. Truncation of input sequences on the left and subsequent padding
on the right. The amount of truncated bytes in this Figure is symbolic

bytes in the interval [0, α] where

α = len(v)− 32

The value 32 has been chosen so that the input chunk v to
be still classifiable: if we pad too much, we might get chunks
where the classification is impossible due to lack of enough
information. This number is also extremely conservative:
consider that in x86_64, for example, just calling an imported
function requires at least 11 bytes of data, and translates to a
single opcode.

The random amount is defined by an exponential distri-
bution. Our intention is to use a distribution where 99% of
the values fall within the above interval, while clamping the
outliers to 32. In this case, the network would predominately
receive low-padded vectors, while occasionally encountering
a mostly-padded vector. With the exponential cumulative
distribution function as y = 1− e−λx we fix y to 0.99 and x
to α to obtain:

λ =
2 ln 10

α

We then use this λ in the exponential distribution generating
the random number of bytes that should be truncated for
each input. After truncating the input, we prepad it by adding
zeroes.

An example of this can be seen in Figure 3, where each line
represents an input sequence before padding on the left block
and after padding on the right block. The red part represents
the amount of input data that will be truncated. The length
of this part is decided randomly within the interval bounds
previously mentioned. On the right block we can see that the
same amount is replaced by prepending zeroes.

Evaluation of this padding is provided in Section V-D.

D. NETWORKS
For our analysis, we used two different networks: a LSTM [8]
and a feed-forward CNN [9]. These networks have been
chosen due to their successful applications in natural lan-
guage processing or image recognition. In fact, we model
our optimization recognition problem as a pattern recognition
problem: a particular optimization can be recognized by a
network as a pattern of opcodes in the input sequence of
bytes.

The first model is shown in Figure 4. This model depicts
a simple LSTM, given that we encoded our sequence of

Embeddings

LSTM

Dense

out=128

n=256

n=#classes

[0x89, 0x31, 0x85, 0x74, ...]
[0x89, 0xE8, 0x89, 0x89, ...]
...

[0.96, 0.0, 0.04, 0.0]

Softmax

Tanh

FIGURE 4. LSTM model structure

bytes as a time series and the ability of LSTMs to perform
well on this type of problem. LSTMs, in fact, have special
“memory” cells, that allows them to memorize a particular
input or pattern even in long sequences [8]. Our core idea
is to train this kind of model into memorizing a particular
pattern, representing the compiler or the optimization level,
over a long sequence of bytes belonging to the binary.

As we can see from the figure the model is pretty straight-
forward. It is composed of an embedding layer with 256
as vocabulary size (because we use bytes in range 0x0 to
0xFF) and 128 as dimension for the dense embedding. This
layer encodes positive integers into a dense vector of fixed
size, understandable by the LSTM. Then, the LSTM layer
with 256 units is used for the actual learning. This layer
uses a hyperbolic tangent (tanh) as the activation function.
The kernel is initialized by drawing samples from a uniform
distribution in [−64− 1

2 , 64−
1
2 ]. The last part of the network

is a dense layer with 1 output and Sigmoid activation for
the binary case, dense layer with 5 outputs and Softmax
activation for the multiclass case. The optimizer is Adam [28]
with learning rate of 10−3.

The second model, is based on the trend in image recogni-
tion and categorization [29] and is based on a convolutional
neural network. The idea is that a series of convolutions
is used to extract highly dimensional information from the
sequence of raw bytes passed as input. The Structure is
shown in Figure 5.

