
IPSJ SIG Technical Report

Investigating the impact of source code metrics on
merge conflict resolution judgement model

Mohan Bian1,a) Tetsuya Kanda1,b) Kazumasa Shimari1,c) Katsuro Inoue1,d)

Abstract: In large-scale software development, a version control system is frequently used. However, if mul-
tiple persons change the same piece of code in parallel, conflicts may occur. In order to merge the changes
successfully, the developer must investigate the cause, re-edit the code. This can take hours or even days,
delaying the project’s development schedule while the developer repeatedly reviews to identify the reason for
the conflict and find a solution. In the previous research, a machine learning model was created to determine
how to solve merge conflicts from meta information such as the number of lines of merge conflicts, the date
and time when commits were created, and the developers who created them. In this research, by adding
source code metrics to the model, we aim to create a model that suggest how to resolve appropriate merge
conflicts with higher accuracy.

1. Introduction

In large-scale software development projects, it is common

for multiple developers to work together. For multi-person

development, it is necessary to record information such as

“when”, “who”, and “what changes were made” for trouble

shooting afterwards. To record these information, a version

control system was frequently used. Version control systems

enable us to access the revision history of each branch, which

make it much easier for parallel developing. While projects

can be efficiently developed by multiple people, parallel de-

velopment may cause problems. After editing a newly cre-

ated branch from the mainstream, if the mainstream also

edits the same piece of code, there will be a situation where

it cannot be merged when merging it into the mainstream.

This is called a merge conflict. Merge conflict is one of the

most annoying problems. It has been clarified that it occurs

relatively frequently in software development using a version

control system. In the research by Brun et al., as a result

of investigating the development history of nine open-source

software (hereinafter, OSS) , merge conflicts occurred in all

projects. It has been shown that the ratio of merge con-

flicts occurs to all merges is about 19% on average and the

maximum is about 42% [1].

The problem with merge conflict is that it takes time and

effort to resolve them. If a merge conflict occurs, the devel-

oper must investigate the cause, re-edit the code, and debug

until the merge is successful. This can take hours or even

1 Osaka University
a) hen-bk@ist.osaka-u.ac.jp
b) t-kanda@ist.osaka-u.ac.jp
c) k-simari@ist.osaka-u.ac.jp
d) inoue@ist.osaka-u.ac.jp

days, delaying the project to the development schedule while

the developer repeatedly reviews to identify the reason for

the conflict and find a solution [2].

In some existing studies, the characteristics of merge con-

flicts and their resolution methods have become clear. It

has been clarified that the higher the number of lines where

merge conflicts occur, the higher the rate of merge conflicts

would be [3]. Shiraki et al. [4] proposed a machine learning

model to determine how to resolve merge conflicts from meta

information such as the number of lines of merge conflicts,

the date and time when commits were created, and the de-

velopers who created them. It became clear that the number

of lines of the merge conflict contributes to the method of

resolving the merge conflict.

Ahmed et al. have also shown that bugs lead to merge

conflicts [5]. Bad code design not only impacts maintainabil-

ity, it also impacts the day-to-day operations of a project,

such as merging contributions. Ahmed et al. indicate that

research is needed to identify better ways to support merge

conflict resolution to minimize its effect on code quality. In

other research, it became clear that the complexity of the

program measured by the source code metrics is also related

to the defects of the program [6]. From the above, we re-

alized it is possible that source code metrics are potential

indicators of merge conflict. By adding source code met-

rics to the machine learning model proposed by Shiraki et

al., we aim to create a model that suggests how to resolve

merge conflicts with higher accuracy. In addition, we inves-

tigate the importance of source code metrics contributes to

the machine learning model and compare the importance of

features in case of Java and Python projects.

In this paper, Section 2 describes the background of the

© 1992 Information Processing Society of Japan 1

IPSJ SIG Technical Report

Fig. 1 An example of merge conflict.

research, Section 3 introduces the previous research, Sec-

tion 4 proposes methods for model extension and parameter

improvement, and Section 5 evaluates the improved model.

Section 6 discusses the limitations of this study. Finally, we

summarize the research in Section 7.

2. Background

2.1 Merge Conflict

In Git, a repository is created locally and most of the de-

velopment is done in the local environment, and work is done

in units called branches. Merge is a way to bring branches

back. The git merge command is a command created using

git branch to merge multiple independent branches. How-

ever, if different edits in the same piece of code are detected

in both commits, a merge conflict will occur.

