
Selecting Test Cases based on Similarity of
Runtime Information:

A Case Study of an Industrial Simulator

Kazumasa Shimari∗, Masahiro Tanaka†, Takashi Ishio∗, Makoto Matsushita†, Katsuro Inoue‡, Satoru Takanezawa§
∗ Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan

Email: {k.shimari, ishio}@is.naist.jp
† Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

Email: {m-tanaka, matusita}@ist.osaka-u.ac.jp
‡ Faculty of Science and Technology, Nanzan University, Aichi, Japan. Email: inoue599@nanzan-u.ac.jp

§ Daikin Industries, Ltd., Osaka, Japan. Email: satoru.takanezawa@daikin.co.jp

Abstract—Regression testing is required to check the changes
in behavior whenever developers make any changes to a software
system. The cost of regression testing is a major problem because
developers have to frequently update dependent components
to minimize security risks and potential bugs. In this paper,
we report a current practice in a company that maintains an
industrial simulator as a critical component of their business. The
simulator automatically records all the users’ requests and the
simulation results in storage. The feature provides a huge number
of test cases for regression testing to developers; however, their
time budget for testing is limited (i.e., at most one night). Hence,
the developers need to select a small number of test cases to
confirm both the simulation result and execution performance
are unaffected by an update of a dependent component. In
other words, the test cases should achieve high coverage while
keeping diversity of execution time. To solve the problem, we
have developed a clustering-based method to select test cases,
using the similarity of execution traces produced by them. The
developers have used the method for a half year; they recognize
that the method is better than the previous rule-based method
used in the company.

Index Terms—Test Selection, Dynamic Analysis, Software De-
pendency, Clustering

I. INTRODUCTION

Regression testing is performed to check the changes in
behavior before and after a software change. The cost of
regression testing is a significant problem for software de-
velopers because they have to repeatedly perform regression
testing even when the software is not directly changed.

Daikin Industries, Ltd., a collaborating company, developed
an industrial thermodynamic and fluid mechanic simulator.
The users of this simulator are engineers of the company who
design new products. The simulator accepts various parameters
specifying a structure of an electromechanical product and
simulates the physical behavior; the users can estimate the
efficiency of the structure without constructing an actual
prototype. The simulator is now recognized as one of the most
important simulators for their product development.

Software developers in the company periodically update the
simulator and its dependencies and then perform regression
testing. For effective regression testing, the simulator automat-
ically records all the users’ requests and the simulation results
in storage. When the developers update the simulator, they
execute some simulations again and compare the new results
with the recorded results. Instead of all the recorded requests,
the software developers selected a small subset of test cases
that cover available simulation components so that they can
finish their test within a limited time budget.

Although the software developers believed their strategy
was sufficient, they failed to detect an incompatibility between
JDK versions. They updated the JDK version from Oracle JDK
8 to AdoptOpenJDK 11 and performed regression testing as
usual. However, a simulator failure occurred a few months
after the regression testing. The cause was a change in the
behavior of the Java standard library, which prevented several
simulations from running properly. Even though the test cases
have been selected to cover simulation components, they did
not cover a corner case in a wide variety of behavior of
the simulation components. Although test case selection is a
popular topic in the software testing community, we could not
identify a suitable method to select a small number of effective
test cases that can be executed within at most one night from
a large number of test cases.

In this paper, we report our current regression testing
method developed for this simulator. The objective of the
method is to select test cases satisfying the following concerns
of software developers in the company:

• The time budget for regression testing is limited. They
would like to select only a small number of test cases.

• The selected test cases should exercise functional compo-
nents as much as possible. In other words, code coverage
should be high.

• The selected test cases should include both short sim-
ulations and long simulations reflecting regular usage
patterns so that they can check the performance of the

simulator after an update.
To address the concerns, we developed a method to select test
cases using their runtime information. Our method employs
k-means clustering to identify similar executions and select
representative test cases from each of the clusters. As the
parameter k corresponds to the number of test cases, develop-
ers can easily specify a value according to their time budget.
The developers have used the method to dependency update
tasks for a half year; they successfully update dependent
components.

In the remainder of the paper, Section II describes our test
case selection method. Then, Section III describes the case
study, and Section IV applies our method to an industrial simu-
lator. Section V describes the related work. Finally, Section VI
concludes the paper and describes future work.

