
IPSJ SIG Technical Report

Code Clone Detection in Rust Intermediate
Representation

Davide Pizzolotto1,a) Makoto Matsushita1,b) Katsuro Inoue2,c)

Abstract: Code reuse is a common practice while developing software. While the detection of identical and
nearly identical portions of code reached high accuracy, in the past years efforts shifted toward detecting
seemingly different clones but with the same semantic value, anlysing almost always the Java language only.
In newer languages, however, analysis is often complicated by the presence of syntactic sugar. In this paper
we present an analysis of clones in the Rust language ecosystem at different compilation steps. The vari-
ous stages in the Rust compilation, progressively flatten the code and remove unnecessary decorations until
binary representation is reached. We analysed several Rust projects at source level and High-level IR, and
compared the amount and types of clones for each refinement level.

1. Introduction

The practice of copying and pasting source code is fre-

quently done by programmers, as this allows them to reuse

the same source code multiple times. This leads to the cre-

ation of Code Clones: identical fragments of code scattered

amongst a codebase. As harmless as these clones may seem,

they instead present a burden for code maintainability and

may become a huge technical debt. In fact, if a bug is found

in a cloned fragment, it must be fixed in every instance of

the clone, but this requires first the identification of every

potential clone.

To alleviate this problem, during the years several code

clone detection tools have been presented. These tools

employ a variegate set of detection techniques: from

token-based approaches of the CCFinder family [7] and

NiCad [12], to the tree-based approach of Deckard [6], pass-

ing from graph based approaches [5] to the recent techniques

employing deep learning [21]. As the detection performance

in Type I clones (i.e. identical except for whitespaces and

layout) and Type II clones (i.e. identical except for identi-

fiers, literals and whitespaces) reached almost perfection, in

recent years efforts shifted toward the detection of harder

clones: Type III clones (i.e. identical up to a certain per-

centage) and Type IV clones (i.e. different code but with

the same functionality).

In order to better detect this type of clones, sometimes

also the binary code has been analysed, in particular by

Ragkhitwetsagul et al. that applied a compilation and de-

1 Osaka University, Suita, Osaka 565–0871, Japan
2 Nanzan University, Aichi, Nagoya 466–8673, Japan
a) davidepi@ist.osaka-u.ac.jp
b) matusita@ist.osaka-u.ac.jp
c) inoue@ist.osaka-u.ac.jp

compilation step to normalize differences between pieces of

code with similar functionality [11]. Similar studies ana-

lyzed the possibility of applying normalization techniques

directly to source code [10] and using LLVM Intermediate

Representation to detect clones [2].

However, all these tools targets the same two languages:

C/C++ and Java. Although some detectors provide a lim-

ited amount of additional languages, the study and the ma-

jor focus is usually the Java language. This is done mainly

due to the presence of a standardized clone benchmark, Big-

CloneBench [24] that contains clones in Java language only.

In this paper, we evaluate the detection of clones in a

modern and new language: Rust. This particular choice is

motivated by the fact that, unlike other programming lan-

guages, Rust guarantees the memory-safety, thread-safety

and null-safety of its programs at the price of increased com-

pilers checks and language restrictions. In order to validate

statically these safety guarantees, several transformations

are done during compilation. In this study, we analyze the

clones evolution in this language, in the original source code

and the intermediate pre-compilation step. We evaluate also

the refactorability of each clone with respect to the addi-

tional language restrictions.

The paper is structured as follow: Section 2 explain some

details about the Rust programming language in order to

ease the understanding of this paper. After that, Section 3

explains our approach in performing the current study and

Section 4 shows our research questions and the relative ex-

perimental results. Section 5 discuss about the limitations

of our approach and Section 6 discusses related works in the

field of clone detection. Finally, Section 7 closes the paper.

© 2022 Information Processing Society of Japan 1



IPSJ SIG Technical Report

2. Background

Before describing the approach we adopted to run our ex-

periments, in this section we are going to explain the unique

characteristics of the Rust language. The Rust language is

designed around safety, in fact it is guaranteed by the com-

piler the prevention of data races, memory safety and type

safety [15].