The first layer is identical to that of the LSTM version,
because its utility is the same. Then, three blocks of con-
volution, convolution, and pooling, with increasing number
of filters, were used. In the Figure, the label k3n32s1 for a
convolutional layer indicates a kernel size of 3, a number of
filters of 32, and a stride of 1. In these blocks, the convolu-
tions are used to extract features from the sequence of bytes,
and the pooling is used to make these features independent of
their position in the sequence.
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FIGURE 5. CNN model structure

The leaky ReLU [30] is used in place of the ReLU [31],
because the latter suffers from the vanishing gradient prob-
lem. Although the ReLU function returns 0 for values less
than 0, the leaky variant returns an ε, in our case 0.01, to
keep the neuron alive. Before output, the final fully connected
layer composed of 1024 neurons is used, followed by a
ReLU activation and the canonical dense and sigmoid for
binary classification or dense and softmax for multiclass
classification. Also in this case the optimizer is Adam with
learning rate of 10−3.

All the models use binary cross-entropy as loss function
for the binary classification and categorical cross-entropy for
the multiclass classification [32].

The presented hyperparameters of both the LSTM and the
CNN were estimated using the Hyperband algorithm [33].
We used powers of two as space search in the interval
[32, 1024] for most features, except kernel size and strides.
For the kernel size, the space search was the set {3, 5, 7}.
Instead, for the stride, the space search was {1, 2}.

V. EVALUATION
We performed experiments using an Nvidia Quadro
RTX5000 on the data presented in Section IV-A after the
preprocessing explained in Section IV-B. However, given the
high amount of binary data, we obtained a number of input
vectors in the order of millions. Thus, we could safely split
the data into disjointed sets, while maintaining a high number
of samples for each set. Thus, we set training, validation, and
testing with split ratios of 50%, 25% and 25% respectively.

No augmentation was performed and no overlapping se-
quences were collected, with each sample being absolutely
unique between training validation and testing. Duplicate
samples were removed from each set. These are common
especially in the opcode-encoded datasets. Training was per-
formed for 40 epochs using a batch size of 512 samples. An
early stopper was employed, which stopped the learning after
three epochs if the loss function in the validation dataset did
not improve by at least a factor 10−3. In total, we trained 36
models in approximately 550h.

In this section we want to answer the following research
questions:

• RQaccuracy: Is it better to use a CNN or a LSTM? What
results can be expected from each network?

• RQmin: What is the minimum number of bytes required
to have accurate predictions?

• RQencoding: Does extracting data with a disassembler
increase the accuracy of the predictions?

• RQpad: Does padding during training improve the per-
formance of the networks?

• RQoccurrence: What are the most common optimization
levels in real-case distributions?

RQaccuracy aims to investigate the advantages and dis-
advantages of using one network over the other for both
compiler detection and optimization level detection. This
question is then expanded in RQmin to investigate how
much the input size can be reduced while still maintaining
a sufficiently high accuracy. RQencoding was investigated to
explain our choice of training with raw data. In particular,
this contradicts the claim of previous work conducted by us
and Chen et al. [10]. RQpad, instead, serves the purpose of
justifying why in Section IV-C, we claim that padding is
necessary while training with raw data. Finally, RQoccurrence
concludes our study by running our models in real-case code
to obtain statistics about the most used flags, proving the
assumption of O2 being the most popular flag as not always
correct.

A. ACCURACY
To evaluate the accuracy of both the CNN and LSTM we
divided our dataset by architecture. The number of samples
we used for each architecture is listed in Table 1. It should
be noted that in the worst case we trained with at least 106

samples and tested on at least 6 · 105 samples.

Dataset Training Testing

Dx86_64 2.4 · 106 1.2 · 106
Daarch64 2.3 · 106 1.1 · 106
Driscv64 1.3 · 106 7.0 · 105
Dsparc64 1.9 · 106 9.8 · 105
Dpowerpc 2.0 · 106 1.1 · 106
Dmips 1.6 · 106 8.2 · 105
Darm 1.2 · 106 6.2 · 105

TABLE 1. Number of training and testing samples for each architecture. Each
sample is composed of 2048 bytes

The number of features for each sample are 2048 se-
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FIGURE 6. Accuracy obtained in the validation dataset at the end of each
training epoch.

quential bytes from the specified architecture, categorized
by optimization level. In addition, x86_64 and AArch64
contains samples compiled with both GCC and Clang. We
trained a CNN and a LSTM model for each dataset and ob-
tained the results shown in Table 2 regarding the optimization
level detection. Note that all results were obtained with raw
encoding and padded data unless otherwise stated.