II. OUR TEST CASE SELECTION METHOD

Our method takes as input a set of test cases and a parameter
k that specifies the number of test cases to be selected. Our
method consists of two steps. Figure 1 shows an overview
of our method. In STEP Ⅰ, we collect runtime information
for each test case by executing test cases with an execution
trace recorder. This step is performed in advance. In STEPⅡ,
we classify test cases based on the similarity of their runtime
information and select their representative test cases.

A. STEP I: Collect Runtime Information

At first, we collect runtime information for each test case.
Each test case for the simulator system is a pair of a user
request and a simulation result. The user request specifies the
type and combination of the circuit parts in the simulation.
The simulation result includes thermal efficiency and their
execution time, and scripts that send and receive these kinds
of information to and from the simulator. Developers can use
the scripts to reproduce the simulation result.

Our method translates the runtime behavior of a test case
into a vector of integers with test ID. Test ID is specified
sequentially based on the timestamps original users’ test cases
are executed. Each element of a vector is the number of
occurrences of a runtime event within the execution of the
test case. To collect runtime events from test cases, we use a
modified version of our tool SELogger version 0.2.3, which is
an execution trace recorder publicly available on GitHub [8].
The tool can record the execution order of Java bytecode
instructions such as method call and local variable access. We
use the tool with the freq mode, which assigns IDs to each of
the instructions and counts their occurrences in an execution.
We simply use a vector produced by the tool as a feature
vector of the test case.

To extract only relevant runtime events to the simulator, we
exclude third party libraries from logging. This is because the
target simulator is a web application running on Tomcat. While
the original version of SELogger records all runtime events
including the behavior of Tomcat, our version separately
collects only runtime events of the simulator. An execution
trace is separately collected for each test case.

Figure 1 shows an example of collecting runtime informa-
tion. The executed instructions, consisting of runtime events
and their location, and their execution counts are recorded as
an execution trace for each test script. In this example, the
loop from line 3 to line 4 is executed three times, so some
events are repeatedly executed, such as Local Variable Load
event, which means the value is read from the variable, at line
4. From execution traces, we create the instruction vectors
whose elements are the instruction execution counts in the
combination of the event name and location. The instruction
execution count is used in addition to the coverage so that the
execution characteristics such as a different number of loops
with the same coverage can be reflected in the vector. The
length of the vector in our method is the number of bytecode
instructions in the program.

B. STEP II: Classify Similar Execution

We classify vectors obtained from Step Ⅰ into groups
using the k-means clustering method. We adopt the k-means
method simply because users can specify the number of
test cases to be selected according to their time budget. In
addition, the k-means method is less computational complexity
than hierarchical clustering. We use Euclidean distance when
measuring between vectors. The distance distinguishes a short
simulation from a long simulation even if they use the same
set of instructions.

After clustering, we select the oldest test case from each
cluster as the representative test cases because they are the
first test cases that triggered new behaviors of the simulator.

III. CASE STUDY

To understand the usefulness of our method for updating
dependencies, we measure the code coverage and diversity
of the execution time of test cases selected by our method.
We compare our method with three baselines: a variant of our
method using 0-1 vectors ignoring the number of occurrences,
a random selection method, and a method previously used in
the company.

A. Settings

Ideally, we should run all the existing test cases and
apply our method. However, the simulator system has already
recorded tens of millions of test cases. It is difficult to execute
all of them to record the runtime information in a short period
of time due to resource constraints. Instead, we collect ten
days of test cases for the case study, with a maximum of one
thousand test cases per day, and then select representative test
cases from the collected cases. The number of collected test
cases is 9,612. We decided to use k = 100 after a discussion
with developers. The developers prefer a small number in order
to ensure test cases can be executed within a short time period.

The target simulator under test has 61 classes, 509 methods,
and 21,527 lines. Our clustering method took ten minutes
on Windows 10 running a Xeon(R) W-2123 @3.60 GHz
processor, 32 GB DRAM, and an HDD.

STEPI: Collect Runtime Information

Simulator with
SELogger

Test Scripts

1: void methodA (int var) {
2: if (var > 0) {
3: while (var > 0)
4: var = methodB(var);
5: } else {
6: var = 0;
7: }
8: System.out.println(var);
9: }
10: ….

