
Received 21 October 2022, accepted 18 November 2022, date of publication 28 November 2022,
date of current version 1 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3225100

BinCC: Scalable Function Similarity Detection
in Multiple Cross-Architectural Binaries
DAVIDE PIZZOLOTTO 1 AND KATSURO INOUE 2
1Osaka University, Osaka 565-0871, Japan
2Nanzan University, Nagoya 466-8673, Japan

Corresponding author: Davide Pizzolotto (davidepi@ist.osaka-u.ac.jp)

This work was supported by the Japanese Society for the Promotion of Science (JSPS) KAKENHI under Grant 18H04094.

ABSTRACT With the undeniable increase in popularity of open source software, also the availability and
reuse of source code have increased. While the detection of code clones helps tracking reuse and evolution
while dealing with source code, little prior work exists that can be used in binary code. This is complicated
by the increased difficulty posed by the compilation transformations.
In this paper, we present a CFG refinement useful to find function-level clones in a fast and scalable
way by comparing the high-level structure of multiple disassembled binaries altogether. We are capable of
determining if functions belonging to other programs have been copied or reused, even when the processor
architecture is different. Specifically, our algorithm consists in the extraction of the various functions flows
and the reconstruction of a higher level structure, leveraging architectural differences and allowing efficient
comparison in linear time with structural hashing.
We implemented our idea in a tool called BinCC, and analyzed 24 million functions spanning different
architectures and optimization levels. Results show that our approach can achieve precision between 91% and
99% within the same architecture and 75% in detecting clones among different architectures, and can also
detect the presence of specific library functions inside an executable. Our approach can reach comparable
precision of current state-of-the-art learning approaches while being three order of magnitude faster.

INDEX TERMS Code clones, static code analysis, reverse engineering, compilers.

I. INTRODUCTION
Free software has grown in popularity in recent years, and
with that also the adoption of this kind of software by com-
panies and its integration inside closed source projects. This
popularity is mainly driven by the ease of customization and
flexibility rather than economic reasons [1]: code is usu-
ally modified, adapted or simply reused and then re-released
with a compatible license. With a higher availability of
code, another common practice has become copy-pasting and
reusing source code in form of small code snippets from
online discussion platforms such as Stack Overflow. Aside
from the potential license violation, reused code snippets
have been proven to be usually harmful [2] or with security

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

flaws that in the original repository have long been
patched [3]. Although code cloning has been successful at
determining copied function reuse both for legal implica-
tions [4] and plagiarism detection [5], its main scope is usu-
ally code evolution and vulnerability propagation [6], [7], [8].

Nonetheless, in recent years, several clone detection
tools targeting lower-than-source-code have been developed.
These aremainly driven by a normalization step performed by
the compiler, rather than the lack of availability of the source
code. These works have been targeting Java Bytecode [9],
[10] or LLVM IR [11].

Different motivations can be found when working exclu-
sively with binary code: we already cited the license violation
in closed source software [12], [13]. Additional scenarios
may involve detecting the presence of a vulnerable function
in proprietary software [14], [15], analyzing the evolution of

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 124491

https://orcid.org/0000-0002-7690-6592
https://orcid.org/0000-0001-5424-0614
https://orcid.org/0000-0002-7194-3159

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

closed source software or the evolution of compiler trans-
formations, and even aiding the disassembly when a known
function snippet is detected.

While existing works in the field are mainly focused in
malware detection, the main motivation for our work is soft-
ware evolution and propagation in binary files, even in case
of security-related issues (e.g. bug propagation in release of
proprietary software). For this reason, the focus points of our
research are the ability to analyze multiple executables at the
same time and detect the propagation of a given function, the
ability to perform such analysis in a reasonable time for any
amount of given executables, and the ability to work amongst
different architectures, even lesser known.

In order to address these problems, our approach is based
on the idea of generating a common structure between the
compiled code in different architectures in order to leverage
compilation differences, similar to how decompilation helps
normalize source code differences [16]. In particular, starting
from a Control Flow Graph (CFG), we generate a higher
level structure using structural analysis. This structure allows
efficient comparison in linear time, as opposed to the expo-
nential time required by a subgraph comparison. This struc-
ture has the additional property of normalizing the various
architectural differences, allowing cross-architectural com-
parison. Thanks to its linear time scalability, our approach
can be used to efficiently analyzemultiple binaries altogether,
outlining the evolution and propagation of code among huge
codebases such as the LLVM project or the GNU toolchain,
while existing works are usually limited to a pairwise
comparison [17], [18].

The main novelty of our work is the following:
• A novel structural analysis designed specifically for
clone detection.
Unlike previous work in decompilation (e.g. [19]), our
analysis can not emit gotos and thus must sacrifice
some correctness. For this reason, we had to develop a
novel analysis with different detection rules for convert-
ing a CFG. This new analysis is described in detail in
Section III-D.

• A novel comparison method to efficiently detect struc-
tural clones among multiple binaries.
Comparing two CFGs requires an exponential algo-
rithm [20] and even the average function length of
40 nodes is intractable. While previous works have
based their comparisons on statistical properties [14] or
dominator trees [21] we based our comparison on tree
hashing, allowed by our structural analysis.

• An evaluation of clone detection across different CPU
architectures.
Previous work using structural or semantic anal-
ysis always targeted trivial binaries such as Java
Bytecode [16], [21] or has been limited to the same
architecture [22]. Whereas cross-architecture clones
have been researched with deep learning methods,
we propose a structural analysis algorithm that works in
binary code and does not require a training step.

The paper is structured as follows: Section II presents the
State of the Art in code cloning for binaries and binary anal-
ysis. Section III explains in detail how the entire analysis
is done, including the structural analysis algorithm and the
final comparison. Section IV evaluates our approach across
varying architectures. Section V describes some limitations
and threats to the validity of our work, and finally Section VI
closes the paper.

II. RELATED WORKS
Given the intrinsic difficulty at analyzing binary files and
the high amount of information lost during the compilation
process, the literature in clone detection dealing with com-
piled executables is more scarce compared to the one deal-
ing with plain source code. The most complete and, to our
knowledge, only existing analysis aimed at finding clones in
binary files is the one performed by Sæbjørnsen et al. which
uses a semantic approach based on vectors containing the
instruction sequences [22]. This analysis is itself an extension
of the one developed by A. Schulman [23].

In the matter of license violation, on the other hand,
Hemel et al. performed three different types of analyses based
on string, data compression and binary deltas analysis [24].
Both these approaches have been tested only on executables
or libraries within the same architecture, although the string
analysis of Hemel et al. could technically be applied also to
different architectures.

