
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
NCDSearch: Sliding Window-Based Code Clone Search Using
Lempel-Ziv Jaccard Distance

Takashi ISHIO†a), Member, Naoto MAEDA††, Kensuke SHIBUYA††, Kenho IWAMOTO††, Nonmembers,
and Katsuro INOUE†††, Fellow

SUMMARY Software developers may write a number of similar source
code fragments including the same mistake in software products. To remove
such faulty code fragments, developers inspect code clones if they found a
bug in their code. While various code clone detection methods have been
proposed to identify clones of either code blocks or functions, those tools
do not always fit the code inspection task because a faulty code fragment
may be much smaller than code blocks, e.g. a single line of code. To enable
developers to search code clones of such a small faulty code fragment in
a large-scale software product, we propose a method using Lempel-Ziv
Jaccard Distance, which is an approximation of Normalized Compression
Distance. We conducted an experiment using an existing research dataset
and a user survey in a company. The result shows our method efficiently
reports cloned faulty code fragments and the performance is acceptable for
software developers.
key words: Source code search, Normalized compression distance

1. Introduction

Software developers may write a number of similar source
code fragments including the same mistake in software prod-
ucts [1]–[3]. To fix the same bug in multiple locations at
once, code clone detection tools have been employed in in-
dustry [4]. When developers identified a faulty source code
fragment, they execute a code clone detection tool and in-
vestigate code clones of the faulty code fragment.

To efficiently perform such a bug-fixing task, software
developers require an efficient code clone detection tool that
takes as input a query code fragment and report its code
clones in a software product. A tool specialized for the task
is CBCD (Cloned Buggy Code Detector) [5]. The tool trans-
lates a query code fragment into a graph representation based
on a program dependence graph [6], and then detects iso-
morphic subgraphs in the entire source code. Although the
tool effectively detects faulty code clones, the tool requires
a program dependence graph for a target program. While
GrammaTech CodeSurfer is available for C language, it is
difficult for developers to prepare similar tools for various
programming languages (e.g. Java and C#) used for their
software products.

As a programming langauge-independent search tool,

Manuscript received January 1, 2015.
Manuscript revised January 1, 2015.
†The author is with Nara Institute of Science and Technology,

Japan.
††The author is with NEC Corporation, Japan.
†††The author is with Osaka University, Japan.
a) E-mail: ishio@is.naist.jp

DOI: 10.1587/transinf.E0.D.1

we have developed a tool named NCDSearch†. The tool
uses Normalized Compression Distance [7] for source code
similarity because the distance is resilient to content changes
such as renaming and reordering [8]–[10]. Our previous
work [11] shows that NCDSearch effectively identifies faulty
code clones for a query code fragment. On the other hand,
the tool takes around 10 minutes per query on average to
scan a large software product like Linux kernel comprising
millions of lines of code. The performance is acceptable for
some developers who have used existing code clone detection
tools; however, the tool is still slow for daily bug-fixing tasks
in industry.

In this study, we propose an efficient code clone search
method using Lempel-Ziv Jaccard Distance (LZJD) [12],
[13]. Our method is a sliding window algorithm that takes
as input a query code fragment and source code. Our key
component is an efficient comparison between the query and
a code fragment extracted by a sliding window; while the
original definition of LZJD [12] is to compare a pair of
fixed-size strings, we define an algorithm that compares a
query with multiple sub-strings of a code fragment at once.
To further improve the efficiency, we also introduce a file
selection step that quickly decides whether a file should be
investigated or not.

We implemented the algorithm as a new version of
NCDSearch and evaluated the performance using the CBCD
benchmark [14]. The result shows that the new version is
20x faster than the previous version while keeping accuracy.
The tool is deployed in NEC Corporation that employs more
than ten thousand developers. In response to our tool an-
nouncement, 101 users have tried the tool. We conducted
a user survey and received 15 responses from those users;
73% of them responded that they will continue to use the tool.
Since the previous version has not been widely accepted in
the company, the performance improvement is significant for
developers.

The remainder of this paper is organized as follows:
Section 2 explains the research background. Section 3 de-
scribes the proposed method. Section 4 shows the result of
our performance evaluation using a benchmark dataset. Sec-
tion 5 describes our user evaluation. Section 6 summarizes
the results and future directions of the study.

†https://github.com/takashi-ishio/NCDSearch

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Code change 1:
- perm_fmgr_info(typeStruct->typoutput,
- &(prodesc->arg_out_func[i]));
+ fmgr_info_cxt(typeStruct->typoutput,
+ &(prodesc->arg_out_func[i]),
+ proc_cxt);

Code change 2:
- perm_fmgr_info(typeStruct->typinput,
- &(prodesc->result_in_func));
+ fmgr_info_cxt(typeStruct->typinput,
+ &(prodesc->result_in_func),
+ proc_cxt);

Fig. 1 A pair of similar code changes performed in PostgreSQL [14].
Both changes have been performed in commit 6f7c0ea32.

2. Background

2.1 Code Clone Detection

Duplicated source code, also known as code clones, is con-
sidered as a code smell [15]. To support software mainte-
nance activities, various code clone detection tools have been
proposed [16]. Most of the code clone detection tools are
designed to efficiently detect large code clones, e.g. block-
level and function-level code clones, in software products.
For example, CCFinderX [17] reports code clones that are
longer than 50 tokens by default. NiCad [18] detects only
cloned functions or code blocks. On the other hand, a bug
fix may be a small code fragment, e.g. a single line of
code [19]. Fig.1 is an example pair of code clones of such a
small change. When the code change 1 has been performed,
we would like to detect the source code location for code
change 2 (the lines of perm_fmgr_info function call) as a
code clone. However, the code clones are ignored by the
detection tools.

CBCD [5] has been proposed to detect code clones of
a small faulty code fragment by comparing context infor-
mation of code fragments using program dependence anal-
ysis [6]. While the tool is very effective for our purpose,
it is hard to prepare program dependence analysis compo-
nents for various programming languages used in software
companies.