Event Name Location
Execution

Count

Method Entry Line 1 1

Method Param Line 1 1

Local Variable Load Line 2 1

Local Variable Load Line 3 4

Local Variable Load Line 4 3

Method Call Line 4 3

Local Variable Store Line 4 3

Local Variable Store Line 6 0

Local Variable Load Line 8 1

Method Normal Exit Line 9 1

… … …

Simulator Code Execution Trace

Test ID Vector

1 [1,1,1,4,3,3,3,0,1,1,…]

… …

Selected ID

1

2

5

Select oldest
test cases

STEPII: Classify Similar Execution
Test ID Vector

1 [1,1,1,4,3,3,3,0,1,1,…]

3 [1,1,1,3,2,2,2,0,1,1,…]

… …

Test ID Vector

5 [1,1,1,50,49,49,49,0,1,1,…]

… …

Test ID Vector

2 [1,1,1,0,0,0,0,1,1,1,…]

4 [1,1,1,0,0,0,0,1,1,1,…]

… …

Instruction Vector

Fig. 1. An Overview of Our Method.

TABLE I
RESULT OF THE COVERAGE.

Test Case Selection Method Relative Instruction Coverage
Our clustering-based selection 99.76%
Boolean-based selection (Baseline1) 99.88%
Random selection (Baseline2) 65.72%
Component-based selection (Baseline3) 97.73%
All Test Cases Coverage 100.00%

We use three baselines: Boolean-based selection, Random
selection and Component-based selection. The Boolean-based
selection is a variant of our method using a 0-1 vector, which
ignores the number of occurrences of runtime events. It is
introduced to evaluate the importance of execution counts. In
Random selection, we arranged the test cases in order when
they were executed, and selected to become chronologically
random. Component-based selection is the method used by
software developers in Daikin Industries, Ltd. We selected test
cases so that each simulation component’s number of test cases
was as equal as developers typically do. In this case study,
we select 7 or 8 test cases for each of fourteen simulation
components, to become chronologically random and include
the oldest one same as our method, 100 in total. For each
method, we obtain the code coverage of selected test cases
and the distribution of the execution time.

B. Coverage Results

Table I shows the relative coverage of each method. In
this research question, we define relative coverage of a se-
lection method as the percentage of the instructions executed
by 100 test cases selected by the method divided by the
instructions executed by all 9,612 test cases. First, we can see
that the accuracy of the Component-based method is much
higher than the Random method. This result indicates that
the simulation component is highly related to the coverage.
Our clustering-based method and the Boolean-based method
outperform other baselines. In other words, we can select test
cases that cover different execution paths using the runtime
information. The result is better than the Component-based
method used in the company because the execution path or

Fig. 2. The Distribution of the Execution Time without Outlier.

loop counts differ depending on the parameters, even if the
simulation component is the same. On the other hand, the
Boolean-based method is slightly better than our clustering-
based method. This is because our method may select test
cases with different instruction execution counts even if they
have the same instructions.

C. Execution Time Diversity Results

Figure 2 shows the distributions of the execution time
excluding outliers for each method. In this figure, outliers for
each method are removed to focus on the distribution, since
the outliers for each method are much longer than regular
executions. The longest execution of all the test cases is 328
seconds. Our method and the Random selection resulted in
similar distributions to the distribution of the original (All)
test cases. On the other hand, Boolean-based method and the
Component-based method resulted in significantly different
distributions from all test cases. By using the information
of instruction execution count, we distinguished complex
executions that take a long time from those that do not and
thus achieved a diverse distribution of execution times.

Results of the Case Study� �
Our method using runtime information allows selecting
test cases with high coverage. By taking the number of
occurrences into account, the method keeps the diversity
of execution time.� �

IV. FIELD EXPERIMENT

Based on the case study results, the software developers de-
cided to use our method for their dependency update activity.
They updated their JDK from AdoptOpenJDK 11 to Eclipse
Temurin 17 and tested their simulator using 100 test cases
selected by our method.

We received a comment from the software developers after
the update as follows: The test execution was finished in half
a day. This execution time was short enough that it did not
affect the execution of the simulator. The test cases did not find
any incompatibilities. The simulator is working without failure
for six months until now. We considered that these selected
test cases contained various execution times and coverage,
which are better than the test cases selected by our previous
Component-based method.

From this comment, we conclude that our test case selection
method is useful for selecting the representative test cases from
a large number of test cases.