The structural reconstruction, instead, has been studied
in-depth by Engel et al. [25] and later refined by Brum-
ley et al. [26] and Yakdan et al. [27]. The latter two, however,
studied an approach more akin to decompilation and seman-
tic preservation while we care more about having the same
reconstruction in different binaries or architectures rather
than a correct reconstruction.

In the software security field, several tools are avail-
able to check for similarities between binaries. In particular,
BinDiff [17] and DarunGrim [18] present a structural anal-
ysis that use CFG isomorphism and basic block matching.
BinSlayer [28] and discovRE [14] improve the existing work
by providing faster CFG matching. However, these studies
are aimed at finding bugs by analyzing CFG properties, while
we refined even further the analysis in order to transform the
CFG into a tree and have linear time comparison. This allows
us to process thousands of functions in seconds. In contrast
to structural analysis, some tools present a detection based
on semantic properties. It is the case of BinHunt [29] using
symbolic execution andBinJuice [30] that extracts the seman-
tic representation of basic blocks. While all these works
are essentially single-architecture, Pewny at al. provided a
cross-architectural one by using a semantic representation of
basic blocks [15], while, in contrast, our tool uses structural
similarity. In addition to these tools, BinSim [31] can support
obfuscated binaries.

In recent years, with the prevalence of IoT devices, cross-
architectural analysis of binary files has been the scope of
work such as BinGo [32] and CACompare [33] that use the

124492 VOLUME 10, 2022

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

signature of a function to perform comparisons. Hu et al.,
in particular, investigates also the impact of different com-
pilers and optimization levels [34].

Recent works have also started introducing Deep Learn-
ing approaches in order to detect similarities between bina-
ries [35], [36]. While some of these were focused just on
graph properties [37], recent approaches are more similar to
Natural Language Processing [38], [39], [40], [41].

The main difference between our approach and Machine
Learning-based ones is the lack of requirement of a train-
ing step: building and retrieving a training dataset is already
challenging for some dominant CPU architectures [38], [41],
and it may be almost impossible in case of obscure or pro-
prietary architectures. Our approach implementation, instead,
currently supports 20 architectures, and additional ones can
be added by writing a few lines of code, provided a disas-
sembler is available. An additional downside of the learning
based approaches is the runtime: several works such as Inner-
Eye [38] and DeepBinDiff [39] can reach high precision, but
require an enourmous amount of time to run, that usually
hampers scalability. In our approach, instead, the runtime is
completely dominated by the disassembly time and is orders
of magnitude faster than the aforementioned approaches.

III. APPROACH
This section presents our approach for detecting function
clones in a binary file. Our idea consist of generating a
tree-like representation of each function, starting from aCFG,
that may represent the original source code structure. Then,
efficiently checking for clones in the subtrees of these rep-
resentations. This come from the idea that, even for differ-
ent architectures, the duplicated code once compiled should
retain the same structure in both architectures.

However, directly comparing a graph as the CFG is not
trivial, as it is known to be aNP-complete problem [20]. Com-
paring two CFGs with an exponential algorithm, for every
pair of function we want to process, is thus unfeasible.

For this reason we use a structural analysis step, to reduce
a CFG into a tree, more suitable for analysis. This step is
akin to a decompilation, but it differs from it in the sense that
semantic correctness is secondary as opposed to reconstruc-
tion completeness, allowing us to remove CFG edges.

A. OVERVIEW
The overview of our approach can be seen in Figure 1.
In this figure, several binaries labeled as Binary 1, Binary 2
and Binary 3 are analyzed in order to find cloned func-
tions between them. We can see from the figure that our
approach requires one or more binary files as input, and
produces a single output: this output contains clone classes
(clone sets) [42] which indicate cloned functions. Each clone
class represents functions implementing the same behav-
ior: two or more functions are reported as belonging to a
clone class along with their name, original binary name
and cloned basic blocks. Our approach compares all func-
tions of all binaries together and is based on three main

FIGURE 1. Overview of the binary analysis.

steps namely Structural Analysis, Comparison and Semantic
Analysis.

Structural Analysis is used to retrieve a structural repre-
sentation of every binary function. With those representa-
tions, the Comparison step generates the clone classes, and
the Semantic Analysis further filters those clone classes from
false positives. A detailed description of the various steps in
Figure 1 is the following:

Disasm
In this step, the original binary code is disassembled
and, for every function, a list of tuples <offset,
mnemonic, arguments> is obtained. This
step is performed once for every binary.

CFG
In this step, the CFG of each function is retrieved,
starting from the list of statements. Additionally,
these CFGs are refined and slightly modified as
explained in Section III-C. This step is performed
for every function retrieved during disassembly.

Reconstruction
This step is the core of our approach: here each CFG
is transformed into a representation of the original
function using nested high-level structures (e.g. If,
While, Do-While). These nested structures can rep-
resent the function in the form of a tree thus allow-
ing constant time comparison, unlike a CFG. Our
analysis, however, does not completely preserve the
program structure. In fact, our approach modifies
the CFG in case the analyzed function does not have
structured control flow (e.g. loops with break and
continue statements). For this reason, the algo-
rithm is explained in detail in Section III-D along
with reconstruction rules for each CFG pattern.

Comparison
The results of the reconstruction are compared
altogether and if any duplication or match is
found it is reported as output. Comparison is done
using an hash-based approach, by searching for
hash collisions while linearly processing all func-
tions. Further details on this step are explained in
Section III-E.

Semantic Analysis
Finally, in this step potential clones reported by
the comparison step are checked for semantic con-
sistency. A different approach is used based on
whether the potential clones belong to the same

VOLUME 10, 2022 124493

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

architecture or not. This step is described in detail
in Section III-F.

B. DISASSEMBLY
The first step of the entire analysis is the disassembly,
requiring as input the original binary file, either as exe-
cutable, library, or object code. Given that a binary file is
just a collection of bytes interpretable as machine code, data,
or comments, the purpose of this step is taking as input the
aforementioned binary file and providing as output assembly
instructions required by the subsequent steps. An assembly
instruction is a pair <mnemonic, arguments> where
mnemonic represents a particular instruction to be executed
by a CPU, taken from a set of instructions composing the
CPU Instruction Set Architecture (ISA), and arguments is a
sequence of elements passed as arguments to the mnemonic.
Additionally, ensuing steps of our analysis require assigning
a unique offset to each instruction. This offset is generally
calculated as the number of bytes from the beginning of the
file until the instruction, and must be coherent with the jump
targets: if an instruction performs a jump to another one,
the argument of the jump must be the offset of the target
instruction.