In merging, 3-way merging is common. Figure 1 shows an

example of a 3-way merge conflict. A branch is created in

ancestor commit P, and commit P1 is created with edits to

line 10. Next, another branch is created from commit P, and

commit P2 is created with another compilation for the line

10. Commit P1 and P2 are a commit pair to merge. Then,

commits P1 and P2 try to merge their respective revisions.

Currently, there are duplicates in the edited part, so that

a merge conflict occurs when merging those two branches

systematically.

In addition to textual conflicts, there are merge conflicts

called build conflicts and test conflicts [1][7]. Build conflicts

and test conflicts appear to be successfully merged in the

text, when you actually run a program build or test, you

get an error due to a merge. Building conflicts and test con-

flicts have been found to be less than half as likely as textual

conflicts [7]. Therefore, this study does not deal with build

conflicts, and hereafter, merge conflicts refer to textual con-

flicts.

2.2 Solution of Merge Conflict

Regarding the specific method of resolving merge con-

flicts, there are many cases where the merge conflict is re-

solved by adopting the editing of one of the commit pair

and deleting the other one as shown in Figure 1. A study

by Yuzuki reveals that about 98% of all merge conflicts that

occur within methods in Java projects are resolved in this

Fig. 2 Evolutionary commit and the distance.

way [8].

2.3 Evolutionary Commit and Distance

In each of the commits P1 and P2 where the merge conflict

occurred, there is a commit edited in the branch from the

common ancestor to P1 and P2. Of all the edited locations

where merge conflicts occur, the commits closest to P1 and

P2 are called Evolutionary Commits [9]. In the previous re-

search, the distance between the Evolutionary Commit and

the commit in which the merge conflict occurred was ob-

tained and used to create the model. The number between

green and red commit in Figure 2 is the distance explained

above.

2.4 Source Code Metrics

Source code metrics are measurements of various aspects

of software code. Some metrics are at an higher level, span-

ning the entire code, while others are at a lower level, cov-

ering classes, methods, or even smaller blocks of code. For

example, the number of the lines of code, the number of

comments in the code, the number of variables, functions,

developers, and so on. In these metrics, a lot of valuable

information about the program is hidden. For example, in

Meirelles’s study, the relationship between source code met-

rics and the attractiveness in free software projects has be-

come clear [10]. They suggest software projects with higher

structural complexity have lower attractiveness. On the

other hand, projects with more lines of code have higher

attractiveness. Lanubile et al. [6] shows that source code

metrics are related to the defects of the program. Since the

source code metrics can tell us so many valuable informa-

tion, it is quite possible that the metrics we get from the

source code in the development history would give us useful

information related to merge conflict.

2.5 ANTLR

ANTLR*1 is a lexer and parser generator aimed at build-

ing and walking parse trees. ANTLR makes it effortless

to parse nontrivial text inputs such as a programming lan-

guage syntax. It is a tool that automatically generates a

so-called analyzer, which is a function required for parsing

an abstract syntax tree, using a grammar file as input. Since

the grammar file does not depend on the programming lan-

guage of the analyzer, it is possible to generate an analyzer

for multiple programming languages. The analyzer consists

*1 https://www.antlr.org/

© 1992 Information Processing Society of Japan

IPSJ SIG Technical Report

Fig. 3 Flow of the input and output of Lexer.

Fig. 4 Merge conflict resolution model proposed in previous re-
search*1.

of three parts: Lexer, Parser, and Listener. In the experi-

ment we only used Lexer, Figure 3 shows the flow of how

Lexer works.

Lexer is a procedure that analyzes character strings such

as natural language sentences and programming language

source code to obtain a sequence of “tokens”, which is the

smallest unit in parsing (shown in Figure 3). Parser is a

process that reads the text to be analyzed and decomposes

it into a syntax tree. Listener is an API for users to create

their own analyzer.

In this study, in order to obtain the source code met-

rics, Lexer is used to decompose source code into the small-

est unit “token”, and the source code metrics are obtained

from there. In this paper, we will analyze Java projects

and Python projects. Since a grammar file is required for

each language, it is necessary to generate Lexer using the

grammar files for Java language and Python language, re-

spectively.