In this experiment, our method did not detect any defects.
However, this does not mean that failures will not occur in the
future. The most challenging part of this research is that no one
can ensure that selected test cases are sufficient for regression
testing. High code coverage does not imply a high coverage of
library usage scenarios implemented in the system. This might
be a reason that developers prefer 100 test cases with 99.76%
code coverage to a larger set of test cases with 100% code
coverage. An advanced method to evaluate the effectiveness
of test cases in the context of dependency updates would be
helpful for software developers.

V. RELATED WORK

Rothermel et al. [7] and Zhang et al. [9] proposed methods
for test case selection using runtime information and source
code change information to find source code that should be
tested. We cannot simply apply these existing methods in our
situation because the software itself does not change when the
dependencies are updated.

Many researches [1] [3] [5] proposed test case selection
methods using the method call information. While our method
is close to these approaches, we adopt bytecode instructions
and their number of occurrences so that we can represent both
code coverage and diversity of execution time as a vector.

Adithya et al. [6] proposed a system that performs data-
driven test minimization. Machalica et al. [4] also proposed
a new predictive test case selection strategy. Their methods
use historical test outcomes of the target software and select
the test cases based on the predicting test results. While these
methods are useful, they are not applicable to our simulator
because they need to maintain a history of repeatedly executed
test results for a large number of test cases.

Gligoric et al. [2] proposed a test case selection technique
that can integrate well with testing frameworks. When de-
velopers modify test files, this technique detects and selects
the affected test cases from the dynamic dependencies. How-
ever, we could not employ only this technique because a

dependency update may change many files at the same time,
especially in the case of this Java update.

VI. CONCLUSION

We report the current test case selection practice to update
dependencies in a company that maintains an industrial simu-
lator. We found that software developers in the company used
a very small number of test cases to quickly check the impact
of dependency updates, even though they had a sufficient
number of test cases achieving 100% code coverage. The
software developers recognized our method as useful because
the selected test cases included a wider range of parameters
than their previous set of test cases. The software developers
used 100 test cases selected by the method when they updated
JDK for the simulator.

In future work, we would like to combine our method with
the Component-based selection so that we can efficiently select
test cases having various execution paths from tens of millions
of test cases in a practical time. We also would like to define
metrics for the diversity of execution time so that we can
adopt state-of-the-art test case selection methods. We are also
interested in how to automatically find the optimal number of
clusters that meets developers’ requirements.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers JP18H04094 and JP20H05706.

REFERENCES

[1] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, “Using semi-supervised
clustering to improve regression test selection techniques,” in Proceedings
of the IEEE International Conference on Software Testing, Verification
and Validation, 2011, pp. 1–10.

[2] M. Gligoric, L. Eloussi, and D. Marinov, “Practical Regression Test
Selection with Dynamic File Dependencies,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2015, pp.
211–222.

[3] E. Juergens, B. Hummel, F. Deissenboeck, M. Feilkas, C. Schlögel,
and A. Wübbeke, “Regression test selection of manual system tests
in practice,” in Proceedings of the European Conference on Software
Maintenance and Reengineering, 2011, pp. 309–312.

[4] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive test
selection,” in Proceedings of the International Conference on Software
Engineering: Software Engineering in Practice, 2019, pp. 91–100.

[5] D. Mondal, H. Hemmati, and S. Durocher, “Exploring test suite di-
versification and code coverage in multi-objective test case selection,”
in Proceedings of the International Conference on Software Testing,
Verification and Validation, 2015, pp. 1–10.

[6] A. A. Philip, R. Bhagwan, R. Kumar, C. S. Maddila, and N. Nagppan,
“FastLane: Test Minimization for Rapidly Deployed Large-Scale Online
Services,” in Proceedings of the IEEE/ACM International Conference on
Software Engineering, 2019, pp. 408–418.

[7] G. Rothermel and M. J. Harrold, “A Safe, Efficient Regression Test
Selection Technique,” ACM Transactions on Software Engineering and
Methodology, vol. 6, no. 2, pp. 173–210, 1997.

[8] K. Shimari, T. Ishio, T. Kanda, N. Ishida, and K. Inoue, “NOD4J: Near-
omniscient debugging tool for java using size-limited execution trace,”
Science of Computer Programming, vol. 206, 102630 (13 pages), 2021.

[9] C. Zhang, Z. Chen, Z. Zhao, S. Yan, J. Zhang, and B. Xu, “An Improved
Regression Test Selection Technique by Clustering Execution Profiles,” in
Proceedings of the International Conference on Quality Software, 2010,
pp. 171–179.