In order to satisfy these guarantees, the compiler relies on

the ownership system [19]. This, in turn, contribute to two

major differences from other languages:

Lifetimes

When a reference to an owned variable is passed around

the code, the compiler must ensure that the owned vari-

able remains valid for the entire life the reference. This

allows the compiler to safely drop a variable immedi-

ately as it goes out of scope without needing a garbage

collector or a reference counter. Lifetimes must be ex-

plicitly assigned by the programmer if the compiler can

not infer them.

Mutability

Data races occurs when at least a pointer writes the

data while another one can read the data, without any

synchronization feature. In order to avoid this prob-

lem, Rust forbids the same reference to be hold mu-

tably more than once, or to be hold mutably and im-

mutably at the same time. The mutability for each

variable must be declared by the programmer, other-

wise the variable is considered immutable after the first

assignment.

These two contraints may require additional keywords (e.g.

mut, ’static, ...) that might prevent the refactorability of

otherwise identical snippets of code.

Moreover, in order to enforce these two constraints, the

compiler employs a series of different Intermediate Represen-

tations (IRs) before emitting the final binary code. In order

to understand this paper we are interested in particular in

two types of IR: expanded code and High-level Intermediate

Representation (HIR).

2.1 Macro expansion

The Rust programming language, unlike C or C++ does

not have a preprocessor. However, the compiler still pro-

vides a macro engine in order to ensure better maintain-

ability. In particular, several “common” implementation of

methods (e.g. clone, cmp, default) can be created with

builtin macros. These macros are then expanded into their

respective code during the first phase of compilation [14].

Consider as an example the code in Figure 1. We can

see that, despite the struct A and B having two completely

different types, the implementation of the clone method

performed by the macro #[derive(Clone)] is absolutely

identical. In order to perform code clone detection in Inter-

mediate Code is thus important to account for duplicated

code generated by these kind of macros.

#[derive(Clone)]

struct A {

inner_string: String

}

#[derive(Clone)]

struct B {

inner_number: u32

}

(a) Original Rust code

struct A {

inner_string: String,

}

#[automatically_derived]

#[allow(unused_qualifications)]

impl ::core::clone::Clone for A {

#[inline]

fn clone(&self) -> A {

match *self {

Self { inner_string: ref __self_0_0 } =>

A {

inner_string:

::core::clone::Clone::clone(&(*__self_0_0)),

},

}

}

}

struct B {

inner_number: u32,

}

#[automatically_derived]

#[allow(unused_qualifications)]

impl ::core::clone::Clone for B {

#[inline]

fn clone(&self) -> B {

match *self {

Self { inner_number: ref __self_0_0 } =>

B {

inner_number:

::core::clone::Clone::clone(&(*__self_0_0)),

},

}

}

}

(b) Rust code after macro
expansion

Fig. 1: Automatic implementation of the clone method by

the compiler, via a procedural macro.

2.2 HIR and THIR

After creating the Abstract Syntax Tree (AST), the Rust

compiler, converts this tree into a desugared version called

High-level Intermediate Representation (HIR) [16]. The

HIR differs from the normal AST for the following reasons:

• parenthesis are removed, as they are not necessary any-

more with the AST structure.

• The if let syntax is normalized into the match syntax.

• The for loop syntax is normalized into the loop syntax.

• The while loop syntax is normalized into the loop syn-

tax.

• Additional constraints are relaxed and converted into

generics.

After these changes we expect the HIR to contains different

clones than the original source due to normalizations per-

formed by the compiler. It is the scope of this paper to

© 2022 Information Processing Society of Japan



IPSJ SIG Technical Report

Original
Source

HIR

Compiler

Clone 
detector 

(CCFinderSW)

Filtering

Original 
clones

HIR 
clones

Manual 
analysis

Clone 
detector 

(CCFinderSW)

Fig. 2: Overview of the study

understand the evolution of original clones after the trans-

formations in the HIR.