3. Previous research

In this research, we extend the model created in previ-

ous research. In this section, we will explain the previous

research by Shiraki et al and their results.

3.1 Experimental Approach

They aimed to suggest to developers how to resolve merge

conflicts when they occur. According to the research by

Yuzuki [8], it is often resolved by adopting one and delet-

ing the other for the commit pair when the merge conflict

occurred. Based on this result, Shiraki et al. proposed a

method for resolving merge conflicts using machine learning.

They created a judgement model (shown in Figure 4) for

determining the method for resolving merge conflicts from

development history information related to merge conflicts

that occurred in the past. To build the model, random forest

Fig. 5 Distinguishing Commit Pairs with Merge Conflicts*1.

Table 1 Definition of merge conflict resolution instruction in Shi-
raki et al.’s study.

ADOPT Adopt all edits
DELETE Delete all edits
EDIT Make edits
ZERO 0 lines to edit

Table 2 Parameters used to build the model.

Parameter

P1

linenum(P1)
time(P1)
author ratio(P1)
distance(P1)

P2

linenum(P2)
time(P2)
author ratio(P2)
distance(P2)

Difference

linenum(d)
time(d)
author ratio(d)
distance(d)

is used as the learning algorithm.

3.2 Data Collection

In the previous research, 20 Java projects were collected

from the OSS provided by Apache. The determination of the

resolution method by the judgement model is performed for

each commit pair in which a merge conflict has occurred. As

shown in Figure 5, to distinguish each commit of the commit

pair, P1 is the commit on the mainstream branch and P2 is

the commit on the newly derived branch.

The resolution method proposed to developers is a set of

instructions for each commit (P1 resolution instruction / P2

resolution instruction). Table 1 defines the list of resolution

methods for each commit.

Development history information was acquired from the

repository for each commit P1 and P2 in which a merge

conflict occurred. Table 2 is the list of parameters used to

create the machine learning model. linenum is the number

of lines where merge conflicts occur, time is commit creation

date and time, author ratio is the ratio of commit creator

to total commit number, distance is the distance between

current commit and its Evolutionary Commit. P1 is the pa-

rameter from mainstream, P2 is the parameter from branch,

and difference is the subtraction of P1 and P2.

*1 Shiraki et al.,Judgment Model of Merge Conflict Resolu-
tion Pattern Using Machine Learning Meta-Information,IEICE
Technical Report,2020

© 1992 Information Processing Society of Japan 3

IPSJ SIG Technical Report

Fig. 6 An overview of the model proposed in this research.

3.3 Experiment result

20 Java projects collected from the OSS provided by

Apache were used for the experiment. The accuracy is a re-

sult of cross-validation by dividing the merged conflict data

into five for each project. The accuracy was 66.41% on av-

erage and 94.43% at maximum. It became clear that the

solution method can be determined with high accuracy.

To find out which parameter the created model deter-

mines the resolution method, an index called importance is

used. Importance is the percentage of each parameter con-

tributing to the classification in the model, and the sum of

the importance of all parameters is 1. The number of lines

line num (P1) and line num (P2) where merge conflicts oc-

cur are both as large as 0.15 or more. So, it can be said that

the number of lines where conflicts occur greatly contributes

to the determination of how to resolve merge conflicts in any

project.

4. Model Expansion

The goal of this research is to improve the prediction ac-

curacy by improving the existing feature and adding new

metrics extracted from source code. An overview of the

model is shown in Figure 6.

Shiraki et al.’s method [4] used only language-independent

features. However, as introduced in Section 2, source code

metrics also possibly have an effect on software quality.

Therefore, we add source code metrics to this model to see

how the accuracy changes. We also aim to verify whether

a judgement model should be created for each language or

regardless of the language. Since merge conflicts often occur

in parallel development using Git regardless of programming

language, another goal of this research is to help resolve

merge conflicts not only in Java language projects but also

in other languages.

4.1 New judgement model by adding code met-

rics

Some studies have also shown that bugs lead to merge con-

flicts [5]. In other research, it has become clear that the com-

plexity of the program calculated by the source code metrics

is also related to the defects of the program [6]. Therefore,

it is quite possible that there is a connection between merge

conflict and the complexity of the program calculated by the

Table 3 Source code metrics to get.