We can thus say that, for the purpose of our analysis,
an assembly instruction is a tuple <offset, mnemonic,
arguments>, and an example of this can be seen in the
following code:

In this code, each line represents an instruction. The first
number of each line is the offset, followed by a space and the
mnemonic. Everything else on each line are the mnemonic
arguments.

The expected output from this step is a list of function
names, and for each function a list of assembly instructions.
In our implementation we relied on external tools in order to
perform the disassembly, as such, in order to keep generality,
subsequent steps in our analysis assumes this list of assembly
statements as plain strings in Intel syntax, as presented in the
previous example.

C. CONTROL FLOW GRAPH
The purpose of this step is the transformation of the list
of instructions obtained in the Disasm step into a suitable
representation in form of a CFG, required for the structural
analysis. This step is performed for every function obtained in
the disassembly step. A CFG is a directed graph G = (V ,E)
where every node vk ∈ V represents a basic block and every
edge ei,j = (vi, vj) ∈ E ∧ vi, vj ∈ V 2 represents a possible

movement from the basic block vi to the basic block vj. This
kind of graph is effective at presenting the flow of the program
and is the starting point for our structural analysis.

Given the relatively easy task of transforming a list of
statements into a CFG, we are not going to present its imple-
mentation here. The only requirement is to have the list of
conditional and unconditional mnemonics for each ISA.

Additionally, after retrieving the CFG, a refinement step is
performed, consisting of the following actions:

Single exit
If multiple exits for the analyzed function are found,
a new single exit is created. This step is required
to preserve consistency with some patterns defined
later in Section III-D.

Dead nodes removal
Dead basic blocks, unreachable from the root,
are removed from the resulting CFG. These basic
blocks are resulting from indirect jumps, i.e. jumps
to a dynamically known address which are unsolv-
able at static time and thus ignored during the CFG
reconstruction [43], [44].

D. RECONSTRUCTION
The refined CFGwith a single entry and a single exit obtained
in the previous step is refined in this step. In particular, we aim
at iteratively reducing CFG portions into high-level structures
until a single node is left. This node will represent the entire
function, and recursively contains the various structures com-
posing it. This representation two major advantages over a
plain CFG:
• Loops are removed, and the resulting output is a rooted
tree. The resulting tree nodes are labeled by type, allow-
ing faster comparison through hashing. Comparing a
CFG instead requires exponential time [20].

• Minor differences between the x86_64 and aarch64
CFGs are leveraged.

FIGURE 2. Example of the Reconstruction step. The nodes 0, 1 and 2 of
the CFG are removed and replaced with a node labeled as If-else
structure. The new If-else structure and node 3 can then be replaced with
a Sequence structure. When only one node is left the algorithm
terminates.

An example of the reconstruction can be seen in Figure 2,
with its interpretation in tree form on Figure 3. On the left
of the Figure, the basic blocks 0, 1 and 2 forming an If-else

124494 VOLUME 10, 2022

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

FIGURE 3. The CFG of Figure 2 represented as tree after reconstruction.

structure have been reduced. Then, in the center, the newly
created If-else structure and basic block 3 are reduced into
a Sequence, thus terminating the algorithm, as shown on the
right. This analysis reduces CFG portions to the following
structural types: Sequence, Self-loop, If-then, If-else, While,
Do-While, Switch, Optimized If.

Algorithm 1 Reconstruction Main Loop
inputs : A CFG G = (V ,E)
output: A single node representing the nested structures. Nil

if the procedure failed
Function Reconstruction(G):

sccs← FindStronglyConnectedComponent(G) foreach
scc ∈ sccs do

TransformNaturalLoop(G, scc)
while |G| > 1 do

list ← postorderDFS(G) while list 6= ∅ do
node ← pop(list) R ← reduce(node) if |R| >
0 then

Let r be a single node containing R G ←
(G \R)∪ r foreach (vi, vj) ∈ E ∧ vi /∈ R do

if vj ∈R then
vj← r

break

if not modified G then
return nil

return G

Algorithm 1 presents the reconstruction procedure. In the
Reconstruction function, the first three lines are used to mod-
ify Natural Loops, loops with more than one exit, and are
explained in Section III-D6. In the remaining part, we can
see that the outer while is the iterative step, running until
the graph is composed solely by one node. For each iterative
step, a post-order depth-first visit is performed. The reason
for the post-order visit lies in the fact that while processing a
node, every possible descendant of it has already been given
the possibility to be reduced beforehand. Then, the inner
while attempts to reduce each node of the post-order visit
to a known structure by calling the reduce function on each
node.

The reduce function takes a node as input and returns
a set, called R, containing the original nodes composing

a particular structure. Reductions are tried in the follow-
ing order: Self loop, While and Do-while altogether, If-then,
If-else, Sequence, Switch and Optimized If. If the reduction
succeeds, firstly every node composing the region is removed
from the CFG and a new structural node named r is added.
Then, for each edge ei,j = (vi, vj) where vi does not belong
to the reduced region, the target vj mapping to a component
of the region itself is remapped to r . The edge becomes
e = (vi, r), effectively replacing a region with a single node.

Lastly, the inner loop is terminated, given that the
post-order visit is now invalidated having the CFG been mod-
ified. The outer while generates a new post order visit and
the process is repeated until a single node is left. If, instead,
the list is processed in its entirety without any modification
to the CFG the procedure terminates with a failure state.
We now explain how every region has been reduced, exclud-
ing self-loops which are trivial.

1) IF-THEN RESOLUTION

FIGURE 4. If-then and Short circuit If-then. A sequence of nodes
composed of conditional jumps with the target being fixed (2) can be
considered as If-then structure.

We can see in Figure 4, on the left, the representation of a
minimal If-then structure as it would appear on a CFG. Solid
lines represent the nodes that will be reduced. Note that in
case an If-then structure has more complex logic in the then
node, this has already been reduced in previous iterations.
In order to reduce a node as an If-then region, the following
conditions must hold:

1) The current node has two children, the then node and
the next node.

2) The then node is a node with a single predecessor and
a single successor.