ReDeBug [20], Vuddy [21], and CLORIFI [22] have
been proposed to efficiently apply security patches to soft-
ware products. They take a bug fix patch as input and report
source code fragments where the patch has not been applied
yet. Although the usage scenario is close to our motiva-
tion, those tools use unsuitable heuritics to the bug-fixng
task. For example, ReDeBug detects only source files in-
cluding the entire patch content. Vuddy detects code clones
of known vulnerable functions that are syntactically identical
except for identifier names. Their conservative analyses do
not detect modified code clones. CLORIFI introduces con-
straints specialized for security patches that are unavailable

for general bugs.
Balachandran [23] proposed a code search algorithm

using a structural similarity of abstract syntax trees. It en-
ables a user to search code examples using syntactic patterns
ignoring semantic differences such as data types and function
names in a query code fragment. Our method uses a textual
similarity, since clones of a buggy code fragment likely use
similar functions and variables.

Siamese [24] is a code clone search tool that takes as
input a query code fragment and detects its clones in a large
code base such as GitHub projects. To efficiently search
a large code base, the tool builds an index database for the
target code base in prior to queries. However, such a database
is redundant for a bug-fixing task because developers need
to search code clones only once for a particular version of
a product. Our method simply scans the entire source code
on-the-fly.

CCGrep [25] is a code clone search tool supporting
meta-tokens that are similar to regular expressions but spe-
cialized for source code. While it enables developers to
specify exact code patterns they want to detect, specifying
such patterns may be time-consuming for developers because
they have to understand code clone patterns at first.

2.2 NCDSearch

Our previous work [11] implements a code clone search
tool named NCDSearch. The tool takes as input a query
code fragment 𝑞 and source code. The tool extracts source
code fragments of different sizes using a sliding window and
compare them with the query.

The tool uses Normalized Compression Distance
(NCD) for source code similarity. Given a query code frag-
ment 𝑞 and a source code fragment 𝑠, the distance is defined
as follows:

𝑁𝐶𝐷 (𝑞, 𝑠) = 𝐶 (𝑞𝑠) − 𝑚𝑖𝑛{𝐶 (𝑞), 𝐶 (𝑠)}
𝑚𝑎𝑥{𝐶 (𝑞), 𝐶 (𝑠)}

where 𝐶 (𝑞𝑠) denotes the compressed size of the concate-
nation of 𝑞 and 𝑠, 𝐶 (𝑞) denotes the compressed size of
𝑞, and 𝐶 (𝑠) denotes the compressed size of 𝑠. The dis-
tance regards two source code fragments as similar if they
are highly compressed by a data compression algorithm. In
implementation, we use Deflate algorithm (i.e., gzip) for
data compression. We use experimentally determined win-
dow sizes: {0.80|𝑞 |, 0.85|𝑞 |, 0.90|𝑞 |, 0.95|𝑞 |, |𝑞 |, 1.05|𝑞 |,
1.10|𝑞 |, 1.15|𝑞 |, 1.20|𝑞 |}, where |𝑞 | is the number of tokens
in the query code fragment.

A limitation of the approach is the computational cost.
As we cannot predict the result of a data compression, the
tool has to separately calculate NCD values for each source
code fragment, even though different sliding windows extract
very similar code fragments. As a result, NCDSearch takes
around 10 minutes per query to scan a large software product
like Linux kernel comprising millions of lines of code. The
performance is unsatisfactory for daily bug-fixing tasks of
developers.

ISHIO et al.: NCDSEARCH: SLIDING WINDOW-BASED CODE CLONE SEARCH USING LEMPEL-ZIV JACCARD DISTANCE
3

3. Code Clone Search using LZJD

Our method identifies code clones of a query code fragment 𝑞
in a set of source files 𝐹. Our method comprises three steps:
file selection, code search, and filtering. The file selection
step selects a subset of source files that likely include code
clones of the query code fragment. The code search step
scans the selected files using a sliding window and compare
code fragments with the query. Finally, the filtering step
removes redundant reports.

To support various programming languages used in
industry (e.g. C, Java, COBOL, JavaScript, and Python),
our method is designed as language independent except for
lexical analysis. Our method requires only a lexer for the
programming language of 𝑞 and 𝐹. any programming lan-
guage can be handled if the lexer can translate the query
and files into sequences of tokens excluding comments and
white space. Our method translates the token sequences into
byte strings by concatenating null-terminated strings. For
example, a source code fragment “int i=0;” is tokenized
and then translated into a byte sequence “int␣i␣=␣0␣;␣”,
where “␣” is the null character. As our method utilizes tex-
tual similarity of source code, visual programming languages
are unsupported by the method.

3.1 File Selection

The file selection step checks if each source file 𝑓 ∈ 𝐹
likely includes the query code fragment 𝑞. If the file likely
includes the query, we analyze the file in the code search
step. Otherwise, we skip the code search step for the file.
This step is inspired by ReDeBug [20] that efficiently detects
unpatched files using a simple condition: N-grams(𝑝) ⊆
N-grams(𝑓) that compares N-grams of tokens extracted from
a patch 𝑝 and a file 𝑓 . We use a similar but relaxed condition
because code clones may be different from the query code.

We define an Overlap coefficient 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑁 (𝑞, 𝑓) that
becomes higher if a greater amount of the query 𝑞 is included
in 𝑓 :

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑁 (𝑞, 𝑓) =
|N-grams(𝑞) ∩ N-grams(𝑓) |

|N-grams(𝑞) |

where N-grams(𝑥) is a multiset of N-grams of characters
in a byte string representation of 𝑥. We use N-grams of
characters instead of tokens because a query can be a single
line of code; N-grams of tokens may be too small to be
compared.

Using the Overlap coefficient, we select a subset of files
𝐹𝑠 from source files 𝐹 as follows:

𝐹𝑠 = { 𝑓 ∈ 𝐹 | 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑁 (𝑞, 𝑓) ≥ 𝜃 𝑓 }

where 𝜃 𝑓 is a threshold for the file selection. The selected
files 𝐹𝑠 are analyzed by the code search step. In our imple-
mentation, we experimentally decided the parameters: 𝑁 = 5
and 𝜃 𝑓 = 0.5.