P1
Name Num(P1)

Operator Num(P1)
Keyword Num(P1)

P2
Name Num(P2)

Operator Num(P2)
Keyword Num(P2)

Difference
Name Num(d)

Operator Num(d)
Keyword Num(d)

source code metrics.

There are many source code metrics show the complexity

of the program. For example, Cyclomatic complexity, num-

ber of lines of code, number of methods, number of function

calls, and so on. It is conceivable that complicated programs

tend to have a large amount of information. Considering the

cost of extracting the source code metrics, we decided to

use source code metrics that can be easily get. Metrics that

represent the amount of information can be easily obtained

including the number of lines in the program in which the

merge conflict occurred, the number of variables and func-

tions, the number of operators, and the number of keywords.

And since the number of lines of each commit has already

been acquired in previous research, this time we will add the

number of variables and functions, the number of operators,

and the number of keywords words as source code metrics

for building the new model. Table 3 shows the new met-

rics to get for the judgement model. Name Num represents

the number of variables and functions, Operator Num is the

number of operators and Keyword Num is the number of key-

words. Same with previous research, P1 is the parameter

from mainstream, P2 is the parameter from branch, and diff

is the subtraction of P1 and P2.

4.2 The method of extracting code metrics

The method of getting the code metrics from development

history can be described into several steps:

(1) Get the development history file contents corresponding

to file path and commit

(2) Generate the Lexer of Java or Python according to the

project language

(3) Pass the file contents as strings to Lexer to obtain a

sequence of “tokens”

(4) Implement a program to stat the number of the metrics

in need

First of all, we used git show command: “git show

commitHash:/path/to/file” to get the developing history file

contents corresponding to file path and commit hash. The

way of getting the source code metric is by using a language

recognizer. We used ANTLR introduced in Section 2.5 to

generate a Lexer from Java and Python grammar file re-

spectively. Then we used Lexer of each language to analyze

projects in each programming language source code to ob-

tain a sequence of “tokens”, which is the smallest unit in

parsing. Figure 7 describes the flow of source code metrics

extraction.

According to the grammar file, thirty-four kinds of op-

© 1992 Information Processing Society of Japan

IPSJ SIG Technical Report

Fig. 7 The flow of source code metrics extraction.

Fig. 8 The time feature used in previous research.

erator and fifty kinds of keyword are defined for Java and

thirty-nine kinds of operator, and thirty-five kinds of key-

word are defined for Python.

Finally, we implemented a program to count the number

of variables and functions, the number of operators, and the

number of keywords from the tokens, which are the source

code metrics needed for building the new model.

4.3 Parameter Improvement

In the previous research, the creation dates and times of

commits P1 and P2 were acquired and used as features of

the learning model. For example, if a commit was created at

12:30:25 on May 21, 2019, it would feature an 8-digit date

“20190521” and a 6-digit time “123025”, a total of 14-digit

numbers “20190521123025”(shown in Figure 8).

It is a quantity and since the subtraction of the time of

P1 and the time of P2 is also subtracted as a decimal num-

ber of 14 digits, its usage is a little inconsistent with the

concept of time. In Costa et al.’s research [11], factors that

contribute to the occurrence of conflicts are listed as num-

ber of changed files, number of changed lines, number of

commits, number of developers, branching-duration, lack

of communication, developer working in several branches

and so on. They asked 109 software developers to con-

duct a survey on factors that they think lead to conflicts.

In this question, participants were allowed to mark more

than one answer. 76 (69.7%) developers marked the option

“branching-duration”. From this result, it is considered that

the time from each commit’s creation time to the merge

time is more related to the merge conflict than the commit

creation date and time. Therefore, we calculated the du-

Fig. 9 The new time feature Fixed time1, Fixed time2 used in
this research.

ration from each commit’s creation time to the merge time

as Time1 and Time2 in seconds. In Figure 7, Fixed time1,

Fixed time2 show the time from each commit’s creation

time to the merge time. Fixed time1, Fixed time2, as well

as Fixed timeD(subtraction of Fixed time1, Fixed time2)

which are updated as features for the new model.

5. Evaluation

In order to investigate the effectiveness of the source code

metrics for the judgement model, we conducted evaluation

experiments on Java projects and Python projects with and

without the source code metrics. Same with Shiraki et

al.’s research, 20 Java projects were used from the OSS

projects published by the Apache Software Foundation. For

the Python project, 15 new OSS projects published by the

Apache Software Foundation are selected in order of pop-

ularity. Projects with no conflicts and projects with ex-

tremely few conflicts (less than 10) are excluded, and 8

projects remained. Table 4 shows the list of projects used

in the experiment and the number of merge conflict.

