
didiffff: A Viewer for Comparing Changes in both Code and
Execution Traces

Tetsuya Kanda
Osaka University
Suita, Osaka, Japan

t-kanda@ist.osaka-u.ac.jp

Kazumasa Shimari
Osaka University
Suita, Osaka, Japan

k-simari@ist.osaka-u.ac.jp

Katsuro Inoue
Osaka University
Suita, Osaka, Japan

inoue@ist.osaka-u.ac.jp

ABSTRACT
One of the important purposes of code review is to find potential
defects caused by other developers’ code changes. When reviewing
bug fixes, it is important to check the program behavior is properly
changed to remove the bug. On the other hand, it is also impor-
tant to check the program behavior that is not related to the bug
is not changed. To investigate the program behavior, omniscient
debugging which records all the runtime events is proposed. With
omniscient debugging techniques, existing tools visualize multiple
execution paths and the states of local variables of a method, but
they are not focusing on code changes. In this paper, we imple-
mented a prototype tool that compares and visualizes the difference
between two execution traces caused by code changes. Each vari-
able has a maximum of two lists of values, before and after the
code changes, so we proposed their categorization based on their
difference of length and contents. We also developed a viewer to
show both code changes and the difference of execution traces at a
glance by extending our previous viewer for omniscient debugging.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware evolution.

KEYWORDS
Software Visualization, Dynamic Analysis, Diff
ACM Reference Format:
Tetsuya Kanda, Kazumasa Shimari, and Katsuro Inoue. 2018. didiffff: A
Viewer for Comparing Changes in both Code and Execution Traces. In
Woodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018,
Woodstock, NY . ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION
One of the important purposes of code review is to find potential
defects caused by other developers’ code changes [3]. Since code re-
viewing requires reviewers to understand the code and changes [2],
various methods and tools are proposed to assist their task. When
reviewing bug fixes, it is important to check the program behavior

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

is properly changed to remove the bug. On the other hand, it is also
important to check the program behavior that is not related to the
bug is not changed.

Change impact analysis is a collection of techniques for deter-
mining the effects of modifications on source code [1]. Such kind
of techniques are performed based on static and dynamic analy-
sis, and identify the program code that is potentially affected by
changes [11]. On checking the potentially affected code and select-
ing corresponding test cases, they are very useful.

To investigate the actual changes in the dynamic behavior of
a program, omniscient debugging which records all the runtime
events is proposed. NOD4J [10] is a tool that records local variables
and fields used in a Java program execution and annotates the
source code in a web browser.

In this paper, we implemented a prototype tool called didiffff [7]
that compares and visualizes the difference between two execution
traces caused by code changes. Our tool records whole program
execution by running a test case with an omniscient debugging
technique before and after code changes. Each variable has a maxi-
mum of two value lists, before and after the code changes, so we
propose to categorize variable tokens based on their difference of
length and contents. We also developed a viewer to show both code
changes and the difference of execution traces at a glance by extend-
ing the NOD4J viewer component. The viewer is implemented as a
web application so that users can investigate the changes easily.

2 RELATEDWORKS
Some existing tools aim to visualize multiple executions of the pro-
gram. Jones et al. presented the visualization technique to assist
fault localization tasks [5]. Their tool colors program statement
based on the outcome of the test suite, and as a result, faulty state-
ments will be highlighted. REMViewer [8] visualizes multiple exe-
cution paths and the states of local variables of a method. Based on
the execution trace, REMViewer acts like an interactive debugger
but can reproduce multiple executions of a target method simultane-
ously. Celine et al. visualized a large-scale refactoring process with
log-based behavioral differencing [4], comparing two executions
before and after the refactoring by highlighting the graph.

However, the approaches described above are proposed mainly
for finding defects and visualizing only the difference of the execu-
tions. Our tool is designed to visualize both code changes and the
difference of execution traces at a glance.

3 COMPARING EXECUTION TRACES
Our proposed tool takes two execution traces recorded with NOD4J
as inputs and processes them. This section describes how to com-
pare these two execution traces.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Tetsuya Kanda, Kazumasa Shimari, and Katsuro Inoue

Figure 1: An overview of the Viewer

An execution trace recorded by NOD4J contains the list of values
in the variable and source code that contain them. If the variable is
a primitive data type, String, or Exception object, NOD4J records
its value or textual contents, otherwise NOD4J records its object
ID.