The HIR is then used to infer data types by the com-

piler, and transformed into Typed High-level Intermediate

Representation (THIR) [18]. However, THIR does not add

useful information for clone detection and as such we limit

our study at the HIR level.

2.3 MIR and IR

Although not used in our study, the step after THIR is

the Mid-level Intermediate Representation (MIR) [17]. The

MIR code is more similar to a Control Flow Graph (CFG)

rather than the original source code and is used mainly to

checks the constraints of the ownership system [19]. If the

ownership constraints are satisfied, the code can be lowered

once again into a Codegen IR and the binary code finally

generated. We plan to investigate the effects of MIR in code

evolution as future works, as explained in Section 5.

3. Approach

An overview of the study is shown in Figure 2.

Firstly, for each case study, we gather each clone pair with

the use of a Code Clone detector. Then, the original code

is run through the Rust compiler and instructed to emit the

HIR. At this point, we run the same code clone detector and

collect the clone pairs for the HIR code. We then manually

analyze each clone pair for every project in both the original

code and HIR code, and report if the clone pair is really a

clone or a false positive and compare it with the same clone

in the HIR code. Note that we limit the analysis to Type I

and Type II clones, given that most of the Type III and IV

detectors target the C and Java language only.

3.1 Case Studies

We select 15 popular (more than 2M downloads) and de-

cently sized (more than 2K Line of Code) Rust projects as

our case study. These projects are listed in Table 1 along

with the amount of Line of Code and their popularity. All

these projects are publicly available in the Rust Package

Registry*1. The amount of Line of Code are determined by

the tool cloc*2 and excludes comments and blank lines.

The scope of these project is greatly diverse: it ranges

from byte manipulation (bytemuck and bytes), to data

*1 https://crates.io
*2 https://github.com/AlDanial/cloc

Table 1: Case studies evaluated, with version, number of

lines of code excluding comments and blanks, and number

of downloads

Software Version SLOC # of Downl. (106)
slab 0.4.6 1311 54
smallvec 1.8.0 2204 78
generic-array 0.14.5 2595 65
num-rational 0.4.1 3064 25
dashmap 5.3.4 2866 10
bytemuck 1.9.1 3026 8
bytes 1.1.0 4601 69
cgmath 0.18.0 8878 2
bstr 0.2.17 6227 26
hashbrown 0.12.1 10104 56
crossbeam-channel 0.8.1 15652 13
petgraph 0.6.2 20308 23
bitvec 1.0.0 26996 13
ndarray 0.15.4 29281 3

structures (generic-array, smallvec, hashbrown), including

async computation (crossbeam-channel*3 and dashmap).

3.2 Compiler and Code Clone Detector

In our study we used an existing compiler to generate

the HIR code and an existing Code Clone Detector to find

the clone pairs. The compiler used to generate the HIR

code is rustc, the compiler provided by the Rust project

itself. This compiler enables emitting all the intermediate

code such as HIR and MIR using the -Z unpretty flag. In

particular, we used the option -Z unpretty=expanded to

check the macro-expansion result, and -Z unpretty=hir to

emit the HIR code. The compiler version we used is the

1.60.

Concerning the Code Clone detector, our options are

pretty limited. Famous detectors like CCFinderX [7] and

NiCad [12] do not support Rust. The modern SourcererCC

tool [22], although not officially supporting Rust, can be eas-

ily extended, while an even newer tool called MSCCD [26]

has builtin support. These two tools can support up to Type

III clones. However they greatly lack in the clone reporting

capabilities. For this reason, in this analysis we used the

CCFinderSW tool [23] that, despite supporting only up to

Type II clones, provides a more efficient reporting tool, al-

lowing us to manually investigate all the clones in the 15

projects. The tool was run with a parameter t, the mini-

mum number of tokens requires to signal a clone, equal to

65.

Note that it is not the scope of our paper to compare the

difference between the various tools, rather than to analyze

the code evolution in the Rust Intermediate Representation.