20 java projects and 7 python projects were used in the

experiment. For each project, the accuracy is a result of

cross-validation by dividing the merged conflict data into

five. The learning algorithm Random Forest was used.

After modifying the parameter in Shiraki et al.’s research,

the accuracy of the model increased from 66.41% to 74.99%

in case of Java project, and 55.32% to 61.87% in case of

Python project. From the result, it is clear that the new

parameter Fixed time1, Fixed time2 defined contribute

more to the model.

5.1 RQ1: How does the accuracy of the model

change if both developing history data and

language-specific source code metrics are

used in the model?

In the case of Java, the average accuracy of the model

changed from 74.99% to 75.54%. In Python, it changed

from 61.87% to 61.76%, which were almost unchanged.

Figure 10 shows the ratio of source code metrics(the grey

area pulled out by the line) to all features. The blue zone

represents the parameter importance of mainstream, the red

zone represents that of branch, the green zone represents

that of the subtraction of mainstream and brunch. Source

© 1992 Information Processing Society of Japan 5

IPSJ SIG Technical Report

Fig. 10 Importance of source code metrics in case of Python and Java.

Table 4 List of Java and Python projects used in the experiment.

Java project(20 in total)
project name # merge conflict

beam 1,449
camel 44

cassandra 17,837
cordova-android 973

curator 287
dubbo 401
flink 3,454
geode 573
groovy 353
hbase 187
hive 3,246
ignite 2,850

incubator-heron 61
jmeter 693

lucene-solr 2,562
mahout 195
maven 251
nifi 157

nutch 658
rocketmq 56
Python project(8 in total)

project name # merge conflict
airavata 72
airflow 61
allura 28

cassandra 200
incubator-datalab 449
incubator-spot 10

libcloud 2,082
predictionio 14

code metrics (9 in total) are 29.32% for Java and 26.65% for

python . Among all the 9 source code metrics, d NameNum,

d OperatorNum, and d KeywordNum came to the top in both

Java and Python projects. These three metrics are all the

difference of code metrics for each commit pair. Therefore,

from the source code metrics extracted from each commit

pair, it was found that the difference between the source

code metrics of the two commits contributes more to the

result of the judgement model than the metrics extracted

from each commit.

Since the difference of code metrics from two commits

tend to have stronger relevance, we made another exper-

iment of the model only consist of the difference of code

metrics and parameters used in Shiraki et al.’s model. Ta-

ble 5 shows the parameter and the accuracy of each model.

As a result, source code metrics are about one-third as

important in the two languages. However, there was a vari-

ation in the total importance of the source code metrics.

Table 6 shows the importance of code metrics in each Java

project.

In case of Java project, the maximum was 55.37% for

project jmeter, compared to only 11.49% for project hbase.

When we checked the source code metrics, the difference

between the source code metrics obtained from each commit

d NameNum, d OperatorNum, and d KeywordNum were large in

of some of the projects. These projects’ source code met-

rics tend to have larger importance. On the other hand,

when the metrics taken from each commit are almost the

same, d NameNum, d OperatorNum, and d KeywordNum would

be almost 0. In this case, source code metrics did not make

contributions to the decision model.

From the above, it became clear that source code metrics

are not useful if each commit does not change the number

of names, the number of operators, and the number of key-

words. For example, if two developers only change the name

of the variable or function, the number of names stays the

same. Also, if two developers add a similar piece of code

or change the order of the code in a program, the difference

between two commits still stays the same as before. In this

kind of situation, source code metrics may not contribute as

much as we expected.

In conclusion, the source code metrics may not contribute

to the model as much as the feature existed, but the differ-

ence of the code metrics from each commit pair surely has

an influence on the model.