Algorithm 1 LZSet Extraction [13]
Inputs

𝑏: A byte array representation of a query.
Outputs

𝐿𝑍𝑆𝑒𝑡 (𝑏): A Lempel-Ziv Set for the byte string 𝑏.
1: Initialize 𝑆 ← 𝜙
2: 𝑠𝑡𝑎𝑟𝑡 ← 0
3: 𝑒𝑛𝑑 ← 1
4: while 𝑒𝑛𝑑 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ (𝑏) do
5: 𝑏𝑠 ← 𝑏 [𝑠𝑡𝑎𝑟𝑡 : 𝑒𝑛𝑑]
6: if 𝑏𝑠 ∉ 𝑆 then
7: 𝑆 ← 𝑆 ∪ {𝑏𝑠 }
8: 𝑠𝑡𝑎𝑟𝑡 ← 𝑒𝑛𝑑
9: end if

10: 𝑒𝑛𝑑 ← 𝑒𝑛𝑑 + 1
11: end while
12: return 𝑆 as 𝐿𝑍𝑆𝑒𝑡 (𝑏)

𝐿𝑍𝑆𝑒𝑡 (Code Change 1) = { p|e|r|m|_|f|mg|r_|i|n|fo|␣|(|␣t|
y|pe|S|t|ru|c|t␣|-|>|␣ty|po|u|tp|ut|␣,|␣&|␣(|␣p|ro|d|
es|c␣|->|␣a|rg|_o|ut_|fu|nc|␣[|␣i|␣]|␣)|␣)␣|; }

𝐿𝑍𝑆𝑒𝑡 (Code Change 2) = { p|e|r|m|_|f|mg|r_|i|n|fo|␣|(|␣t|
y|pe|S|t|ru|c|t␣|-|>|␣ty|pi|np|u|t␣,|␣&|␣(|␣p|ro|d|
es|c␣|->|␣r|esu|l|t_|in|_f|un|c␣)|␣)|␣; }

|𝐿𝑍𝑆𝑒𝑡 (Code Change 1) | = 49
|𝐿𝑍𝑆𝑒𝑡 (Code Change 2) | = 46
|𝐿𝑍𝑆𝑒𝑡 (Code Change 1) ∩ 𝐿𝑍𝑆𝑒𝑡 (Code Change 2 | = 34
𝐿𝑍 𝐽𝐷 (Code Change 1, Code Change 2) = 0.443

Fig. 2 LZSet for two code changes (removed source code indicated by
“-”) in Fig.1 and their LZJD. Items in bold italic text are unique elements
to the LZSet.

3.2 Code Search

The code search step identifies code clones in each file
𝑓 ∈ 𝐹𝑠 selected by the previous step. In this step, we use a
sliding window whose size is 𝑤 tokens. For each line in the
file 𝑓 , we extract a code fragment 𝑐 that starts from the line.
The first 𝑘 tokens of the code fragment 𝑐 is denoted by 𝑐𝑘
(1 ≤ 𝑘 ≤ 𝑤). We detect 𝑐𝑘 as a code clone if it is similar
to 𝑞. If there exists multiple candidates, we select only the
most similar code fragment.

For source code similarity between a query 𝑞 and
a string 𝑐𝑘 , we adopt Lempel-Ziv Jaccard Distance
(LZJD) [12] defined as follows:

𝐿𝑍𝐽𝐷 (𝑞, 𝑐𝑘) = 1 − |𝐿𝑍𝑆𝑒𝑡 (𝑞) ∩ 𝐿𝑍𝑆𝑒𝑡 (𝑐𝑘) |
|𝐿𝑍𝑆𝑒𝑡 (𝑞) ∪ 𝐿𝑍𝑆𝑒𝑡 (𝑐𝑘) |

where 𝐿𝑍𝑆𝑒𝑡 (𝑞) and 𝐿𝑍𝑆𝑒𝑡 (𝑐𝑘) are simplified Lempel-Ziv
Sets of the byte strings of 𝑞 and 𝑐𝑘 , respectively.

Algorithm 1 shows the algorithm to calculate 𝐿𝑍𝑆𝑒𝑡 (𝑏)
for a byte string 𝑏 defined in [12]. It splits a byte string 𝑏 into
sub-strings, using a simplified version of the Lempel-Ziv 78
algorithm (LZ78) [26]†. 𝐿𝑍𝑆𝑒𝑡 (𝑏) represents a dynamic
†The LZJD paper [12] says that the authors use the LZ77 algo-

rithm [27]. However, the definition of LZSet is closer to the LZ78
algorithm in our understanding.

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Algorithm 2 LZJD-based Comparison
Inputs

𝑏: A byte array of the source code in the sliding window.
𝑤: A window size represented by the number of tokens
𝑝𝑜𝑠 [𝑖] (1 ≤ 𝑘 ≤ 𝑤): The position of the last byte of 𝑘-th token in 𝑏
𝐿𝑍𝑆𝑒𝑡 (𝑞): LZSet for the query

Outputs
𝑘𝑏𝑒𝑠𝑡 : The number of tokens that the most similar to the query
𝑙𝑧 𝑗𝑑𝑏𝑒𝑠𝑡 : 𝐿𝑍 𝐽𝐷 (𝑞, 𝑐𝑘𝑏𝑒𝑠𝑡)

1: Initialize 𝑆 ← 𝜙
2: 𝑠𝑡𝑎𝑟𝑡 ← 0
3: 𝑒𝑛𝑑 ← 1
4: 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛← 0
5: 𝑙𝑧 𝑗𝑑𝑏𝑒𝑠𝑡 ←∞
6: for 𝑘 = 1 to 𝑤 do
7: while 𝑒𝑛𝑑 ≤ 𝑝𝑜𝑠 [𝑘] do
8: 𝑏𝑠 ← 𝑏 [𝑠𝑡𝑎𝑟𝑡 : 𝑒𝑛𝑑]
9: if 𝑏𝑠 ∉ 𝑆 then

10: 𝑆 ← 𝑆 ∪ {𝑏𝑠 }
11: 𝑠𝑡𝑎𝑟𝑡 ← 𝑒𝑛𝑑
12: if 𝑏𝑠 ∈ 𝐿𝑍𝑆𝑒𝑡 (𝑞) then
13: 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 + 1
14: end if
15: end if
16: 𝑒𝑛𝑑 ← 𝑒𝑛𝑑 + 1
17: end while
18: 𝑙𝑧 𝑗𝑑 ← 1 − 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

|𝐿𝑍𝑆𝑒𝑡 (𝑞) |+|𝑆 |−𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
19: if 𝑙𝑧 𝑗𝑑 < 𝑙𝑧 𝑗𝑑𝑏𝑒𝑠𝑡 then
20: 𝑘𝑏𝑒𝑠𝑡 ← 𝑘
21: 𝑙𝑧 𝑗𝑑𝑏𝑒𝑠𝑡 ← 𝑙𝑧 𝑗𝑑
22: end if
23: end for
24: return 𝑘𝑏𝑒𝑠𝑡 and 𝑙𝑧 𝑗𝑑𝑏𝑒𝑠𝑡

dictionary for compressing the byte sequence 𝑏 in the LZ78
algorithm. Conceptually, LZJD compares dictionaries for
data compression instead of the actual data compression
results. Fig.2 shows an example pair of LZSets for code
changes in Fig.1 and their LZJD.