3.3 Filtering

As explained in Section 2.1, before generating the HIR,

the compiler expands macros. These macros are designed

to avoid clones in source code for repetitive tasks (i.e. im-

plementing the clone method on a struct). However, given

that the expansion is performed before the HIR generation,

these macros will result in a lot of false positives: the macro

*3 crossbeam-channel is part of the crossbeam package

© 2022 Information Processing Society of Japan 3

https://crates.io
https://github.com/AlDanial/cloc


IPSJ SIG Technical Report

implementation can be found multiple times in the HIR but

only once in the original source. In Figure 2 we can note a

step called “Filtering” that refers exactly to this step: clean-

ing up the HIR code from obvious macro expansion.

The filtering step is actually performed in two different

ways depending on the type of macro targeted. In case

of #[derive(...)] macros, the one explained in Sec-

tion 2.1, the expanded method will have the statement

#[automatically derived] prepended to it. This can be

seen also in Figure 1 in the expanded code. The result of

these macros can be easily removed by checking the AST,

emitted by rustc, and by stripping away the entire block of

code following the #[automatically derived] keyword.

The second type of macros are the one defined by

the macro rules! syntax. The expansion of these

macros is usually simpler than the one performed with the

#[derive(...)] attribute, as they have a fixed set of pa-

rameters. We implemented a filter for the most common

ones provided by the Rust language (e.g. vec!, write!,

println!...) by using only regular expressions.

In both cases, however, our filter does not cover custom

macros defined per-crate.

4. Evaluation

In order to determine the clone evolution in the Rust In-

termediate Representation, we want to answer the following

three Research Questions:

• RQ1: type. What type of clones can be usually found

in a Rust project? Can the clones be easily refactored?

RQtype is a study on the type of clones that can be

found in the Rust ecosystem. Rust is fundamentally dif-

ferent from other languages, as explained in Section 2,

given its stricter compiler and limited usage of vari-

ables. In this research question we want to investigate if

these differences implies additional clones that can not

be refactored as one would do in a canonical language,

without violating Rust’s constraints of mutability and

lifetimes.

• RQ2: agreement. How different are the clones between

original code and HIR?What type of clones are detected

only by one method?

RQagreement is meant to investigate the usefulness of

the HIR representation in detecting clones. To answer

this question we match all the clones reported in the

original source code and all the clones reported in the

HIR code and check for differences. We then report the

principal causes of divergences between clones in the

original code and clones in HIR code.

• RQ3: accuracy. How accurate is the clones detection

in both original code and HIR? How many false posi-

tives are generated by the code? RQaccuracy is meant to

investigate the accuracy of the clone detection in both

original code and HIR code. This means reporting the

amount of actual code clones and false positive code

clones for each of the two code categories.

We ran this analysis on a Mac mini with M1 processor

and 16GB of RAM, running macOS 12.3.1 and manually

analyzed every single clone reported using the Gemini tool

provided with CCFinderSW.

4.1 RQ1: type

To answer RQ1 we run the Code Clone detector on ev-

ery project listed in Table 1 and obtain the results shown in

Table 2.

Table 2: Number of clones detected for each project in the

original source code

Software #Clones
slab 11
smallvec 16
generic-array N.A.
num-rational 14
dashmap 18
bytemuck 14
bytes 43
cgmath 328
bstr 179
hashbrown 159
crossbeam-channel 807
petgraph N.A.
bitvec 561
ndarray 396

We then manually check these 3033 clone and categorise

them. Among them, not a single clone is due to a limitation

of Rust (e.g. the necessity of putting a variable mut instead

of immutable). This is not surprising, given that declaring

different lifetimes or different mutability requires additional

keywords, that go beyond the Type II clones category. Note

that the projects generic-array and petgraph do not report

the number of clones: in fact for these projects CCFind-

erSW failed to generate a report, despite running for more

than 24 hours. Moreover, these two projects are consider-

ably smaller than others in our case study, and we can only

assume the parser failed to correctly tokenize the codebase.

The highest amount of clones involves the manual imple-

mentation of “common” method such as len or fmt (debug

print) that are copy pasted for each structure. This cate-

gory is so ubiquitous that every project contains at least a

clone of this type. In some cases, the definition varies only in

the type of generics targeted, with the implementation copy-

pasted several time. All these clones can be easily replaced

by a macro, increasing the maintainability of the code.