3) The successor of the then node is the next node.
If all these conditions are satisfied, the current node and
the then node are transformed into an If-then region, with
the next node as its successor. In Figure 4, on the right,
we can instead see the CFG for an If-then with a short-circuit
evaluation. Recall that short-circuit evaluation is the semantic

VOLUME 10, 2022 124495

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

of a boolean expression where some arguments are not eval-
uated if the truth value of the expression has already been
established, represented in this example by the edge e0,3. This
kind of If-then is automatically resolved iteratively using the
previously defined rules, generating a nested If-then region
where the then node is another If-then region. In our imple-
mentation we flattened these nested nodes into a single If-
then keeping the first n − 1 nodes as the various conditions
and the last node as the actual then. Moreover, the number of
conditions are not considered in the comparison phase, so a
short circuit If-then is reconstructed identical to a normal one.

2) IF-ELSE RESOLUTION

FIGURE 5. If-else and Short circuit If-else. Two different paths sharing a
node (0) and a sink (3) can be reduced as an If-else structure. In principle,
the two paths must be disjoint, except in the case where every node of a
path connects to the same node of the other, indicating a short circuit
If-else.

In Figure 5 on the left, the minimal structure of an If-else
is presented. Exactly like the If-then resolution, the following
set of conditions must be verified in order to reduce a node as
an If-else node:

1) The current node has two children, the then node and
the else node.

2) The then node has a single predecessor and a single
successor.

3) The else node has a single predecessor and a single
successor.

4) The successor of the then node is the same of the else
node.

If all these conditions are satisfied, the current node, then, and
the else node are merged into an If-else region with the suc-
cessor of then as successor. It is important to note that decid-
ing which node is then and which node is else is not trivial
and has some consequences, however, this will be discussed
in Section III-E when dealing with the comparison. Addition-
ally, unlike the If-then structure, the short-circuit version of
the If-else presented on the right in Figure 5 is not resolved
automatically using the previous rules, given that the rule
number 3 is violated by the short-circuit. It is thus required to
implement a routine that tries to descend into the then subtree,

asserting that every successor is either another then node or
the else node. The new rule 3 instead will ensure that every
predecessor of the else node is either the current node or one
of the then nodes. Also in this case, short-circuit version and
normal one are treated equally in the comparison phase.

FIGURE 6. Optimized If structure. This structure is similar to an If-else,
but the two paths are not disjoint.

An interesting case can be seen in Figure 6. The figure
represents a particular If-else where the then branch can arbi-
trarily jump to the else one. Although impossible to realize
in code without gotos, this construct is often emitted by
the compiler to handle exit conditions and failures. Unfor-
tunately, a compiler can generate arbitrarily long then and
else branches, resulting in endless different between-branch
jump possibilities. This means that either we ignore some
of these structures, increasing the failure rate for the struc-
tural analysis, or we use the same label for structures that
are not the same, sacrificing comparison correctness. In our
study, we chose the first approach, as we further discuss
in Section IV-A. In particular, we detected only the most
basic compiler-generated patterns like the one in Figure 6 and
labeled them as Optimized If.

3) SWITCH RESOLUTION
A more complex variant of the If-else is the Switch. These
structures, after compilation, are usually implemented with a
jump table and thus require particular care to be detected stati-
cally. Fortunately, several algorithms for recovering statically
these tables exist in literature, and the task is thus delegated
to the disassembler [45].

FIGURE 7. Switch structure. Any sequence of disjoint paths from a node
(0) to a sink (4) with more than two paths can be reduced to a Switch
structure.

In the CFG, switch thus appear as in Figure 7 and can be
easily detected as its root node has a number of edges higher
than 2. If all these nodes point to the same successor, they are

124496 VOLUME 10, 2022

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

reduced as Switch, otherwise the successors should be refined
first.

4) SEQUENCE RESOLUTION
Sequences do not present particular cases, so it is sufficient
that the current node and its successor satisfy these conditions
to merge them into a 2-nodes sequence:

1) current node has a single exit
2) successor has a single entry and a single exit

Additionally, if the current node or the successor is already a
sequence, the newly created one is not nested but appended
to the existing ones.

5) WHILE AND DO-WHILE RESOLUTION

FIGURE 8. While and Do-While loops structures. A path of length
2 starting from and ending in the same node can be considered a loop.
If the loop entry and exit are from the same node, this loop can be
reduced as a while structure, otherwise as a Do-While structure.

While and Do-While loops are conceptually similar, as can
be seen in Figure 8 with the former on the left and the latter on
the right, the only difference being the exit node. While these
loops can be found quite easily using the Tarjan’s Strongly
Connected Component (SCC) algorithm, particular care must
be taken when dealing with nested loops, where the head of a
loop is also the tail of the other one, as shown in Figure 9 on
the left. Specifically, the SCC cannot be blindly used to deter-
mine the exit of a loop, given that in case of nested loops both
the inner and outer loop have the same SCC. Additionally,
unlikeWhile loops, Do-While constructs can have a minimal
form composed of three nodes that can not be reduced to two
nodes using Sequence rules, and requires an ad-hoc reduction.
This form is shown in Figure 9 on the right.

FIGURE 9. Nested Do-While and minimal 3-nodes Do-While. These are
two particular cases of Do-While structure that require additional care:
(a) for the correct identification of loop entry and exit and (b) because
the combination of Sequence and Do-While detection rules can not
detect this particular case.

6) TRANSFORM NATURAL LOOP
In case the original source code had a loop with break or
return statements, in the CFG this loop could potentially
have multiple exits. In order to effectively reduce a loop
to a minimal 2-nodes variant, a single exit is required and
the first three lines in Algorithm 1 are used to detect and
remove these edges from the CFG. In fact, our analysis
aims at reconstructing only the original structure and thus
these loop-breaking statements are redundant. Given a CFG
G = (V ,E) and a particular set of exit edges EX (k) from a
SCC k as

EX (k) = {∀ei,j ∈ E | vi ∈ V ∧

vj ∈ V ∧

SCC(vi) = k ∧

SCC(vj) 6= k}

where SCC(k) is the SCC index, the natural loop resolution
is run for the SCC if |EX (k)| > 1, meaning that more than
one exit edge exists for that SCC. From here on, given ei,j =
(vi, vj) such that vi ∈ EX (k) is an exit edge, we call exit node
the node vi and target the node vj. Asserted that the number
of exit nodes is always greater than one, two possible types
of natural loop exist:

Single Target
This type of natural loop is generated by break
statements without any kind of cleanup, like
if(condition)break;. If an exit node has a
higher number of predecessors than the others it is
kept as the real exit, with the assumption that this
loop would be aWhile loop. Otherwise, the first exit
node encountered in a Depth-First Search (DFS) is
kept. Although this could be the wrong one, recall
that we are focusing on consistency between differ-
ent programs rather than decompilation correctness.
Every edge not belonging to this exit is removed
from the CFG.