While we use Algorithm 1 to obtain 𝐿𝑍𝑆𝑒𝑡 (𝑞),
we define another algorithm to efficiently compare
𝐿𝑍𝑆𝑒𝑡 (𝑞) with 𝐿𝑍𝑆𝑒𝑡 (𝑐𝑘) extracted by the sliding win-
dow. Our key insight is: Algorithm 1 constructs
𝐿𝑍𝑆𝑒𝑡 (𝑏) by linearly scanning a byte string 𝑏. Hence,
when we calculate 𝐿𝑍𝑆𝑒𝑡 (𝑐𝑤), the algorithm produces
𝐿𝑍𝑆𝑒𝑡 (𝑐1), 𝐿𝑍𝑆𝑒𝑡 (𝑐2), · · · , 𝐿𝑍𝑆𝑒𝑡 (𝑐𝑤−1) as intermediate
results. We compare 𝐿𝑍𝑆𝑒𝑡 (𝑞) with those intermediate re-
sults to identify the most similar sub-string 𝑐𝑘 .

Algorithm 2 shows our source code comparison func-
tion. It takes as input a byte string 𝑏 including 𝑤 tokens
selected by the sliding window. For each 𝑘-th token in the
code fragment, the algorithm updates 𝑆 at lines 7–17. A vari-
able 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 keeps the number of common elements in
𝐿𝑍𝑆𝑒𝑡 (𝑞) and 𝑆. At line 18, the algorithm calculates LZJD
between the query 𝑞 and 𝑐𝑘 . The entire algorithm reports
the most similar sub-string 𝑐𝑘 in the sliding window.

Using Algorithm 2 as a subroutine, we define our code
search step as shown in Algorithm 3. The code search takes
an additional parameter 𝑤 that specifies the size of a sliding
window. The sliding window moves line by line within the
file 𝑓 . For each line, the algorithm extracts a code fragment

Algorithm 3 Code Search
Inputs

𝑞: A query
𝑤: A window size represented by the number of tokens
𝜃𝑙 : Threshold for code clones
𝑓 : A target file that passed file-level search

Outputs
𝐶: Code clones detected in the file 𝑓

1: Initialize 𝐶 ← 𝜙
2: Translate 𝑞 into 𝐿𝑍𝑆𝑒𝑡 (𝑞)
3: for each line 𝑙 in 𝑓 do
4: 𝑏 ← A byte string for 𝑤 tokens that start from the line 𝑙
5: 𝑝𝑜𝑠 ← token positions in 𝑏
6: 𝑘𝑏𝑒𝑠𝑡 , 𝑙𝑧 𝑗𝑑𝑏𝑒𝑠𝑡 ← Algorithm 2 (𝑏, 𝑤, 𝑝𝑜𝑠, 𝐿𝑍𝑆𝑒𝑡 (𝑞))
7: if 𝑙𝑧 𝑗𝑑𝑏𝑒𝑠𝑡 < 𝜃𝑙 then
8: 𝐶 ← 𝐶 ∪ {𝐶𝑙𝑜𝑛𝑒 (𝑓 , 𝑙, 𝑘𝑏𝑒𝑠𝑡 , 𝑙𝑧 𝑗𝑑𝑏𝑒𝑠𝑡) }
9: end if

10: end for
11: return 𝐶

𝑏 including 𝑤 tokens, and then calls Algorithm 2 to identify a
sub-string 𝑐𝑘𝑏𝑒𝑠𝑡 that is the most similar to 𝑞. If the 𝑙𝑧 𝑗𝑑𝑏𝑒𝑠𝑡
value is less than a threshold 𝜃𝑙 , the sub-string from the line
is detected as a code clone.

The size of the sliding window is decided by the num-
ber of tokens in the query ignoring comments and white
space. We experimentally determined the window size
𝑤 = ⌊1.20|𝑞 |⌋, where |𝑞 | is the number of tokens in the
query 𝑞. This is the maximum window size we have used in
our previous work [11].

The time complexity of this code search step is 𝑂 (𝑤𝑛),
where 𝑛 is the total size of source code. As a sliding window
includes 𝑤 tokens, each token in a file is processed at most 𝑤
times even if a file contains one token per line. To reduce the
computation time, Algorithm 2 can be executed in parallel
for multiple lines or files because the algorithm have no side
effect on the global data structure such as 𝐿𝑍𝑆𝑒𝑡 (𝑞).

The space complexity is 𝑂 (𝑛). The space is required
to keep tokens and its byte string representation on memory.
Since the data structure for a file can be discarded after a
search on the file, the actual memory footprint depends on
the maximum size of individual files.

3.3 Filtering

The code search step may detect a number of overlapping
code fragments as code clones. To exclude such redundant
reports, we choose the most similar code fragment (i.e. that
has the shortest distance) from the overlapping clones. If
tied, we choose the shortest code fragment.

After the filtering, four attributes are reported for each
clone: the file name, the first line number, the length, and
the distance from a query. A user can easily sort the reported
code clones by the locations and distances.

ISHIO et al.: NCDSEARCH: SLIDING WINDOW-BASED CODE CLONE SEARCH USING LEMPEL-ZIV JACCARD DISTANCE
5

Table 1 Cloned Buggy Code Detector Dataset [14]

Projects #Que- |𝑞 | #Bugs #Files LOC
ries (Med.) (Med.) (Med.)

PostgreSQL 14 15 39 1,058 277,959
Git 5 19 8 261 67,028
Linux 34 17.5 41 22,181 6,931,715
Total 53 1208 88 792,432 241,074,652

4. Benchmark-based Evaluation

4.1 Benchmark

To evaluate the accuracy and efficiency of the proposed
method, we use a benchmark dataset for the CBCD tool [14].
The dataset includes 53 cloned bugs extracted from issue
tracking systems of three OSS projects: PostgreSQL, Git,
and Linux. The main programming language of the projects
is C/C++. Each bug item comprises a query code fragment,
a commit ID of a product version, and a list of faulty code
clones in the version. Each faulty code clone is represented
by a file name and the first and last line numbers in the file.
The queries have the following properties:

• Most of queries include a few lines of code. The me-
dian is 2 lines of code (17 tokens). The longest query
includes 14 lines (93 tokens).