© 1992 Information Processing Society of Japan

IPSJ SIG Technical Report

Table 5 Parameters used in each model.

parameter improved Shiraki et al.’s model expanded model expanded model
(difference only)

linenum(P1) ✓ ✓ ✓
Fixed time(P1) ✓ ✓ ✓
author ratio(P1) ✓ ✓ ✓
distance(P1) ✓ ✓ ✓
linenum(P2) ✓ ✓ ✓

Fixed time(P2) ✓ ✓ ✓
author ratio(P2) ✓ ✓ ✓
distance(P2) ✓ ✓ ✓
linenum(d) ✓ ✓ ✓

Fixed time(d) ✓ ✓ ✓
author ratio(d) ✓ ✓ ✓
distance(d) ✓ ✓ ✓

Name Num(P1) ✓
Operator Num(P1) ✓
Keyword Num(P1) ✓
Name Num(P2) ✓

Operator Num(P2) ✓
Keyword Num(P2) ✓

Name Num(d) ✓ ✓
Operator Num(d) ✓ ✓
Keyword Num(d) ✓ ✓
Java Accuracy 74.99% 75.54% 75.01%

Python Accuracy 61.87% 61.76% 65.77%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

lin
e_
nu
m1

dis
tan
ce
1

Fix
ed
_ti
me
1

au
tho
r_r
ati
o1

lin
e_
nu
m2

dis
tan
ce
2

Fix
ed
_ti
me
2

au
tho
r_r
ati
o2

d_
lin
e_
nu
m

d_
dis
tan
ce

Fix
ed
_ti
me
D

d_
au
tho
r_r
ati
o

Na
me
Nu
m1

Op
era
tor
Nu
m1

Ke
yw
ord
Nu
m1

Na
me
Nu
m2

Op
era
tor
Nu
m2

Ke
yw
ord
Nu
m2

d_
Na
me
Nu
m

d_
Op
era
tor
Nu
m

d_
Ke
yw
ord
Nu
m

Expanded model

Java Python

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

line_num1 distance1 Fixed_time1 author_ratio1 line_num2 distance2 Fixed_time2 author_ratio2 d_line_num d_distance Fixed_timeD d_author_ratio

Improved Shiraki model

Fig. 11 Feature importance in case of Java and Python.

5.2 RQ2: How is the developing history data

that contributes to the judgement different

between Java and Python language projects?

There are 21 features in total, including 12 metrics ac-

quired from the development history and 9 extra source code

metrics extracted from the source code this time. In Figure

11, each feature is a comparison of importance in Java and

Python. From this figure, it can be seen that Java project

features that are of high importance tend to have high im-

portance in Python as well. The same result came up even

when building the model without the source code metrics. It

became clear that line num, distance, Fixed time, and

the differences in the source code metrics of commit pair

were of high importance. In conclusion, it was found that

the source code metrics extracted from each language had

no language-dependent characteristics, in other words, Java

and Python language don’t have obvious differences in the

number of variables and functions, operators and keywords.

In this research, we got the source code metrics from the

entire file for each commit pair. From the result, the differ-

© 1992 Information Processing Society of Japan 7

IPSJ SIG Technical Report

Table 6 Importance of source code metrics (CM) in each Java
project.

project name expanded model CM importance
beam 95.91% 31.54%
camel 83.33% 37.36%

cassandra 66.58% 35.04%
cordova-android 71.43% 21.55%

curator 66.18% 37.48%
dubbo 61.70% 17.23%
flink 76.26% 29.78%
geode 72.41% 24.47%
groovy 89.55% 35.71%
hbase 60.98% 11.49%
hive 70.90% 23.62%
ignite 81.23% 27.52%

incubator-heron 35.71% 28.29%
jmeter 98.50% 55.37%

lucene-solr 73.87% 19.04%
mahout 91.11% 23.14%
maven 84.78% 36.64%
nifi 66.67% 29.29%

nutch 81.38% 33.78%
rocketmq 82.35% 28.10%
average 75.54% 29.32%

ence between the source code metrics extracted from com-

mit pairs contributed more to the judgement result than

metrics from each commit. Therefore, instead of the whole

file, source code metrics extracted from lines where conflict

occurs may be more useful for the model creation.

In conclusion, the features used for building the model

don’t have obvious differences between Java and Python lan-

guage.

6. Limitations

All the projects used in this study are OSS provided by

Apache, and there is no certainty that the results will be

similar to the results of this study in other OSS or other

commercial projects. In addition, among the OSS provided

by Apache, the number of python projects is smaller than

Java, so it is difficult to evaluate with data of the same

scale. In the future, it will be necessary to conduct research

not only on Apache but also on various projects in various

languages.