Multiple Targets
In addition to the single target, if constructs with
additional logic before the break keyword generate
a different exit target. Moreover, also return state-
ments generate an additional target. While the latter
can be easily spotted by searching a jump directly to
the function exit, we decided to keep only the target
having the longest path d(vj, vk) where vj is the
target, vk the function return node and d(vj, vk) the
minimum distance between the two nodes. Every
edge pointing to the wrong target is removed, then
the natural loop is resolved in the same way as the
Single Target one. Note that unlike the Single Tar-
get, this approach could generate orphan nodes.

After the removal of these edges from the CFG, the loop
can be reduced to the minimal form of the While or the
Do-While presented in Section III-D5 with the iterative step
of Algorithm 1.

VOLUME 10, 2022 124497

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

E. COMPARISON
After completing the reconstruction step, the output graph can
be represented as a tree of structures, similar to the example
shown in Figure 10. In order to efficiently compare all the

FIGURE 10. Tree resulting from the reconstruction.

possible subtrees generated by the reconstruction of every
function, we use Locality-Sensitive Hashing (LSH). Specif-
ically, we choose a hash function such that the collisions
between trees with the same structure are maximized. It is
of vital importance to carefully design this function: we want
to ensure an hash collision for structures that are similar, not
identical. In fact, the functionality and high level structure of
two functions may be the same, but they may use basic blocks
or jumps with different offsets. For this reason we hash only
the node type, avoiding the basic block offsets, recursively.

In our implementation we used as hashing function fh the
public domain FNV-1a [46] and implemented the function
h(t), in order to hash a subtree, shown in Equation 1.

h(t) = fh(type(t)) ◦ h(c0) ◦ h(c1) · · · ◦ h(cn)

∀ci ∈ Ct
where Ct is the set containing the children of t (1)

We can see that the hash of a node t is calculated by com-
posing the hash of the current node type with the hash of
all its children. The node type is a unique value assigned to
each structure type. If two nodes t1 and t2 are both the same
structure (e.g. Sequence, If-Else, etc.) type(t1) and type(t2)
have the same value.

We apply this function to every reconstructed function of
each binary. If the tree depth of the current node is higher than
a threshold θ , it is written into a hash table data structure, with
h(t) as key and t as value. Upon iterating all the keys of this
hash table, if a key containsmore than one value, the key itself
represents a clone class and all its values represent the various
clone snippets belonging to this class.

Considering that fh is a constant time operation, the com-
plexity of h(root), where root is the root of each reconstructed
tree, is linear in the number of tree nodes. According to our
reconstruction rules, a reconstructed tree can not have more
nodes than basic blocks, implying that our approach has a

comparison step with linear complexity in the total number
of basic blocks retrieved from all functions.

We can see that hashing is not based on the statements
contained inside a specific structure, but only on the structural
shape itself. This enables the comparison between different
architectures at the cost of increased false positives ratio,
in case two pieces of code are structurally similar but perform
different actions. Being thus the hashing distance based solely
on the structural shape, we use the threshold θ as variable
to control the ratio between false positives and negatives: a
lower θ will match structures with few nested nodes that may
be shared by code performing different operations, while a
higher θ will require a more unique structure but may miss
some matches.

We do, however, account for children’s order when calcu-
lating the hash; it is thus easy to see why in Section III-D2
it was important to clearly determine the then node and else
node deterministically.

F. SEMANTIC ANALYSIS
The comparison presented in Section III-E is sufficient for
finding clones, however, its calculations are entirely based
on the structure of binary code. This can present a situ-
ation where two binary functions are reported as clones
because they share the same structure, albeit having different
opcodes thus resulting in different functionality. For this rea-
son, in this section we present an additional refinement step
to our approach, that should run on the comparison results,
in order to filter some false positives that happen to have the
same structure, but different opcodes.

This refinement is based on the idea that to every instruc-
tionwe can assign a number, representing the amount of times
that particular opcode appears in the function over the total
number of opcodes in the function, thus creating a frequency
vector. Then, a function to measure the similarity between
two vectors, can be used to measure the degree of similarity
between two frequency vectors. If this value is greater than a
threshold, the two basic blocks can be considered the same.
We run this comparison on the (unordered) list of opcodes
composing the basic blocks of two matching reconstructed
tree, similar to the one in Figure 10. Moreover we do not con-
sider the opcode parameters: doing so would overspecialize
our comparison and match only identical functions. In our
implementation we used cosine similarity as similarity func-
tion: given two frequency vectors A and B, their similarity is
given by SAB = A·B

‖A‖‖B‖
Naturally, if the architecture between the potential clones is

different, their opcodes would not match and their similarity
will always be zero. For this reason, in case of different archi-
tectures, instead of using the opcodes directly we assign them
to a ‘‘family of operation’’ and determine the frequency of
each opcode family instead of the opcode itself. For example,
the jmp opcode for x86_64 and b opcode for aarch64
are both assigned to the JUMP family, and the similarity
calculated on the frequency of the JUMP family, instead of
the frequency of jmp or b. In total we divided opcodes into

124498 VOLUME 10, 2022

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

30 different families. For space reason, we do not report them
here, but the full list can be found in the repository referenced
in Section VII.

Note that, unlike the comparison approach presented in
Section III-E, the semantic analysis presented in this section
is performed by comparing two potential clones at a time.
This means that, to compare n functions, O(n2) operations
have to be performed, compared to the O(n) required by
the structural analysis. This explains why, in our approach,
the semantic analysis is used only after gathering a list of
potential clones from the structural one, and its higher run
time is confirmed by the experimental results we provide in
Section IV.

IV. EVALUATION
We implemented our analysis in Rust under Linux, however,
we are able to analyze the binaries for multiple operating
systems and 20 different architectures. The implementation
of our approach is named BinCC, and is openly available on
GitHub.1 In this evaluation, we target mainly the x86_64
and aarch64 architectures, being the dominant architecture
for the Desktop and Mobile market respectively.

As mentioned in Section III-B we depend on an external
disassembler to retrieve the list of functions and statements.
In our implementationwe used the open source tool radare2,2

version 5.7.4, whereas every other step is independent of
external tools. Despite using radare2, we do not depend
exclusively on it: in fact any disassembler could be used,
provided that a list of statements like the one in Section III-B
is returned as a string.

In order to evaluate the effectiveness of our approach,
we want to address the following research questions:
• RQ1completeness: How many functions are successfully
converted to a single node representation?

• RQ2correctness: How precise is our tool at detecting func-
tion clones across different architectures?

• RQ3use-case: Is our tool able to find function reuse from
libraries in a real-case application?