• In case of 42 bugs, a single buggy clone is included in
source code. The maximum number of buggy clones
of a query is 18.

• In case of 25 bugs, the cloned fragments are type-1
clones (i.e. exact copies). The other clones have some
differences from the query code fragments.

Table 1 shows the numbers of queries for each project, the
median number of tokens of queries, and the median size
of C/C++ files in the analyzed versions of the projects. The
lines of code exclude comment and empty lines. Since the
dataset written in [14] included some errors (e.g. incorrect
line numbers and commit ids), we manually examined the
commit history of three programs and updated the dataset.
The full content is included in the NCDSearch source code
repository†.

For each query in the benchmark, we evaluate a list of
reported code clones 𝐶 = {𝑐1, 𝑐2, · · · , 𝑐 |𝐶 |} sorted by their
similarity (distance) values. We classify the clones in 𝐶 into
true positives and false positives by comparing with faulty
code clones 𝐹 in the benchmark. We consider a reported
code clone 𝑐𝑖 ∈ 𝐶 detects a faulty code clone 𝑓 ∈ 𝐹 if 𝑐𝑖
includes at least a single line of 𝑓 . Since multiple code clones
in 𝐶 may detect the same faulty code clone 𝑓 , we regard
only the most similar (top-ranked) code clone detecting 𝑓 as
a true positive corresponding to 𝑓 . More formally, a set of
true positive clones 𝑇𝑃(𝐹,𝐶) is defined as follows.

†https://github.com/takashi-ishio/NCDSearch/#e
valuation-dataset

𝑇𝑃(𝐹,𝐶) =
∪
𝑓 ∈𝐹

𝑡 𝑝(𝑓 , 𝐶)

𝑡 𝑝(𝑓 , 𝐶) = {𝑐𝑖 ∈ 𝐶 | 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑓 , 𝑐𝑖)
∧ ∀𝑘 (1 ≤ 𝑘 < 𝑖). ¬𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑓 , 𝑐𝑘)}

where 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑓 , 𝑐) is a boolean function representing
whether a line of 𝑓 is included in 𝑐 or not. In the definition,
𝑡 𝑝(𝑓 , 𝐶) selects at most one code clone 𝑐𝑖 corresponding to
𝑓 . If 𝑐𝑖 includes multiple faulty code clones, the same 𝑐𝑖 is
selected for those code clones. A set of faulty code clones
detected by the true positives is represented as follows.

𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 (𝐹,𝐶) = { 𝑓 ∈ 𝐹 | ∃𝑐 ∈ 𝐶. 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑓 , 𝑐)}

Using 𝑇𝑃(𝐹,𝐶) and 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 (𝐹,𝐶), we calculate preci-
sion and recall of the reported clones as follows.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐹,𝐶) = |𝑇𝑃(𝐹,𝐶) ||𝐶 |

𝑅𝑒𝑐𝑎𝑙𝑙 (𝐹,𝐶) = |𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 (𝐹,𝐶) |
|𝐹 |

In addition to precision and recall, we use mean average
precision (MAP) to evaluate the effectiveness of LZJD as a
ranking mechanism for 𝐶. MAP is the mean of average
precision for all queries. Average precision is the mean of
the precision scores obtained after each relevant document is
retrieved, using zero as the precision for relevant documents
that are not retrieved [28]. In our study, higher average
precision values represent that true positive clones appear
earlier in the list. Average precision is calculated as follows.

𝐴𝑃(𝐹,𝐶) = 1
|𝐹 |

∑
𝑓 ∈𝐹

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐹,𝐶𝑠 (𝑓))

𝐶𝑠 (𝑓) =
{
{𝑐𝑘 ∈ 𝐶 | 1 ≤ 𝑘 ≤ 𝑖 } if 𝑡 𝑝(𝑓 , 𝐶) = {𝑐𝑖}
𝜙 otherwise

𝐶𝑠 (𝑓) represents a sub-list of code clones 𝑐1, · · · , 𝑐𝑖 such
that 𝑐𝑖 is the true positive including 𝑓 . For example, suppose
there exists two faulty code clones (𝐹 = { 𝑓1, 𝑓2}) and our
method reports three code clones (𝐶 = {𝑐1, 𝑐2, 𝑐3}). If 𝑐1
and 𝑐3 respectively include 𝑓1 and 𝑓2 (i.e., 𝑡 𝑝(𝑓1, 𝐶) = {𝑐1}
and 𝑡 𝑝(𝑓2, 𝐶) = {𝑐3}), we obtain 𝐶𝑠 (𝑓1) = {𝑐1}, 𝐶𝑠 (𝑓2) =
{𝑐1, 𝑐2, 𝑐3}. The average precision is 𝐴𝑃(𝐹,𝐶) = 1

2 (
1
1+

2
3) =

0.833.

4.2 Tool Configurations

We have implemented the proposed method as a new version
of NCDSearch (v0.3.5). We have executed the proposed
method using five configurations as follows:

P1 The proposed method with 𝜃𝑙 = 0.5
P2 The proposed method with 𝜃𝑙 = 0.6
P3 The code search with 𝜃𝑙 = 0.5 without using the file

selection step
P4 The code search with 𝜃𝑙 = 0.6 without using the file

selection step

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Table 2 Performance of the tools (53 queries).
ID Configuration #Reported #Detected Precision Recall MAP Time