To compare two execution traces, our tool firstly compares the
source code to detect changes and then matches the lines. Secondly,
our tool compares the execution traces for each variable.

3.1 Comparing source code
Firstly, we extract the correspondence of lines in two execution
traces. For each source file that has the same file path in two exe-
cution traces, we mark each line as either “add”, “delete”, or “un-
changed” with UNIX diff tool [9]. If there are no files with the same
file path on one side, our tool stops processing that file.

Our current implementation does not track renamed files. In
addition, it does not track operations that UNIX diff cannot handle
such as move method refactoring.

3.2 Comparing value lists
After comparing source code, each variable token has a maximum
of two value lists. The tool compares these traces and categorizes
them as the following criteria.

Case 0: If the variable token has no value lists, do nothing.
Case 1: If the variable token has its execution trace but is included

in the “add” or “delete” line, we cannot find an exact matching for
variables that appeared in the changes. The tool mark it as “Trace
1 only” if it is included in the deleted lines and “Trace 2 only” if
it is included in the added lines. These categories indicate that the
tool could not find the value list to compare.

Case 2: If the length of two value lists is different, the tool reports
that “Diff in length”. This includes the case that one of the lists
is empty and the other is not. Unlike the previous case, the overall
execution path might be changed in this case so that the number
of times the variable has been called has also changed.

Case 3: If the lengths of two value lists are the same and they
are not considered as a primitive data type nor String, the tool
reports that “Same trace length Object” since the contents of the
object is not available in the trace.

Case 4: Here, the type of two value lists are a primitive data type
or String and the tool compares the values in these two value lists.
If they have exactly the same contents, the tool reports “Diff in
trace”, otherwise “No diff in trace”.

It should be noted that it is not a simple task to take diff of
the value list. Let us consider the case where the value list [1,
1, 2, 1] turns into [1, 2, 1, 1] after fixing the bug. In this
case, there are several possible scenarios; the execution before the
value 2 appeared becomes shorter and after it becomes longer, the
intermediate values [2, 1] have changed to [1, 2], and so on. In
another situation like the value list [1] turns into [1, 1, 1], it is
almost impossible to determine which [1] in the revised version
corresponds to the one before the revision, and it is even possible
that none of them correspond in the first place. For these reasons,
we decided not to show the detailed diff status like text (add, delete,
...) for trace and leave the further investigation up to users.

4 VIEWER: WEB UI
To show both code changes and the difference of execution traces
in one place, we developed an extended version of the NOD4J
viewer component. The viewer is implemented as a web application
running on the Node.js environment. Figure 1 is a screenshot of
a tool, running NOD4J example test code. The viewer consists of
three components: the file tree view, the source code view, and the
value list view.

4.1 File Tree View
The file tree view provides the list of directories and files included
in the analysis target. Directories and files which are contained in
both two execution traces are shown in the view. Each file node
in the tree has two indicators to show the existence of differences.
The green one on the left shows the differences in the text and

didiffff: A Viewer for Comparing Changes in both Code and Execution Traces Woodstock ’18, June 03–05, 2018, Woodstock, NY

the purple one on the right shows the differences in the execution
traces. Directory nodes also have similar indicators which show
whether some of the files in the directory have differences. With
these indicators, users can easily reach files to investigate changes.

In Figure 1, we can see that some directories (test, target) have
their child node but they have no difference in either the source
code or the value lists.

4.2 Source Code View
The source code view displays the contents of the source code. The
first two columns show the line numbers of the two files to be
compared. As with most text diff tools, deleted and added lines are
highlighted.

Variable tokens which have at least one value list are also high-
lighted. By clicking one of the highlighted variable tokens, the value
list(s) of it is displayed in the value list view. Highlights are based on
the status described in Section 3.2. If the variable is categorized as
“No diff in trace”, “Trace 1 only”, or “Trace 2 only”, it is highlighted
in gray, and “Same trace length Object” is highlighted in light pur-
ple as well. In these two cases, traces might be either unaffected
by the code changes or they cannot be checked in detail by our
tool. “Diff in trace” is highlighted in blue and “Diff in length” is in
green. The behavior of the target program is changed in these two
cases so that users can investigate the effects of code changes by
observing such variable tokens.

In Figure 1, we can see that arguments of the method getMax()
on line 8 contain the same value lists in two execution traces. The
view also indicates that variables on line 12, right after the code
changes in line 11, have different length of value lists.