Another common category, present in at least half the

projects, is the variation of a method’s parameters. Most

methods can require a different number of parameters and

most projects just copy-paste the method implementation.

This problem is again, easily refactorable by having a generic

method accepting all the possible parameters and specialized

methods that calls the former after setting default values for

the parameters.

Finally, a surprisingly high amount of clones can be found

marked as tests or benchmarks. Rust allows mixing test

code with implementation code by prepending the test func-

tion with a #[test] statement, and in our evaluation these

tests mixed with implementation code have not been filtered

© 2022 Information Processing Society of Japan



IPSJ SIG Technical Report

out. A notable example of this is the crossbeam-channel,

where a greater majority of clones were reported amongst

these tests mixed with the implementation code.

We can conclude RQ1 with the following statement:

No Rust-specific features can be found in the original

Type II clones detected. Most clones involve manual im-

plementation of common methods and traits or implemen-

tation of the same methods with variations in the number

of parameters.

4.2 RQ2: agreement

After determining the type of clones that can be found

in the original Rust projects, we perform the same clone

analysis on the HIR code. Table 3 reports the variation in

SLOC for each project after running the macro expansion

step and the HIR generation step. We can note how, in

Table 3: Lines of code in the original source (SLOCorig),

after macro expansion (SLOCexp), and after HIR genera-

tion (SLOCHIR)

Software SLOCorig SLOCexp SLOCHIR

slab 1311 671 838
smallvec 2204 1253 1783
generic-array 2595 2261 2970
num-rational 3064 2690 3680
dashmap 2866 1752 2189
bytemuck 3026 1206 1482
bytes 4601 3069 3837
cgmath 8878 17727 23843
bstr 6227 4453 5826
hashbrown 10104 4032 5043
crossbeam-channel 15652 4699 5480
petgraph 20308 15371 19348
bitvec 26996 15233 18772
ndarray 29281 19947 25886

every project, the number of effective lines of code is de-

creased compared to the original project. This is due to

the fact that, in order to obtain the macro expanded ver-

sion or the HIR version, the compiler needs to be invoked.

After invocation, all the boilerplate code is removed, the

imports resolved and the eventual conditional compilations

(e.g. tests) removed. This effectively reduces the amount

of non-interesting benchmarks and tests clones reported in

Table 2 and cited in Section 4.1.

After running the clone detection and collecting the re-

sults we obtain the number of clones show in Table 4, along

with the results of the original code detection results.

The most impactful result we can notice is the immense

increase in the number of clones for certain projects, in par-

ticular cgmath and ndarray. The gargantuan amount of

clones is manually intractable, but we ensured to analyse at

least a clone for each clone class reported by the detector.

The reason of this immense increase in clones is the high

amount of procedural code involved in these two projects.

cgmath, a linear algebra library, requires the implementation

of basic mathematical operations for different vectors of dif-

ferent size. This is done in the project by using macros that

Table 4: Number of clones detected for each project in the

original and HIR code

Software #Clones (original) #Clones (HIR)
slab 12 53
smallvec 14 24
generic-array N.A. 18
num-rational 16 215
dashmap 14 35
bytemuck 18 55
bytes 37 287
cgmath 328 165834
bstr 179 311
hashbrown 159 151
crossbeam-channel 807 351
petgraph N.A. 2991
bitvec 561 3909
ndarray 396 30669

were not intercepted by our filtering process. This is evident

also by the distribution of clones, as shown in Figure 3 and

Figure 4.

Fig. 3: Clone scatterplot for cgmath HIR code

We can see how most of the clones are clustered in big ar-

eas. Figure 3 shows clearly repeated structures in the clones.