Med. Total Med. Total Med. Total Med. Total Med. (sec.) Total
P1 File Selection + LZJD 𝑡ℎ = 0.5 8 2570 1 82 0.158 0.032 1.000 0.932 0.749 34 26min 38sec
P2 File Selection + LZJD 𝑡ℎ = 0.6 49 9124 1 88 0.143 0.010 1.000 1.000 0.753 36 28min 12sec
P3 LZJD 𝑡ℎ = 0.5 11 3693 1 82 0.027 0.022 1.000 0.932 0.749 44 41min 30sec
P4 LZJD 𝑡ℎ = 0.6 112 48841 1 88 0.013 0.002 1.000 1.000 0.752 46 43min 11sec
P5 File Selection + Baseline 1 20 4914 1 88 0.083 0.018 1.000 1.000 0.757 31 52min 39sec
B1 NCD with Deflate 𝑡ℎ = 0.5 [11] 22 8068 1 88 0.053 0.011 1.000 1.000 0.757 618 12h 59min
B2 Normalized Levenshtein 𝑡ℎ = 0.5 363 711270 1 87 0.004 <0.001 1.000 0.989 0.754 65 2h 52min
B3 CCFinderX (50 tokens) 1 55 1 64* 0.500 0.782 1.000 0.750 N/A 1642 21h 30min
B4 CCFinderX (|𝑞 | tokens) 6 367021 1 61 0.023 <0.001 1.000 0.753 N/A 539 6h 22min
B5 NiCad (Block, 3 lines) 0 19 0 13 0.000 0.684 0.000 0.148 N/A 1906 24h 53min
B6 NiCad (Block, 10 lines) 0 18 0 12 0.000 0.667 0.000 0.136 N/A 2149 27h24min
B7 NiCad (Functions, 3 lines) 0 21 0 14 0.000 0.667 0.000 0.160 N/A 2479 35h 53min
B8 NiCad (Functions, 10 lines) 0 20 0 13 0.000 0.650 0.000 0.148 N/A 2462 35h 14min
B9 CBCD (Estimated) [5], [14] 1 8408 1 82 1.000 0.010 1.000 0.932 N/A N/A N/A
* Multiple faulty code clones are detected as a single code clone.

P5 The file selection step combined with the normalized
compression distance (𝑡ℎ = 0.5)

P1 and P2 use the full version of the proposed method with
different threshold values. P3 and P4 simply execute the
code search step for all source files to analyze the effect of
the file selection step. P5 is to analyze the effect of the code
search. It combines the file selection step with the existing
normalized compression distance in our previous work [11].

In the all configurations, we sorted reported code clones
in ascending order of LZJD so that we can evaluate the
correctness of LZJD as a source code similarity metric. We
measured the execution time on Windows 10 running on
Xeon E5-2690v3 processor, 64 GB DRAM, and a SSD. We
use a single thread of control.

4.3 Baselines

We compare the proposed method with existing code clone
detection methods as follows.

B1: NCD with Deflate (𝑡ℎ = 0.5) is the best config-
uration in our previous work [11]. The tool compares two
code fragments using Normalized Compression Distance as
described in Section 2.2. We sort reported code clones in
ascending order of NCD.

B2: Normalized Levenshtein Distance (𝑡ℎ = 0.5) is
another baseline that simply compares code fragments with
a query. The normalized Levenshtein distance between code
fragments (Levenshtein similarity [29]) is defined as follows.

𝑁𝐿𝐷 (𝑞, 𝑠) = 𝐿𝐷 (𝑞, 𝑠)
𝑚𝑎𝑥{|𝑞 |, |𝑠 |}

where 𝐿𝐷 (𝑞, 𝑠) is the Levenshtein distance of two sequences
𝑞 and 𝑠. It counts the number of edit operations including
insertion, deletion, and modification of tokens between a
query code 𝑞 and a code fragment 𝑠. We remove redundant
code clones using the same filtering step as the proposed
method. The code clones are sorted in ascending order of
NLD.

B3-B4: CCFinderX is one of the most popular code

clone detection tools in Japan; it detects two sequences of
tokens as a clone pair if they have the same sequence except
for identifier names and constants. We executed the tool to
detect code clones between the source code of a product and
a file including a query code fragment, and then filtered out
clone pairs that include no lines of a query code fragment.
We consider a reported clone pair is correct if the pair in-
cludes at least a single line of a query code fragment and
a single line of faulty code in the ground truth. B3 is the
default configuration of CCFinderX. It detects code clones
having at least 50 tokens by default. B4 is another config-
uration that extracts code clones whose length is the same
as a query. Since CCFinderX does not complete a search
for a low threshold, we implemented a specialized tool that
directly compares code fragments obtained from the prepro-
cessor of CCFinderX and reports only code clones whose
size is |𝑞 |. These configurations result in lists of code clones
without a ranking mechanism.

B5-8: NiCad is a tool that has achieved both high pre-
cision and recall for various types of code clones [30]. The
tool compares a pair of code blocks or functions, and reports
them as a clone pair if they are similar. We filter out clone
pairs that include no lines of a query code fragment. We
consider a reported clone pair is correct if the pair includes
both a query code fragment and a faulty code fragment in
the ground truth. We try four configurations comprising two
levels of code clones (block-level and function-level) and
two thresholds (3 lines and 10 lines of code). While NiCad
reports a list of code clones with their similarity values, we
do not use the similarity values for sorting code clones be-
cause they do not represent the similarity of faulty source
code fragments.

B9: CBCD (Estimated) is the baseline we have cre-
ated using the CBCD method [5], [14]. Since the original
implementation of CBCD is publicly unavailable, we have
received the source code of the tool from the authors. Nev-
ertheless, we could not execute the tool due to technical
problems. Instead of the tool execution, we analyzed the
implementation details described in the technical report [14]

ISHIO et al.: NCDSEARCH: SLIDING WINDOW-BASED CODE CLONE SEARCH USING LEMPEL-ZIV JACCARD DISTANCE
7

LZJD NCD−Deflate NLD

1

2

5

10

20

50

100

200

500

R
a
n
k

Fig. 3 Distributions of ranks of faulty code fragments

and then estimated only the precision and recall. This was
possible because the technical report classified queries into
three groups:“N1: no false positives, no false negatives,”
“N2: no false positives, some false negatives,” and “N3:
some false positives, no false negatives.” The report also
describes that false positives are function calls when a query
includes only a function call without data/control dependen-
cies (i.e. statements) among them. For example, in case
of Fig.1, CBCD reports all perm_fmgr_info function call
sites in the program. Using the information, we counted
the number of source code lines calling the functions in the
N3 queries as false positives. The number of false nega-
tives (six) is also obtained from the technical report. Using
the numbers of false positives and negatives, we estimated
the precision and recall of CBCD. The execution time is
unavailable because we did not execute the tool.

4.4 Result

Table 2 shows the performance metrics of the tools: the num-
ber of reported clones, the number of detected faulty code
clones, precision, recall, mean average precision (MAP),
and the execution time. As the metrics vary by query, the
“Med.” columns show the medians of those values. The
“Total” columns show total values for all queries.