Architecture CNN Accuracy LSTM Accuracy

x86_64 0.8781 0.9291
AArch64 0.9181 0.9687
RISC-V 0.8427 0.9209
SPARC 0.9364 0.9682
PowerPC 0.8702 0.9227
MIPS 0.9596 0.9837
ARM 0.9380 0.9588

TABLE 2. Accuracy for each architecture while detecting the optimization level

This table represents the categorical accuracy achieved
while performing supervised evaluation of our trained mod-
els in the testing data. Being the accuracy a metric defined
for binary classification, every time we use this term in a
multiclass context, we refer to the following formula:

accuracy =

∑k
i

tpi+tni

tpi+tni+fpi+fni

k

where tp, tn, fp, fn are true positives, true negatives, false
positives, false negatives and k is the number of classes.

We can note how that the LSTM is always better than the
CNN, with the worst accuracy being recorded for x86_64,
RISC-V, and PowerPC in both networks. However, the
downside of using the LSTM is its extensive training time.
We can see this in Figure 6.

The figure shows the times obtained from the MIPS
dataset, one of the datasets with the fastest training times
owing to its size. It takes approximately seven epochs for
the LSTM to reach the same accuracy as the CNN at the

end of the first epoch. In addition, the CNN can complete
10 epochs in the time the LSTM is able to complete only
3. We measured similar speeds also during inference, with
a CNN two to three times faster than the LSTM. This is not
limited to the single architecture we presented in Figure 6. As
we can see in Table 3, it applies to any architecture, with the
worst case being x86_64 having an LSTM requiring more
than five times the corresponding CNN training time. Note,
however, that these times were collected only once. As such,
variations, even significant ones, are expected.

Architecture CNN Time LSTM Time

x86_64 361 min 1845 min
AArch64 298 min 1764 min
RISC-V 220 min 1034 min
SPARC 346 min 1397 min
PowerPC 398 min 1379 min
MIPS 257 min 1362 min
ARM 407 min 629 min

TABLE 3. Training time, in minutes, required for each network and
architecture.

To further investigate the accuracy, Figure 7 shows all the
confusion matrices for each model trained with the CNN.

The problematic part, as seen from the Figure, is the
distinction between O2 and O3. In fact, O0 and O1 can be
detected with 99% accuracy in any architecture and Os is
never below 96%. O3, however, in the worst case has more
wrong classifications than correct ones, as we can see in
PowerPC and RISC-V.

This situation is slightly better when an LSTM is used. The
results are shown in Figure 8

In this Figure, we can see how the LSTM achieves high
accuracy in some architectures, namely AArch64, SPARC,
MIPS, and ARM. The architectures problematic for the CNN
remain problematic also for the LSTM, but to a much lesser
extent. In fact, no optimization level reports more wrong
classification than correct ones, and the worst case is a 70%
accuracy for PowerPC O2.

To mitigate this problem, we trained two additional
datasets: Dmerged and Dsplitted: the first containing all op-
timization flags but with O2 and O3 merged together, the
second containing only O2 and O3.

Figure 9 reports this split dataset situation. We can no-
tice how the CNN network performs slightly better after
separating O2 and O3 from the rest of the dataset, whereas
the LSTM performs slightly worse compared to the results
without separation.

Concerning the compiler detection, results are reported in
Table 4.

The table shows how both networks in both architectures
perform excellently. Even in the x86_64 with CNN case,
that performed quite poorly in the optimization detection,
the incorrect classifications were 587 compared to 1225822
correct classifications. Given the high accuracy of the CNN
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FIGURE 7. Confusion matrices while detecting optimization level for each architecture. Results obtained with the CNN.
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FIGURE 8. Confusion matrices while detecting optimization level for each architecture. Results obtained with the LSTM.
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Architecture CNN Acc. LSTM Acc.

x86_64 0.9995 0.9932
AArch64 0.9996 0.9996

TABLE 4. Accuracy for each architecture while detecting the compiler

and its faster speed compared to an LSTM, it should be the
preferred choice for compiler detection.