4.3 Value list View
The value list view shows the recorded value list(s) of the selected
variable token with its status. If the variable is a primitive data type
or String, concrete values are displayed; otherwise, lists of object
ids with their class name are displayed. As mentioned in Section 3.2,
the tool just shows two value lists and does not provide detailed
information like text diff in the current implementation.

The value list view in Figure 1 shows the status and value lists of
variable num3 on line 12. Since the previous conditional expression
was modified, the execution path was changed. We can check how
each variable is affected by code changes using this view.

5 EXAMPLE
We explain the usage of our tool with the example scenario; review-
ing the debug result of a bug Math 57 of the Defects4J dataset [6].
The bug is found in the clustering component of the library. One
of the variables to contain the distance is declared as int so that
the distances between points are truncated to integers. This bug is
removed by changing the type of that variable from int to double.
In this case, only one line (more specifically, only one token) has
been changed to fix the bug. After fixing the bug, the new test case
to ensure the bug is removed is added to the repository. We invoke
this test case before and after fixing the bug and visualize with our
tool to show how those execution traces are changed.

Figure 2 shows the part of the file tree view of comparing two
execution traces. Indicators in the file tree view show that there are

Figure 2: Part of the File Tree View in the example scenario.
Some files and directories have indicators turned on.

differences in both text and traces is in the clustering directory.
Some files have differences only in execution traces but one file
named KMeansPlusPlusClusterer.java also has differences in
text. Now we select this file to check detailed information.

Figure 3 displays the part of the source code view of a file
KMeansPlusPlusClusterer.java, around amethod including code
changes. The first thing we can see is that line 175 is changed and it
is because the type of variable sum is modified from int to double.
No other code changes are found in this file, so next, we investigate
the difference of execution trace.

Focusing on method arguments in line 162, they have the same
length of value lists before and after the code changes. In addition,
the second argument k has the completely same values. They sug-
gest that this method was called the same number of times before
and after the modification. After the method declaration, there are
some Object variables until code changes on line 175, Our tool
cannot investigate the detailed comparison of value lists of them,
but we can still see that the length of the value lists is the same.

Some lines after line 175, the point of code change, have no
difference in trace or object variables which have the same length
of the value lists. On line 180, the view shows that there are some
differences in the traces of variable sum. Figure 4a shows the value
list view selecting variable sum on line 180. Looking into the traces
in the trace view, we can find that the result of the latest execution
of this line has changed. For a better understanding of the situation,
we also show the value list view of variable d on line 180 in Figure 4b.
We can see that the same small value 0.00001 is assigned to the
sum before and after the code changes, but it is no longer rounded
after changing the code.

A loop variable i and an Array object dx2 in line 187 are high-
lighted in green, which indicates they have different length of value
lists. The value list of the variable i in line 187 is displayed in Fig-
ure 4c. We can see that changing the type of sum also leads to a
different comparison result in the condition statement. Please note
that this loop and its following condition statement have been re-
peated over 64 times, which is the default value for the length limit
of the NOD4J recorder so that values on the first part are missing
and the list on the right-hand side starts with a value 9936.

The if statement on line 188 is executed at most once since it
has a break statement inside. The output of this method changed
because different values of i are specified as arguments to the
remove() method call on line 189.

As mentioned in this section, our tool makes it possible to track
changes in behavior caused by code changes in a single application,
without setting breakpoints or opening debuggers in parallel.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Tetsuya Kanda, Kazumasa Shimari, and Katsuro Inoue

Figure 3: Source Code View in the example scenario. Marks a, b, and c are given for explanatory
purposes only and do not appear in the actual view.

(a) Selecting variable sum on
line 180.

(b) Selecting variable d on
line 180.

(c) Selecting the second vari-
able i on line 187.

Figure 4: Value List View
in the example scenario.

6 CONCLUSION AND FUTUREWORK
It is important to understand how changes in the code affected
the behavior of the program on code reviewing. In this paper, we
proposed a tool that visualizes both code changes and the difference
of execution traces at a glance. We categorize variable tokens based
on their value lists recorded in the execution traces. The viewer
is based on the existing tool NOD4J, which records and visualizes
an execution trace, and we extended it for handling two execution
traces. Our tool allows developers to track not only the test results
but also the changes in program behavior before and after code
changes in a single window of the web browser.