Moreover, as the information used for the parameters of

model creation, we traced back to the development history

and used the metrics extracted from the source code of the

file during the development. It is possible that some hidden

valuable information that has not been used this time, so

the combination of parameters used by the model created in

this study is not always optimal. However, from the accu-

racy obtained in this study, it can be said that the model in

this study may be useful for resolving merge conflicts.

7. Conclusion

Using the information in the development history, we pro-

posed a model that traces back to the file contents during the

development phase, extracts the metrics, and contributes

to a judgement model based on the source code metrics.

As a result of comparing the judgement results of the Java

language project and the python language project, it can

be seen that the features with high importance of the Java

project tend to be of high importance also in Python.

Also, if the difference between each commit pair is sig-

nificant, the source code metrics in the decision model tend

to contribute more. However, if the difference between the

modifications of the commit pair is small, the contribution

of the source code metrics tend to decrease. From this re-

sult, it is considered that the importance in the judgement

model may be higher when the source code metrics are ex-

tracted only in the part where the conflict occurs, not in the

whole source file.

Since different languages have different grammar, it is nec-

essary to extract source code metrics for each language, but

there is also a lot of language-dependent information that re-

mains hidden. Therefore, it is possible that there is room for

further improvement in accuracy by increasing the kinds of

source code metrics in each language in the future. When a

developer encounters a merge conflict, the judgement model

can be useful as a reference to determine how to resolve it.

Acknowledgment

This work was supported by JSPS KAKENHI Grant

Numbers JP18H04094 and JP19K20239.

References

[1] Brun, Y., Holmes, R., Ernst, M. D. and Notkin, D.: Early
Detection of Collaboration Conflicts and Risks, IEEE Trans-
actions on Software Engineering, Vol.39, No.10, pp. 1358–
1374 (2013).

[2] Kasi, B. K. and Sarma, A.: Cassandra: Proactive Conflict
Minimization through Optimized Task Scheduling, Interna-
tional Conference on Software Engineering (ICSE), pp. 732–
741 (2017).

[3] Dias, K., Borb, P. and Barretoa, M.: Understanding pre-
dictive factors for merge conflicts, Understanding predictive
factors for merge conflictsInformation and Software Tech-
nology, Vol. 121, No.106256 (2020).

[4] Shiraki, S., Kanda, T. and Inoue, K.: Judgment Model of
Merge Conflict Resolution Pattern Using Machine Learn-
ing Meta-Information, IEICE Technical Report, Vol. 119,
No. 451, pp. 61–66 (2020).

[5] Ahmed, I., Brindescu, C., Mannan, U. A., Jensen, C. and
Sarma, A.: An Empirical Examination of the Relationship
Between Code Smells and Merge Conflicts, In International
Symposium on Empirical Software Engineering and Mea-
surement(ESEM), pp. 58–67 (2017).

[6] Lanubile, F., Ebert, C., Prikladnicki, R. and Vizcáıno, A.:
Collaboration Tools for Global Software Engineering, IEEE
Software, Vol. 27, No. 2, pp. 52–55 (2010).

[7] Brun, Y., Holmes, R., Ernst, M. D. and Notkin., D.: Proac-
tive Detection of Collaboration Conflicts, European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), pp. 168–178 (2011).

[8] Yuzuki, R., Hata, H. and Matsumoto, K.: How we resolve
conflict: an empirical study of method-level conflict resolu-
tion, 2015 IEEE 1st International Workshop on Software
Analytics (SWAN), pp. 21–24 (2015).

[9] Mahmoudi, M., Nadi, S. and Tsantalis, N.: Are Refactorings
to Blame? An Empirical Study of Refactorings in Merge
Conflicts, International Conference on Software Analysis,
Evolution and Reengineering(SANER), pp. 151–162 (2019).

[10] Meirelles, P., Jr., C. S., Miranda, J., Kon, F., Terceiro,
A. and Chavez, C.: A Study of the Relationships be-
tween Source Code Metrics and Attractiveness in Free Soft-
ware Projects, Brazilian Symposium on Software Engineer-
ing (2010).

[11] Costa, C., Menezes, J., Trindade, B. and Santos, R.: Factors
that Affect Merge Conflicts: A Software Developers ’Per-
spective, Brazilian Symposium on Software Engineering, pp.
233–242 (2021).

© 1992 Information Processing Society of Japan