• RQ4performance: How performant is our tool, varying the
input executable size?

The first research question,RQ1, is meant to determine the
amount of functions that can actually be reconstructed, across
different architectures and optimization levels. This can be
seen as a measure of the goodness of our structural analysis
algorithm, given that functions that are not reconstructed can
not be compared with hashing. The second research question,
RQ2, is meant to measure the precision of our detection when
checking for clones in binaries within the same architecture or
different architectures. Additionally, the threshold parameter
θ for the LSH function defined in Section III-E is evaluated
here and our approach is compared against existing state-of-
the-art works. The third research question, RQ3, is meant to
be a use-case evaluation, measuring the precision at detecting

1http://github.com/davidepi/bincc
2https://rada.re/r/

function reuse with binaries and libraries resembling more a
real-case scenario. Finally, the last research question, RQ4,
is used to measure the time required by the analysis and the
scalability of our approach.

In order to ensure an evaluation as close as possible to the
final use-case, while still guaranteeing a correct evaluation,
in this study a different dataset was used for each research
question. A summary of the various datasets can be found
in Table 1, while details on their creation are listed in the
respective Research Questions.

TABLE 1. Statistics and features of the dataset used for each Research
Question. Because RQ3 uses publicly available real-case binaries, the
optimization level and strip status are not known.

A. RQ1: COMPLETENESS
In order to answer RQ1 we used as dataset a collection
of binaries publicly available on Zenodo [47]. These bina-
ries come from multiple open source projects of different
scopes and are compiled using different optimization levels.
As reported in Table 1, these binaries are stripped. We used
binaries compiled using GCC for the x86_64 and aarch64
architectures, divided into O0, O2, Os optimization levels.

For the evaluation, we ran the reconstruction on every func-
tion and checked if the output was effectively a single node.
Input functions already composed of a single node are not
considered in this evaluation.

FIGURE 11. Perfectly reconstructed functions on stripped binaries,
excluding trivial ones.

Figure 11 shows the percentage of correctly reconstructed
functions over the total, for a given CFG input size.
The immediate result we can note is that the higher the

VOLUME 10, 2022 124499

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

optimization level, the lower the chance our algorithm is able
to correctly perform the reconstruction. This is somewhat
expected, as higher optimization levels introduce additional
compilation patterns that are more difficult to map to the
structures we defined in Section III-D. In particular, we ana-
lyzed the failed reconstructions and determined that most
failures are due to variations of the Optimized If defined in
Section III-D2. With high optimization levels, the compiler
enables jumps between the various if-else branches, gen-
erating complex branching structures that cannot be easily
categorized.

Differences between the two architectures instead are
minor: the reconstruction in aarch64 is slightly less pre-
cise compared to x86_64 in both O0 and Os, but not in
O2. We could not determine the reason of this difference by
looking at the functions, and we can only assume it is due to
the disassembler being more proficient with x86_64.

FIGURE 12. Amount of reduced nodes based on the original CFG length.

FIGURE 13. Amount of reduced nodes, considering only failed
reconstructions.

Figure 12 and Figure 13 show the reduction percentage in
all functions and the reduction percentage in failed recon-
structions only. These are meant to represent how much

smaller a reduced function is, compared to the original coun-
terpart, considering the number of nodes before and after a
reduction. This is very important, as in case of failed reduc-
tions the comparison may still be possible if the number of
nodes is sufficiently small.

In fact, themaximum amount of nodeswe found is 4202 for
the aarch64 architecture and 9424 for x86_64 with an
average of 40 nodes per function. In these cases, the CFG
analysis without our reconstruction is absolutely intractable
with an O(2n) algorithm. However, as we can see from Fig-
ure 13 even in case of failed reconstructions our analysis
reduces the number of nodes by 30-40% in any optimization
level, and may allow tractability in the average case, going
from 240 comparisons to less than 230.

Given the results, we can answer RQ1 as follows:

The average percentage of correctly reconstructed
functions is around 90% for the O0 optimization level,
70% for Os and 45% for O2. Even in the case of failed
reconstructions, the number of nodes is reduced by 35-
45%, and enables tractability in the average case.

B. RQ2: CORRECTNESS
For the second research question, we want to analyze how
accurate is the detection rate of cloned functions in our
approach, while also estimating the change in accuracy vary-
ing the approach parameters. Specifically, we first analyze the
clone detection using structural analysis only, then semantic
analysis only and, finally, a combination of the two. We close
this analysis by comparing our tool with two existing state-
of-the-art products: BinDiff [17] and DeepBinDiff [39].

For this Research Question we compiled GNU coreutils3

tagged v.9.31 on Linux for the x86_64 and aarch64
architectures with optimization level O2. We chose coreutils
for the reason that, being composed by several programs
in a single codebase, we expect to find more clones than
by choosing two completely random binaries. In the ‘‘same
architecture’’ analysis we ran our tool comparing all functions
belonging to the 108 coreutils binaries built for x86_64,
reporting both intra-project and inter-project clones. Simi-
larly for the ‘‘cross architecture’’ analysis we added also the
functions belonging to the same binaries built for aarch64.
As highlighted in Table 1, this time we did not strip the
binaries: in fact, using non-stripped binaries allows us to
investigate false negatives by matching the various function
names. Note that our approach supports also sub-function
granularity, as presented in Section III-E, however, to reduce
the amount of manual analysis to be done, we limit the study
to function granularity.

Unlike most tools in literature [17], [18], [31], ours com-
pares not only pairs, but entire sets of similar functions. For
this reason, the metrics were defined as follows: for each
reported clone class A, the most similar clone class B was
retrieved from the ground truth using Jaccard Similarity.With

3https://www.gnu.org/software/coreutils/

124500 VOLUME 10, 2022

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

TABLE 2. True positives, False Positives, False Negatives, Precision and Recall in clone detection using structural analysis alone, varying the minimum tree
depth threshold θ . Results obtained comparing all the coreutils binaries together.

TABLE 3. True positives, False Positives, False Negatives, Precision and Recall in clone detection using semantic analysis alone, varying the minimum
cosine similarity threshold. Results obtained comparing all the coreutils binaries together.

these two sets, True Positives (TP) are defined as #(A ∩ B),
False Positives (FP) as #(A \ B) and False Negatives (FN) as
#(B\A). Additionally, we added to the False Negatives count
the elements of each unmatched clone class in the ground
truth. The ground truth set was built with a combination
of similar function name matching, existing state-of-the-art
tools and manual analysis.