The accuracy of the proposed method (P1 and P2) is
comparable to the B1 configuration. P1 reported a smaller
number of false positives but missed several clones than B1.
P2 resulted in no false negatives but more false positives
than B1. Compared with B2, the proposed method is more
precise. The MAP column shows that cloned faulty code
fragments are similarly ranked in P1, P2, B1 and B2. Fig.3
shows the distributions of ranks of faulty code fragments
in three distances LZJD (P1 and P2), NCD (B1), and NLD
(B2). The result shows that LZJD successfully worked as an
approximation of NCD.

While keeping the accuracy, the proposed method is
20x faster than B1 according to the total time. In case of
the configuration P1, the most time-consuming query took
at most 83 seconds for detecting clones in Linux kernel.
According to P3–P5, both of the file selection and code

for (var i=0; i < row.Cells.Count; i++)
{

if (row.Cells[i].Value == null)
{

- break;
+ continue;

}
ret.Add((string)row.Cells[i].Value);

}

Fig. 4 An actual bug fix in the company (written in C#). The identifiers
are anonymized. The bug fix replaced a break statement indicated by “-”
with a continue statement indicated by “+”. The same bug was found in
a code clone of this code fragment.

search steps effectively reduced the search time.
The default configuration of CCFinderX (B3) detected

cloned faulty code fragments, if they are included in large
code clones. While the result is precise, some faulty code
fragments are missing because they have additional tokens
(i.e. type-3 clones) that could not be handled by CCFind-
erX. Some other fragments are also missing because the pre-
processor accidentally filtered out certain queries and their
clones as “uninteresting” code fragments. A lower threshold
(B4) does not improve a result. B4 missed some code clones
detected by B3 because large code clones may accidentally
include queries and their peers even if they are not directly
corresponding to each other.

NiCad (B5–B8) reported a small number of code clones.
This is because code clones in the dataset are neither block-
level nor function-level.

The accuracy of the proposed method is also compara-
ble to CBCD (B9). Although we did not use control and data
dependence analysis, our textual similarity detected seman-
tically similar code clones. This is probably because faulty
code clones included similar identifiers to the query code
fragments.

5. User Evaluation

We have deployed the tool for NEC Corporation. The soft-
ware engineering group in the company has already used the
B1 configuration of the tool in the group and several ongo-
ing projects. The group implemented a GUI tool to execute
a search, show the search result in a table, and highlight a
selected code clone on a source code editor.

The software engineering group decided to use the P1
configuration as default. To decide the default configuration,
they tested P1 and P2 configurations against two cases of
faulty code clones found in the company (Fig.4 is one of the
cases). As a result, they preferred P1 to P2 because P1 is
more precise. They think that the code clone detection step
is perceived as extra work for regular developers; they would
like to encourage developers to quickly inspect code clones
in their daily tasks.

The new tool is distributed on an internal website for
software developers of the company. The tool is downloaded
by 101 developers in the company after the first company-

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

0 5 10 15

False positives

Detection time

Supported languages

User interface

Strong agree Agree Neutral Disagree Strong Disagree

Fig. 5 Responses to the Questionnaire. We asked four questions: “Do
you need the improvement on ...”

wide announcement. After a few months, we sent out ques-
tionnaires to those users. We have analyzed 15 responses
from users. The questionnaires included the following ques-
tions:

1. What is your purpose of usage?
2. Do you need the improvement on the following aspects?

• False positives
• Detection time
• Supported languages
• User interface

3. Do you continue to use the tool?

The second question collected answers using a five-level
Likert scale. “Strong Agree” and “Agree” answers indicate
that the aspect is unsatisfactory for the users.

We found three purposes of usage: code clone search
in multiple products, bug-fixing in a single product, and
technical interest. 40% of the users answered that they would
like to search the same bugs in related software products.
33% of the respondents answered that they would like to
search source code when they have to review and fix multiple
source code locations. The other users are simply interested
in the new software development tool.

Fig.5 shows the answers to the second question on the
necessity of further improvements. Regarding the number of
false positives, 40% of users selected either “Strong Agree”
or “Agree”; in other words, they requested further improve-
ments. A possible future direction for reducing false posi-
tives is taking semantic aspects of source code into account
because our method utilizes only a textual similarity.

Regarding the detection time, it is satisfactory for 33%
of users who selected “Strong Disagree”, while 33% of users
requested further improvements. This result shows that the
time efficiency is really important for industrial users. Our
method is recognized as practical to a certain degree.

Supporting additional languages is also requested by
33% of users. This is probably because the tool did not
support programming languages used in their projects; we
believe that our implementation can support those languages
by including lexers of the languages.

Regarding the user interface, only 20% of users selected
“Disagree”. No users selected “Strong Disagree.” The result
shows that a simple user interface that takes as a query and
reports a list of source code location is satisfactory for most

of users.
For the last question, 73% (95% CI [52.2, 92.8]) of

the respondents answered that they will continue to use the
tool for their software development tasks. The result shows
that the overall performance of the tool is acceptable for
the users. One respondent stated: “I often execute Visual
Studio’s search function several times for a bug-fixing task.
I think I can search such code fragments at once.”

The respondents also gave us comments for future im-
provements. One respondent requested a semantic search:
“I would like to search a particular type of code fragments
that are syntactically similar but semantically different. For
example, I had to search final non-static fields in an
actual bug-fixing task. Supporting such a search would be
beneficial.” Another respondent requested to support natural
language text included in comments and document files.

6. Conclusion

In this study, we proposed a code clone detection method that
efficiently uses Lempel-Ziv Jaccard Distance. While the pro-
posed method keeps accuracy, the method is 20x faster than
the previous method based on Normalized Compression Dis-
tance. The tool has been deployed in the NEC Corporation;
the user evaluation shows that the performance is acceptable
for industrial developers.

In future work, we would like to take semantic aspects
of source code into account to improve effectiveness, while
keeping the efficiency. Another direction is monitoring the
long-term effect in projects so that we can identify best prac-
tices to use the tool.

References

[1] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” Proceedings of the 18th ACM
Symposium on Operating Systems Principles, pp.73–88, 2001.

[2] N.H. Pham, T.T. Nguyen, H.A. Nguyen, and T.N. Nguyen, “De-
tection of recurring software vulnerabilities,” Proceedings of the
IEEE/ACM International Conference on Automated Software Engi-
neering, pp.447–456, 2010.

[3] R. Yue, N. Meng, and Q. Wang, “A characterization study of repeated
bug fixes,” Proceedings of the 2017 IEEE International Conference
on Software Maintenance and Evolution, pp.422–432, 2017.