We can thus answer RQaccuracy as follows:

While detecting the optimization level, the LSTM can
offer higher accuracy at the price of slower train and
inference. The accuracy range from a minimum of 92%
to a maximum of 98% depending on the architecture.
While detecting the compiler, however, both networks
perform well. In this case the CNN is the preferred
choice due to its speed advantage and an accuracy of
99.95%.

B. MINIMUM BYTES
This section investigates the possibility of detecting the op-
timization level and compiler with function granularity. To
this end, we performed our evaluation for each model while
feeding a progressively increasing number of bytes. We thus
performed the initial evaluation with only 1 byte for each
sample; then, we performed a second evaluation with 2 bytes
and so on until we used the full vector length of 2048 bytes.

Figure 10 shows the results obtained using the CNN net-
work. Figure 11, shows the same results but with the LSTM
network.

Note that every architecture follows the same detection
trend in the LSTM network. In the CNN one, however,
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FIGURE 10. Accuracy for the CNN in the optimization detection.
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FIGURE 11. Accuracy for the LSTM in the optimization detection.

the accuracy for x86_64, PowerPC, and RISC-V stops
increasing, unlike in the other architectures. These three
architectures are the same architecture we classified as “prob-
lematic" in Section V-A. In addition, this does not happen for
the LSTM network. We can assume the CNN failed to learn
how to properly recognize O2 and O3 in these architectures,
given the strong similarity between these two optimization
levels. As such, additional bytes do not help the network at
all, in contrast to the LSTM case.

Additionally, we can note how, with any number of bytes,
the LSTM performs definitely better than the CNN.

To highlight this, Figure 12 shows a direct comparison
between LSTM and CNN in a single architecture, x86_64.
This figure, shows how there is always approximately 5%
more accuracy in the predictions of an LSTM compared to
the predictions of a CNN.

Having analyzed how the overall accuracy varies when the
input length changes, we now want to check whether the
average function length is sufficient to achieve good accu-
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racy. To do this, however, we need to gather statistical data
on binary files. The idea is to calculate the average function
length at each optimization level and check the accuracy of
the network for that particular level at that particular length.

We disassembled every binary for every optimization level
and compiler and counted the number of bytes that compose
each function. The results are shown in Figure 13.

The reported number is the median, calculated over 47·106
functions across all architectures. We chose to show this
average metric, as opposed to the mean, as we want to draw
conclusions based on the “typical" function length. This is
also a much more conservative approach, given that the mean
is influenced by some outliers with a very high number
of bytes, on the order of 106. Although Figure 13 shows
the medians for all the architectures together, more precise
results for each architecture are reported in Table 5.

At this point, we calculated the accuracy for each of the
listed medians. Figure 10 and 11 show the overall accuracy

Arch. O0 O1 O2 O3 Os

x86_64 65 223 220 257 125
AArch64 68 232 220 260 132
RISC-V 84 160 166 218 113
SPARC 104 192 220 268 132
PowerPC 136 224 264 292 148
MIPS 184 276 284 376 188
ARM 72 188 174 232 106

TABLE 5. Median number of bytes per function for each optimization level in
each architecture. Results collected over a total of 47 · 106 functions.

of correctly predicting each optimization level. Instead, we
want to consider the accuracy of predicting each optimization
level at its own statistical median, that represents the typical
length of a function at that optimization level. As an example,
for architecture x86_64 we evaluate the accuracy for O0
with an input of 65 bytes, for O1 with an input of 223 bytes.
Table 6 shows the accuracy at these input lengths.