Table 2 shows the results using Structural Analysis only.
When operating within the same architecture, for sufficiently
complex functions (higher θ), this approach is capable of
reaching a precision up to 91%. In this type of analysis,
the False Positives are exclusively determined by functions
with the same structure but different opcodes. For example,
in the binary pr, the functions hold_file and tzfree
are reported as clones despite being composed of completely
different opcodes. This happens because their structure is
essentially the same. Naturally, with a low threshold these
false positives increase in number, but even with a low value
as θ = 3 we are capable of reaching a fairly high precision of
almost 80%.

The same cannot be said for the cross architectural Struc-
tural Analysis. In this case the precision never goes above
70%. Themain problemwe identified by analyzing the results
is the fact that our approach can correctly report big clone
classes in their respective architectures but these classes have
slightly different structures, mostly sequences with a differ-
ent number of basic blocks, that result in different struc-
tural hashes. For this reason these clone classes are not
merged into a single cross-architectural clone class. Natu-
rally, we report these clones as False Positives/Negatives:
despite being correctly identified as clones we are interested
in cross-architectural clones only.

Table 3, instead, shows the results using Semantic Anal-
ysis only. Unlike similar approaches in source code clone
detection [48], the minimum similarity threshold for our fre-
quency vector is much higher. Even in CISC architectures

such as x86_64 that potentially can use thousands of
opcodes, in practice most functions use a small subset of
common opcodes. This problem is exacerbated in the cross
architectural detection by our ‘‘opcode family’’ described in
Section III-F that further reduces variance between functions,
resulting in 80% precision with functions that have a similar-
ity higher than 0.999. In addition to this problem, the semantic
analysis has complexity O(n2) in the number of functions,
compared to the O(n) of the structural analysis, limiting its
scalability.

TABLE 4. Precision and Recall in clone detection within the same
architecture, using structural analysis and semantic analysis combined,
varying their input thresholds.

While discussing Table 2 we explained how most of the
False Positives in the structural analysis are determined by
clones with the same structure but different opcodes. For this
reason, by using the results of the structural analysis and
applying semantic analysis on them, we overcome this prob-
lem and obtain the results shown in Table 4. The Table reports
only precision and recall, but we can clearly see how dramatic
the improvement in precision is: even for simpler functions
composed of three nested structures both precision and recall
are now above 91%. For complex functions the precision
can reach up to 99% with our best result being 474 True
Positives and only 4 False Positives in one configuration.
The remaining false positives are due to the granularity of
our approach returning block-level clones but being treated

VOLUME 10, 2022 124501

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

as function-level clones by our experimental settings, in par-
ticular for θ = 2.

TABLE 5. Precision and Recall in clone detection across different
architectures, using structural analysis and semantic analysis combined,
varying their input thresholds.

This solution, however, does not work for cross architec-
tural clones, as can be seen in Table 5. Here the main problem
lies in the structural analysis not correctly mixing the various
clone classes and this problem can not be fixed by the seman-
tic analysis.

TABLE 6. Time required to perform the structural analysis, semantic
analysis and combined analysis in both same architecture and cross
architecture using θ = 3 and min similarity of 0.99. Results obtained
analyzing all coreutils binaries together.

Finally, Table 6 shows the time required for each approach.
We can clearly see how the semantic analysis is 1000 times
slower than the structural one, while the combination of the
two still manages to reach an acceptable time, due to the
initial filtering performed by the structural analysis.

TABLE 7. Precision and number of detected clones in pairwise function
detection of several state-of-the-art approaches. The listed programs
have been compared against du.

In Table 7 we compare our approach against BinDiff [17],
a commercial tool for binary diffing, and DeepBinDiff [39],
a research tool performing the same task using deep learn-
ing. Given that both BinDiff and DeepBinDiff support
only pairwise comparison, and none of them support cross-
architectural comparison, we compared eleven binaries in the

coreutils package of different size againstdu. In particular we
used our tool combining structural and semantic analysis with
a low threshold in order to match as many clones as possible
(θ = 2). For BinDiff and DeepBinDiff, instead, we report as
clone a pair of functions having at least half their basic blocks
matching. Using higher threshold for all tools would result in
perfect precision, but would miss most function pairs.

We can see that BinCC, our tool, even with low thresholds,
can emit more clones compared to the state-of-the-art. This is
due to our tool being capable of emitting intra-project clones
that, depending on the use case, may be desirable or not.
The precision of the detected clones is similar with respect
to the other state-of-the-art tools. We determined that our
tool, similarly to DeepBinDiff, fails in cases where functions
have identical implementation modulo a different function
call. For example, they both detect xcalloc and xmalloc
as clones, being these two functions different only in the
allocation function used. The results obtained from DeepBin-
Diff are comparable with the results presented in its original
paper [39], while for BinDiff we obtained slightly more accu-
rate results compared to previous experiments [31].

A huge difference instead, can be noted in the speed.
Table 8 shows a comparison between our tool and DeepBin-
Diff. BinDiff using Ghidra requires to manually disassemble
the file, and for this reason it is not listed. The Table clearly
shows that our tool is order of magnitudes faster than the
competition, in some cases reaching difference of a factor 103

(e.g. the comparison du-du). In addition, DeepBinDiff can
compare only two binaries together, requiring to perform the
analysis for any combination of executables, whereas our tool
can report the clones for all 108 coreutils binaries together in
less than a minute.

For RQ2 we can thus conclude:

Even without using semantic analysis our approach is
capable of reaching more than 90% precision if the
function is complex enough. For simpler functions, this
precision can be reached by combining the structural
analysis with a semantic one, sacrificing some detec-
tion speed. Nonetheless, our tool is still order of mag-
nitude faster than the competition and can achieve sim-
ilar precision.

C. RQ3: USE-CASE
After performing the evaluation on a controlled case with
unstripped binaries in our possession, in this section we want
to simulate a use-case by checking the detection rate on
stripped-only, real-case binaries.

Given that after the strip phase every information about
the function name is lost, building a ground truth set
requires manually checking every function. For this rea-
son, we adopted an approach similar to the one of
Hemel et al. [24]: we compiled several binaries with the
default options and static linking. After that, we ran the com-
parison between the binary itself and the libraries reported to
be used at link time. Additionally, we performed the check

124502 VOLUME 10, 2022

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

for a limited set of extra libraries unrelated to the project.
In this case, being more of a use-case, we wanted to check
more consistent functions and thus used higher thresholds. In
the dataset summary of Table 1, we reported the optimization
for this Research Question as ‘‘unknown’’: being this a real-
case scenario, we used binaries without knowing the original
compilation options. We used a value θ of 7 and a minimum
number of nodes of 7 for the reconstruction and 15 for the
CFG.