[4] Y. Dang, D. Zhang, S. Ge, R. Huang, C. Chu, and T. Xie, “Transfer-
ring code-clone detection and analysis to practice,” 2017 IEEE/ACM
39th International Conference on Software Engineering: Software
Engineering in Practice Track, pp.53–62, 2017.

[5] J. Li and M.D. Ernst, “CBCD: Cloned buggy code detector,” Proceed-
ings of the 34th IEEE/ACM International Conference on Software
Engineering, pp.310–320, 2012.

[6] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems, vol.12, no.1, pp.26–60, 1990.

[7] M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi, “The similarity metric,”
IEEE Transactions on Information Theory, vol.50, no.12, pp.3250–
3264, 2004.

[8] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker, “Shared
information and program plagiarism detection,” IEEE Transactions
on Information Theory, vol.50, no.7, pp.1545–1551, 2004.

[9] L. Zhang, Y. ting Zhuang, and Z. ming Yuan, “A program plagia-

ISHIO et al.: NCDSEARCH: SLIDING WINDOW-BASED CODE CLONE SEARCH USING LEMPEL-ZIV JACCARD DISTANCE
9

rism detection model based on information distance and clustering,”
Proceedings of the 2007 International Conference on Intelligent Per-
vasive Computing, pp.431–436, 2007.

[10] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “Similarity of source
code in the presence of pervasive modifications,” Proceedings of the
16th International Working Conference on Source Code Analysis
and Manipulation, pp.117–126, 2016.

[11] T. Ishio, N. Maeda, K. Shibuya, and K. Inoue, “Cloned Buggy Code
Detection in Practice Using Normalized Compression Distance,”
Proceedings of the 2018 IEEE 34th International Conference on
Software Maintenance and Evolution, pp.591–594, 2018.

[12] E. Raff and C. Nicholas, “An alternative to ncd for large sequences,
lempel-ziv jaccard distance,” Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp.1007–1015, 2017.

[13] E. Raff and C. Nicholas, “Lempel-Ziv Jaccard Distance, an effec-
tive alternative to ssdeep and sdhash,” Digital Investigation, vol.24,
pp.34–49, 2018.

[14] J. Li and M.D. Ernst, “CBCD: Cloned buggy code detector,” techre-
port UW-CSE-11-05-02, University of Washington, 2012.

[15] M. Fowler, Refactoring - Improving the Design of Existing Code,
Addison Wesley object technology series, Addison-Wesley, 1999.

[16] C.K. Roy, J.R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: a qualitative approach,”
Science of Computer Programming, vol.74, no.7, pp.470–495, 2009.

[17] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol.28, no.7, pp.654–
670, 2002.

[18] C.K. Roy and J.R. Cordy, “An Empirical Study of Function Clones
in Open Source Software,” Proceedings of the 2008 15th Working
Conference on Reverse Engineering, pp.81–90, 2008.

[19] Lucia, F. Thung, D. Lo, and L. Jiang, “Are faults localizable?,”
Proceedings of the 9th Working Conference on Mining Software
Repositories, pp.74–77, 2012.

[20] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: Finding unpatched
code clones in entire OS distributions,” Proceedings of the 2012 IEEE
Symposium on Security and Privacy, pp.48–62, 2012.

[21] S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A Scalable Approach
for Vulnerable Code Clone Discovery,” Proceedings of the 2017
IEEE Symposium on Security and Privacy, pp.595–614, 2017.

[22] H. Li, H. Kwon, J. Kwon, and H. Lee, “CLORIFI: software vulner-
ability discovery using code clone verification,” Concurrency and
Computation: Practice and Experience, vol.28, no.6, pp.1900–1917,
2015.

[23] V. Balachandran, “Query by example in large-scale code reposito-
ries,” Proceedings of the IEEE International Conference on Software
Maintenance and Evolution, pp.467–476, 2015.

[24] C. Ragkhitwetsagul and J. Krinke, “Siamese: Scalable and incremen-
tal code clone search via multiple code representations,” Empirical
Software Engineering, vol.24, no.4, p.2236–2284, 2019.

[25] K. Inoue, Y. Miyamoto, D.M. German, and T. Ishio, “Finding Code-
Clone Snippets in Large Source-Code Collection by ccgrep,” in Open
Source Systems (Proc. IFIP International Conference on Open Source
Systems), pp.28–41, 2021.

[26] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Transactions on Information Theory,
vol.24, no.5, pp.530–536, 1978.

[27] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol.23,
no.3, pp.337–343, 1977.

[28] C. Buckley and E.M. Voorhees, “Evaluating evaluation measure sta-
bility,” Proceedings of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
pp.33–40, 2000.

[29] M.M. Deza and E. Deza, Encyclopedia of Distances, 4 ed., Springer
Berlin Heidelberg, 2016.

[30] F. Farmahinifarahani, V. Saini, D. Yang, H. Sajnani, and C.V. Lopes,
“On precision of code clone detection tools,” Proceedings of the 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering, pp.84–94, 2019.

Takashi Ishio received the Ph.D degree in
information science and technology from Osaka
University in 2006. He was a JSPS Research Fel-
low from 2006-2007. He was an assistant pro-
fessor at Osaka University from 2007-2017. He
is now an associate professor of Nara Institute of
Science and Technology. His research interests
include program analysis, program comprehen-
sion, and software reuse.

Naoto Maeda received his master’s degree
in informatics from Waseda University in 1999.
He is an AI engineering manager at NEC Cor-
poration, leading R&D of medical imaging AI
technologies.

Kensuke Shibuya received his master’s de-
gree in informatics from Waseda University in
2008. After graduation he joined NEC Corpo-
ration. He is currently working on improving
software development by adopting software en-
gineering technologies.

Kenho Iwamoto received his master’s de-
gree in mechanical engineering from Chiba Uni-
versity in 2013. After graduation he joined NEC
Corporation. He is currently working on improv-
ing software development by adopting software
engineering technologies.

10
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Katsuro Inoue received his Ph.D. from Os-
aka University in 1984. He was an associate
professor of the University of Hawaii at Manoa
from 1984 to 1986. After becoming an assistant
professor of Osaka University in 1986, he has
been a professor since 1995. His research in-
terests include software engineering, especially
software maintenance, software reuse, empirical
approach, program analysis, code clone detec-
tion, and software license/copyright analysis.