Arch. O0 O1 O2 O3 Os

x86_64 0.992 0.935 0.568 0.579 0.761
AArch64 0.984 0.948 0.719 0.590 0.694
RISC-V 0.987 0.863 0.729 0.344 0.791
SPARC 0.985 0.899 0.829 0.512 0.808
PowerPC 0.988 0.968 0.701 0.527 0.884
MIPS 0.985 0.986 0.786 0.771 0.909
ARM 0.984 0.951 0.658 0.529 0.807

TABLE 6. Accuracy of each optimization level limiting input to the median
number of bytes per function at that optimization level. Results obtained with
the LSTM.

The Table confirms the results we obtained in Section V-A.
Optimization levels O0 and O1 are easy to detect even at
function granularity. The same goes for Os, although with
a lower accuracy. The problem is, again, distinguishing be-
tween O2 and O3, as the median length of each function
at that optimization level is not enough for an accurate
prediction.

Regarding the compiler detection, the accuracy plot for
increasing number of bytes can be seen in Figure 14. Unlike
the CNN and LSTM comparison for optimization level detec-
tion, in Figure 12, we can see very few differences between
the two networks, even with shorter inputs. Moreover, the
accuracy is high even when there is not much data available;
for example, with only 100 bytes, it is possible to have more
than 90% accuracy. This means that we can correctly predict
the compiler, even with function granularity.

Given these results, we can answer RQmin as follows:

When performing a function grained analysis, with
a short input, it is generally possible to detect O0,
O1 and Os optimization level. O2 and O3, instead,
requires as much bytes as possible, given their subtle
differences. In contrast, compiler detection does not
suffer this problem, achieving great accuracy even with
102 input bytes.
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FIGURE 14. Accuracy in the compiler detection.
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FIGURE 15. Accuracy in the optimization detection with encoded input data.

C. ENCODING

After showing how function-grained analysis is possible for
some flags in Section V-B, we want to explore a possible
improvement by removing redundant information from the
input array. This stems from the conclusion of Chen et al.
who found removing x86_64 prefixes increases the accu-
racy [10]. In this section, we compare the raw input with
the encoded variant which is explained in Section IV-B. The
result of this analysis is shown in Figure 15, depicting only
the x86_64 architecture.

We can note how the encoded variant reflects the same
difference between LSTM and CNN previously highlighted
in Section V-B, in particular in Figure 12. More interestingly,
the encoded variant reaches its maximum accuracy with an
input length of approximately 250 bytes. The raw input
variant, instead, as more bytes are supplied to it, steadily
improves in accuracy beyond this limit.

Moreover, the comparison we used in the Figure is biased
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FIGURE 16. Accuracy in the compiler detection with encoded input data.

towards the encoded variant, especially when we use a small
number of bytes. In fact, for any given number of bytes in
the encoded variant, we have more bytes available in the
corresponding raw one. We calculated this difference to be
an average of 186 bytes per function.

A similar situation can be seen when analyzing compiler
detection, as depicted in Figure 16. In this case, we can
see that the encoded variant reaches maximum accuracy
at approximately 100 bytes without further improvements.
In contrast, the raw data accuracy continues to increase,
outperforming the encoded variant at 150 bytes and peaking
at 1000 bytes.

We decided, however, against extending this analysis to
all seven architectures. In fact, in Section I, one of the
motivations of our study was to have an automated way
of detecting optimization flags that does not require deep
knowledge of the underlying architecture. To generate the
encoded variant, however, it is necessary to possess a basic
knowledge of the target architecture, which contradicts our
original motivation. This fact, in addition to the poor perfor-
mance and the need for accurate disassembly prompted us to
abandon the encoded variant study.

Before concluding this section, it is worth noting that the
study of Chen et al. used a dataset 100 times smaller and
determined the encoding variant was remarkably better [10].
In our previous study, we used a dataset 10 times smaller than
our current dataset and determined the encoding variant to be
on par with the raw variant [11]. We can easily assume that
with a smaller dataset, the network is less capable of learning
which information is useful and what is not in the raw data.
This would explain why in previous studies the encoded
variant, which provides data without useless prefixes, was
more competitive. However, with a sufficiently large dataset,
the encoded variant does not offer any advantages.