Fig. 4: Clone scatterplot for ndarray HIR code

© 2022 Information Processing Society of Japan 5



IPSJ SIG Technical Report

Upon further inspection those cluster of clones are the im-

plementations of identical mathematical operations for dif-

ferent dimensionality of linear algebra tools (e.g. Vector2,

Vector3, Matrix3, Matrix4, ...), accepting different generic

arguments. A similar reason can be given to the ndarray

project, represented in Figure 4. Also in this case, we can

note a big concentration of clones clustered together, due to

the usage of procedural macros.

On the other side of the spectrum, instead, we can see

how the clones for crossbeam-channel have been decimated,

going from 807 to a meager 351. This result, however, is un-

interesting, as we already discussed in Section 4.1 how these

clones were mainly due to test code mixed with implemen-

tation code. After generating the HIR code, these tests are

evicted by the compiler, and thus all the relative clones are

not reported.

Smaller projects, on the other hand, turned out to be

more interesting: on the smallvec project, for example, ev-

ery additional clone is due to normalization into the match

statement. However, these clones detected only in the HIR

are usually present in a small amount.

We can summarize RQ2 as follow:

For big projects, highly dependent on procedural macro,

analysing the HIR is detrimental as most of the clones are

the result of macro invocation. In projects with less macro

usage, however, HIR clones can highlights interesting sim-

ilarities between methods due to code normalization.

4.3 RQ3: accuracy

In the last question, we want to investigate the accuracy

of the clone detection system and the usefulness of the HIR

code for clone detection. After thoroughly analysing all the

original source code clones and most of the HIR clones, we

can assess that the Type II clones reported by CCFinderSW

were all genuine. However, this does not mean they are use-

ful.

let layout = layout_array::<A::Item>(new_cap)?;

(a) Original Rust code

let layout =

match #[lang = "branch"] (layout_array::<A::Item>(new_cap))

{

#[lang = "Break"] { 0: residual } =>

#[allow(unreachable_code)]

return #[lang = "from_residual"] (residual),

#[lang = "Continue"] { 0: val } =>

#[allow(unreachable_code)]

val,

};

(b) Rust code after macro
expansion

Fig. 5: Expansion of a simple statement into a more com-

plex one triggering unrefactorable clones. This example is

taken from the smallvec project, file src/lib.rs

In fact, unlike the original clones, the HIR ones require

a more careful detection threshold in order to provide use-

ful insights. Consider for example the statement shown in

Figure 5. The original code, line 905 in the file src/lib.rs

from smallvec, is a one line invocation of a single function.

However, when expanded, its length increases considerably,

surpassing the threshold and being detected as a clone. We

determined that, despite all clones being true positives, most

of the HIR clones fall in this class: true positive but use-

less for refactoring purposes. Furthermore, only a handful

of clones, usually a single digit number, can be efficiently

refactored after being detected only in HIR code. In order

to solve this problem, a different threshold must be used for

HIR clones, given that most of the changed code in HIR in-

creases considerably in size. This happens despite the HIR

code having an overall less amount of line of code, as shown

in Table 3.

We can thus conclude RQ3 as follow:

Despite the accuracy of the clone detection being 100%,

most of the HIR clones are unusable due to the fact that

the original code was already simple enough. Additional

care must be taken in order to set a higher threshold for

HIR clones.

5. Threats to validity and Future Works

In this study we used 15 projects of diverse size and scope

but this is only a small fraction of the ecosystem and may

diverge substantially from the real distribution of clones in

the Rust language. We assumed the correctness of the rustc

compiler in emitting the HIR code and the correctness of the

CCFinderSW code clone detector in detecting the clones for

the Rust language, however, if one or both these fact do not

hold, the entire analysis may not be valid.

Moreover, we focused and drew conclusion based only on

Type II clones, where most of the Rust-specific features will

likely require clones with minor difference in the used re-

served words (i.e. Type III clones). For this reason we

plan to conduct further studies on the ecosystem focusing

on Type III clones and the transformations introduced by

further lowering the code. This additional lowering targets

the MIR that is more similar to a PDG style analysis [5]

rather than a token based clone detector.

Finally, we did not have a comprehensive database of

clones like in the BigCloneBench project [24], for this rea-

son we can’t now the real number of true positive and false

negative clones present in our case studies. We can only

count the number of false positives based on the performed

manual evaluation.