We are planning to extend the tool by assuming usage scenarios.
For example, some test cases give multiple argument sets as input to
a method for boundary value tests. If the test fails in the middle of

an iteration, the remaining inputs will not be executed. As a result,
many variables will have a shorter length of value list comparing
with when the test succeeds and indicated as “Diff in length” in
the viewer. If we assume that the trace is fully recorded, we can
split the execution traces into each method execution and highlight
the iteration in which the difference first occurred. We would also
like to investigate more user-friendly interface for comparing value
lists to assist users’ tasks.

ACKNOWLEDGMENT
Thisworkwas supported by JSPS KAKENHIGrant Numbers JP18H04094
and JP19K20239.

didiffff: A Viewer for Comparing Changes in both Code and Execution Traces Woodstock ’18, June 03–05, 2018, Woodstock, NY

REFERENCES
[1] Robert Arnold and Shawn Bohner. 1996. Software Change Impact Analysis. IEEE

Computer Society Press, Washington, DC, USA.
[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-

lenges of modern code review. In Proceedings of the 35th International Conference
on Software Engineering (ICSE 2013). 712–721. https://doi.org/10.1109/ICSE.2013.
6606617

[3] Amiangshu Bosu, Jeffrey C. Carver, Christian Bird, Jonathan Orbeck, and Christo-
pher Chockley. 2017. Process Aspects and Social Dynamics of Contemporary
Code Review: Insights from Open Source Development and Industrial Practice
at Microsoft. IEEE Transactions on Software Engineering 43, 1 (2017), 56–75.
https://doi.org/10.1109/TSE.2016.2576451

[4] Celine Deknop, Kim Mens, Alexandre Bergel, Johan Fabry, and Vadim Zaytsev.
2021. A Scalable Log Differencing Visualisation Applied to COBOL Refactoring.
In Proceedings of the 2021 Working Conference on Software Visualization (VISSOFT
2021). 1–11. https://doi.org/10.1109/VISSOFT52517.2021.00010

[5] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In Proceedings of the 24th international
conference on Software engineering (ICSE 2002). 467–477. https://doi.org/10.1145/

581339.581397
[6] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database of

existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the 2014 International Symposium on Software Testing and Analysis (ISSTA
2014). 437–440. https://doi.org/10.1145/2610384.2628055

[7] Tetsuya Kanda. 2022. https://github.com/tetsuyakanda/didiffff/
[8] Toshinori Matsumura, Takashi Ishio, Yu Kashima, and Katsuro Inoue. 2014.

Repeatedly-executed-method viewer for efficient visualization of execution paths
and states in Java. In Proceedings of the 22nd International Conference on Program
Comprehension (ICPC 2014). 253–257. https://doi.org/10.1145/2597008.2597803

[9] Eugene W Myers. 1986. An O(ND) difference algorithm and its variations. Algo-
rithmica 1, 1-4 (1986), 251–266. https://doi.org/10.1007/BF01840446

[10] Kazumasa Shimari, Takashi Ishio, Tetsuya Kanda, Naoto Ishida, and Katsuro
Inoue. 2021. NOD4J: Near-Omniscient Debugging Tool for Java Using Size-
Limited Execution Trace. Science of Computer Programming 206 (2021), 102630.
https://doi.org/10.1016/j.scico.2021.102630

[11] Xiaoxia Ren, B.G. Ryder, M. Stoerzer, and F. Tip. 2005. Chianti: a change impact
analysis tool for Java programs. In Proceedings of the 27th International Conference
on Software Engineering (ICSE 2005). 664–665. https://doi.org/10.1109/ICSE.2005.
1553643

https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/TSE.2016.2576451
https://doi.org/10.1109/VISSOFT52517.2021.00010
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/2610384.2628055
https://github.com/tetsuyakanda/didiffff/
https://doi.org/10.1145/2597008.2597803
https://doi.org/10.1007/BF01840446
https://doi.org/10.1016/j.scico.2021.102630
https://doi.org/10.1109/ICSE.2005.1553643
https://doi.org/10.1109/ICSE.2005.1553643

	Abstract
	1 Introduction
	2 Related Works
	3 Comparing Execution Traces
	3.1 Comparing source code
	3.2 Comparing value lists

	4 Viewer: Web UI
	4.1 File Tree View
	4.2 Source Code View
	4.3 Value list View

	5 Example
	6 Conclusion and Future Work
	References