We can thus conclude RQencoding as follows:
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FIGURE 17. Accuracy variation in the optimization detection evaluation when
including padding data during training.

Disassembling and encoding the data does not pro-
vide additional benefits, requiring knowledge of the
underlying architecture and function disassembly for
an overall lower accuracy.

D. PADDING
In Section IV-B we assert that our networks perform worse
if, during training, raw byte sequences are never padded
during training, and then padded sequences are predicted. In
this section we present RQpad, and investigate the difference
between padding during training and not padding. In this
experiment, we trained two networks with the same dataset,
seed, and samples ordered in the same way. However, in one
case; the training values were always of 2048 bytes, in the
other case, they were randomly cut in the interval [32, 2048],
following the distribution explained in Section IV-C.

We evaluated both CNN and LSTM over the MIPS ar-
chitecture, which achieved the best results. The differences
between the padded and unpadded variants are shown in
Figure 17

From the figure, we can see how the absence of padding
during training is a problem when evaluating small input
vectors. For example, the LSTM is approximately 10% less
accurate and reaches its counterpart trained with padding
only when the input vectors are longer than 1000 bytes. The
CNN results are even more extreme: with less than 100 bytes
the network trained without padding always predicts the same
output, and even at 125 bytes, there is a 60% accuracy gap
between the two variants.

Although not presented, we performed this analysis also in
the x86_64 architecture, and obtained similar results.

We can thus conclude RQpad as follow:

If inputs are never padded during training, networks
will have significantly lower accuracy while predicting
shorter sequences.
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FIGURE 18. Optimization level in pre-compiled binaries shipped with Ubuntu
server 20.04 and macOS Catalina.

E. OCCURRENCE
To conclude the evaluation, we would like to provide some
data on the optimization flag distribution in a real scenario.
To do so, we took every binary and library inside an Ubuntu
Linux 20.04 server and macOS 10.15.7 Catalina, both un-
modified. For each binary, we predicted the optimization
level using our LSTM model for x86_64, reporting the
results.

To analyze each binary, we divided the binary into several
chunks of 2048 bytes, which is the same as our max input
length. We then performed the inference for each chunk,
and calculated an average between all the chunks. For each
chunk, we weighted its contribution to the average by the
network accuracy achieved at the chunk’s input length.

Figure 18 shows the results of this analysis, performed
over 10254 and 1216 files, respectively, for Ubuntu and
macOS. Given the highly imbalanced number of input files,
the histogram was normalized.

We can note how the distribution of files in the Linux
system tends towards the O2 optimization level. This is not
surprising, as the O2 optimization level provides the highest
optimization without increasing the code size to the same
extent as O3. The latter, in fact, could generate a larger
code that does not fit in the instruction cache, resulting in
overall slower execution [34]. Therefore, O2 is the suggested
optimization level in some distributions, such as Gentoo
Linux9. The macOS result, despite being more diverse, shows
how most of its core programs are optimized for code size.
As this is rather uncommon, we verified this results by
manually inspecting the publicly available build scripts for
Apple software10. As a confirmation, in most Makefiles we
can find Os as the default optimization flag, explaining the
histogram results. However, no reason for this choice is given
in the build scripts.

9https://wiki.gentoo.org/wiki/GCC_optimization
10http://opensource.apple.com
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Nonetheless, this final analysis is useful to prove the point
that targeting binary analyses at the O2 optimization level
assuming it to be the default one [6] may be a completely
wrong assumption in some cases.

With this data, we can answer RQoccurrence as follows:

The most common optimization found in Ubuntu Linux
is O2. In contrast, on macOs, Os is more common
although not as dominant as O2 is for the Linux case.
This proves that expecting O2 to always be the most
common optimization level may be a false expectation.

VI. DISCUSSION
The results obtained in Section V provide a fast way of
detecting the optimization level with multiple granularities.