6. Related Work

Several code clone detectors have been developed by the

research community in the recent years. These spans dif-

ferent types of approaches. Some detectors converts the

source code into a stream of tokens and perform analysis

on these tokens. These detectors comprises NiCad [12],

© 2022 Information Processing Society of Japan



IPSJ SIG Technical Report

CCFinder [7], CP-Miner [9], iClones [3], and many oth-

ers [13]. More recently, additional tools have been developed

to include more variety of languages, these includes Sourcer-

erCC [22], CCFinderSW [23] and MSCCD [26]. Several

recent techniques also involves clone detector that does not

operate on tokens or the AST: for example Amme et al.

presented a clone detector for the Java language analysing

the code dominator trees [1], while Saini et al. improved

SourcererCC with deep learning capabilities in their Oreo

clone detector [21].

Although a small amount of studies targeted specifically

intermediate code generated by compilers [2] [10] [11], most

studies targeting low level code focus on Java Bytecode. Re-

cent works were performed by Yu et al. [25] that analysed

fragments extracted from the bytecode and by Keivanloo et

al. that used code fingerprint on the Java Bytecode [8].

Going even lower, some researcher even tried to find code

clones directly on the binary layer. The most famous work

is surely the one of Sæbjørnsen et al. [20] that analysed the

similarity in assembly instructions. However, analysis at

binary level is usually performed in order to retrieve infor-

mation about software license violation, like in the work of

Hemel et al. [4].

7. Conclusion

In this paper we investigated the code clone detection in

a language different from the commonly targeted C or Java.

We analysed 15 projects and all their reported Type II clones

manually and determined the common causes of clones in

the Rust language. We then compiled these clones, emitted

their High-level Intermediate Representation (HIR), and ran

again the code clone detection over this representation. Fi-

nally, we compared the original code and the Intermediate

Representation (IR).

We determined that, although the code clone detector be-

ing capable of recognising genuine clones in both the original

code and the HIR code, only a small amounts of code from

the HIR code can actually be used. Most of them in fact

are simple enough even in the original code and most of the

complexity is added by the HIR generation step. For this

reason the HIR code should be used as an extension of the

original code, rather than completely replacing it.

8. Acknowledgment
This work was supported by JSPS KAKENHI Grant

Number 18H04094.

References

[1] Amme, W., Heinze, T. S. and Schäfer, A.: You look so
different: Finding structural clones and subclones in java
source code, 2021 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), IEEE, pp. 70–80
(2021).

[2] Caldeira, P. M., Sakamoto, K., Washizaki, H., Fukazawa,
Y. and Shimada, T.: Improving syntactical clone detection
methods through the use of an intermediate representation,
2020 IEEE 14th international workshop on software clones
(IWSC), IEEE, pp. 8–14 (2020).

[3] Göde, N. and Koschke, R.: Incremental clone detection,
2009 13th European conference on software maintenance and

reengineering, IEEE, pp. 219–228 (2009).
[4] Hemel, A., Kalleberg, K. T., Vermaas, R. and Dolstra, E.:

Finding software license violations through binary code clone
detection, Proceedings of the 8th Working Conference on
Mining Software Repositories, pp. 63–72 (2011).

[5] Higo, Y., Yasushi, U., Nishino, M. and Kusumoto, S.: In-
cremental Code Clone Detection: A PDG-based Approach,
2011 18th Working Conference on Reverse Engineering, pp.
3–12 (online), DOI: 10.1109/WCRE.2011.11 (2011).

[6] Jiang, L., Misherghi, G., Su, Z. and Glondu, S.: Deckard:
Scalable and accurate tree-based detection of code clones,
29th International Conference on Software Engineering
(ICSE’07), IEEE, pp. 96–105 (2007).

[7] Kamiya, T., Kusumoto, S. and Inoue, K.: CCFinder: A mul-
tilinguistic token-based code clone detection system for large
scale source code, IEEE Transactions on Software Engineer-
ing, Vol. 28, No. 7, pp. 654–670 (2002).