One major change from previous studies is the lack of dis-
assembly in our approach. Using a disassembler in order to
retrieve function boundaries can be very time consuming.For
large binaries, if the function grain is not required, previous
approaches still require functions beginning and function
ending, where ours can select a random 2048 bytes from
the .text section and be dominated by the inference time.
Unlike disassembly, dumping raw bytes from an executable
or library is very fast, because it involves just reading the file
itself.

If a function grain is necessary, the function headers may
be retrieved by other means (i.e. Deep Learning). Given that
our method does not require to preprocessing of the input
data, we can skip disassembly also in this case, avoiding
again the slowest part of binary analysis. This allows our tool
to be used to check the compilation flags even at runtime,
without any noticeable performance impact.

This lack of disassembly is the result of our evaluation
in Section V-C, which contradicts the claim of Chen et al.
that the encoded variant is better [10]. As mentioned in the
section, this could be due to our larger dataset, which allowed
the network to automatically learn which data is useful in
the input architecture and which is not, rendering manual
encoding useless.

In our study, given the larger size of our analysis, we
also focused on producing an automated script to generate
the dataset. In fact, manually compiling a matrix of five
optimization levels using seven architectures would have
required an unmanageable amount of time. In addition, with
this automated generation, we can extend the study to addi-
tional flags with small changes in the scripts parameters. In
previous approaches, including ours, the entire dataset had to
be manually regenerated to add new flags, the most tedious
part of this entire study.

In addition, thanks to the small number of bytes required
by our method, we can target very small portions of code,
and thus, it can be used to check which portions of the binary
match the used compilation flags. This allows for better
categorization of the binary content and can help in binary
analysis. In fact, if a small portion of the file is found with
different flags or compiler than the rest of the file, there is a

high probability that this portion belongs to a static library or
a different compilation unit.

VII. LIMITATIONS AND FUTURE WORKS
The analysis we performed was limited to a pair of com-
pilers and the most common optimization levels. In this
study, we have shown that detection results can vary greatly
between different architectures, and we have no guarantee
that this analysis can be extended to more architectures
without sacrificing accuracy. This is true even in the case
of different compilers. The main difficulty in our study was
distinguishing between O2 and O3 given their similarities.
However, optimization levels are compiler specific and we
cannot assume compilers other than GCC or Clang provide
the same set of optimization levels.

Moreover, in this study, we focused entirely on optimiza-
tion levels instead of specific flags. Although it would be
easy to consider optimization flags, given our automated
dataset generation, the classification should probably change
from multiclass to multilabel. Furthermore, some flags would
be challenging if not impossible to detect, the “dead code
elimination" flag being one example.

Future work will involve assessing the feasibility of this
multilabel classification, especially in compilers other than
GCC or Clang.

VIII. CONCLUSION
In this paper, we have described two deep learning networks,
one based on a long short-term memory model and the
other based on a convolutional neural network model. We
evaluated them in seven different architectures and showed
that they can achieve between 92% and 98% accuracy while
detecting between five different optimization levels and over
99.99% accuracy while detecting two different compilers.

We also provided an evaluation of the minimum number of
bytes needed for accurate predictions, combined with statis-
tical data about the different architectures and their median
function length for each optimization level. Ultimately we
proved that function grained optimization level detection is
possible unless we are not aiming to distinguish between O2
and O3.

The results obtained are consistent with the initial motiva-
tion for our study: when comparing the structure of different
binaries we reported the highest accuracy drop emerging in
the case of different compilers or O0 compared with any
other optimization level. These are also the values with the
highest detection accuracy in our study, suggesting that our
approach may be useful in detecting accuracy drop when
comparing different binaries.

IX. REPLICATION
The dataset used in our study can be found on Zenodo at the
following url [24]. This dataset contains each binary, divided
by architecture, optimization level and compiler. Source code
and pre-trained models can be found publicly on GitHub 11.

11http://github.com/inoueke-n/optimization-detector
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