[8] Keivanloo, I., Roy, C. K. and Rilling, J.: Java bytecode clone
detection via relaxation on code fingerprint and semantic
web reasoning, 2012 6th International Workshop on Soft-
ware Clones (IWSC), IEEE, pp. 36–42 (2012).

[9] Li, Z., Lu, S., Myagmar, S. and Zhou, Y.: CP-Miner: Find-
ing copy-paste and related bugs in large-scale software code,
IEEE Transactions on software Engineering, Vol. 32, No. 3,
pp. 176–192 (2006).

[10] Pizzolotto, D. and Inoue, K.: Blanker: A Refactor-Oriented
Cloned Source Code Normalizer, 2020 IEEE 14th Interna-
tional Workshop on Software Clones (IWSC), IEEE, pp. 22–
25 (2020).

[11] Ragkhitwetsagul, C. and Krinke, J.: Using compila-
tion/decompilation to enhance clone detection, 2017 IEEE
11th International Workshop on Software Clones (IWSC),
IEEE, pp. 1–7 (2017).

[12] Roy, C. K. and Cordy, J. R.: NICAD: Accurate detection of
near-miss intentional clones using flexible pretty-printing and
code normalization, 2008 16th iEEE international confer-
ence on program comprehension, IEEE, pp. 172–181 (2008).

[13] Roy, C. K., Cordy, J. R. and Koschke, R.: Comparison
and evaluation of code clone detection techniques and tools:
A qualitative approach, Science of computer programming,
Vol. 74, No. 7, pp. 470–495 (2009).

[14] Rust Foundation: ”Macro expansion (Accessed 2022-06).
[15] Rust Foundation: The Rustonomicon - Meet Safe and Unsafe

(Accessed 2022-06).
[16] Rust Foundation: ”The HIR (Accessed 2022-06).
[17] Rust Foundation: ”The MIR (Mid-level IR)” (Accessed

2022-06).
[18] Rust Foundation: ”The THIR (Accessed 2022-06).
[19] Rust Foundation: ”What is ownership? (Accessed 2022-06).
[20] Sæbjørnsen, A., Willcock, J., Panas, T., Quinlan, D. and Su,

Z.: Detecting code clones in binary executables, Proceedings
of the eighteenth international symposium on Software test-
ing and analysis, pp. 117–128 (2009).

[21] Saini, V., Farmahinifarahani, F., Lu, Y., Baldi, P. and Lopes,
C. V.: Oreo: Detection of clones in the twilight zone, Pro-
ceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 354–365 (2018).

[22] Sajnani, H., Saini, V., Svajlenko, J., Roy, C. K. and Lopes,
C. V.: Sourcerercc: Scaling code clone detection to big-code,
Proceedings of the 38th International Conference on Soft-
ware Engineering, pp. 1157–1168 (2016).

[23] Semura, Y., Yoshida, N., Choi, E. and Inoue, K.: CCFind-
erSW: Clone detection tool with flexible multilingual tok-
enization, 2017 24th Asia-Pacific Software Engineering Con-
ference (APSEC), IEEE, pp. 654–659 (2017).

[24] Svajlenko, J. and Roy, C. K.: Evaluating clone detection
tools with bigclonebench, 2015 IEEE international con-
ference on software maintenance and evolution (ICSME),
IEEE, pp. 131–140 (2015).

[25] Yu, D., Wang, J., Wu, Q., Yang, J., Wang, J., Yang, W. and
Yan, W.: Detecting java code clones with multi-granularities
based on bytecode, 2017 IEEE 41st Annual Computer Soft-
ware and Applications Conference (COMPSAC), Vol. 1,
IEEE, pp. 317–326 (2017).

[26] Zhu, W., Yoshida, N., Kamiya, T., Choi, E. and
Takada, H.: MSCCD: Grammar Pluggable Clone Detec-
tion Based on ANTLR Parser Generation, arXiv preprint
arXiv:2204.01028 (2022).

© 2022 Information Processing Society of Japan 7