TABLE 8. Time required to compare du with the binary listed in the
column bin, in seconds. The size column contains the combined size of du
and the target binary. Times have been counted from program invocation
until program termination.

Table 9 shows the results for busybox tag 1_31_0 which
uses libm and libresolv. Our tool correctly reported function
reuse only in the libraries statically linked with the binary.
We then ran the same analysis against those libraries com-
piled for aarch64 and obtained similar results except for
libm that was not detected: of the 40 functions checked in
x86_64, 0 were analyzed in aarch64. The reason for this
is that multiple functions were under the threshold and thus
not analyzed, probably due to the smaller CFG in the second
architecture. The number of analyzed functions for the other
libraries were similar instead.

However, in order to not bias the evaluation given that we
purposely used libraries unrelated to the project, we also reran
the evaluation with 800 libraries usually present in an Ubuntu
Linux install. In this specific case, we found 407 libraries that
had function reuse and 393 that did not. We did not check
if all the reports were false positives or negatives, because
this would require a prohibitively high amount of time hav-
ing to manually understand and analyze over 8000 functions
in assembly. However, we found that most of the reported
libraries are dependent upon libc, that is statically linked with
the executable we analyzed.

For this reason, we plan to conduct a more controlled
test, analyzing also the dependencies between the various
libraries.

We can then answer RQ3 as follows:

By analyzing a stripped real-case binary executable
our approach detects the libraries statically linked
with it and also the dependencies of those libraries.
Libraries unrelated with them are not detected

TABLE 9. Results of the library and function usage detection for busybox.
The column ‘‘used’’ refers to functions in the library that were used inside
busybox. ‘‘checked’’ refers to the amount of functions checked from that
library.

D. RQ4: PERFORMANCE
The last research question evaluates the performance and the
scalability of our analysis. In order to do so, we used a subset
of the same dataset used for RQ1, limited to x86_64 and O2.
These times were recorded on a machine mounting an Intel
Xeon E5-2620 @ 24x 2.5GHz with 64GB of RAM, limited
to a single core and with hyper-threading disabled.

Figure 14 shows the time required for the disassembly of
the executables. We can observe that the time scales linearly
with respect to the executable size, and it is in the order of
hundredth of seconds.

FIGURE 14. Time required for disassembly and reconstruction step on
x86_64 O2.

However, by observing Figure 15, showing the time
required for the structural analysis only, we can note that
the time required is in the order of tenth of seconds. The
entire procedure is thus completely dominated by the time
required by the disassembly on which we depend, rather than
the time required by our analysis. This can be seen clearly
also in Figure 16 showing the composition of time required
to perform the combined analysis. In the Figure we can note
how the disassembly operation takes half the total time of the
entire analysis, represented by the line. Moreover we can note
that our approachworkingwith a 158MiB executable requires
the same time as existing approaches on a 400KiB, as shown
in Table 8.

VOLUME 10, 2022 124503

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

FIGURE 15. Time required for the CFG reconstruction step.

FIGURE 16. Time required for the combined analysis. The line represents
the total amount of time required, while the colors represent the portion
of time taken by each analysis step.

We experimented with the disassembler, and managed to
perform a faster disassembly by analyzing only the function
calls instead of performing a full binary analysis. However,
the reconstruction accuracy suffered greatly: the fast disas-
sembly took around the same time as our structural analysis,
but the reconstruction accuracy presented in RQ1 dropped
by a flat 20% in every optimization level. For this reason,
we decided not to report this analysis with the fast disassem-
bly option.

For RQ4 we can thus conclude:

Our analysis scales linearly and is completely dominated
by the time required to perform the disassembly.

V. LIMITATIONS AND THREATS TO VALIDITY
A. PREDICATION
In some architectures, such as ARM, predication is used
as an alternative to branching by converting flow depen-
dency to data dependency. Predication works by associating

instructions with a predicate, a boolean value, usually a CPU
flag, used to indicate if the instruction is allowed to execute.
If this boolean value does not hold at the time the instruc-
tion should be executed, that instruction does not modify
the architectural state, with the advantage of not breaking
the CPU pipeline. As an example, consider the following
code:

The first instruction executes a comparison and sets the
CPU flags according to the result. If the flags are set as
true, the second and third instructions do nothing, and the
fourth is executed, otherwise the second is executed which
changes the flags values again for when the third will be
executed. The problem with predication thus lies in the
fact that a CFG reconstructed just by looking at jumps
will miss the flow hidden beneath these instructions. In our
implementation we decided to ignore predication given that
only two mnemonics, namely CMOV and SETcc, supports
these operations in x86_64, while in aarch64 these are
mostly deprecated given the recent advancementswith branch
predictors [49].

B. MISMATCHED COMPILER CONFIGURATIONS
In addition to the results showed in Section IV-B, we briefly
analyzed potential clones between binaries compiled with
different compilers or optimization settings.

Results show that our algorithm fails at finding potential
clones when the compiler or the optimization flags are differ-
ent: these results are due to the fact that code is rearranged
during the data flow analysis performed by the compiler,
and thus the output dramatically changes depending on the
analyses performed at compilation time.

This was originally highlighted by Sæbjørnsen et al. [22]
and we can confirm that not only the compiled binary
is semantically different at various optimization levels but
also structurally different, and we expect every CFG-based
approach to suffer from this limitation. In order to overcome
this problem, however, a previous work of us was focused
on determining automatically the compiler and optimization
level used in a binary, in order to mitigate failed analyses due
to mismatched compiler configurations [50].

C. DISASSEMBLER DEPENDENCY
In this work, the starting point of our analysis is the disas-
sembler. We relied on an external tool as there is no novelty
in implementing our own and deemed the process as out-of-
scope for this work. However, this means the goodness of our
structural analysis is dependent on the disassembly quality:
using a different disassembler may result in a different qual-
itative result in terms of structural analysis ability and clone

124504 VOLUME 10, 2022

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

detection precision. We highlighted this fact in Section IV-D
by citing the fast analysis: using a faster but less accurate
disassembly resulted in a flat drop of 20% accuracy in the
structural analysis alone.

VI. CONCLUSION
In this paper, we presented our approach for finding function
reuse and clones using a high-level refined CFG. We imple-
mented this analysis and conducted several tests in 24 million
functions in the x86_64 and aarch64 architectures.
Results show that our analysis is faster than existing

approaches, and the time required is dominated by the dis-
assembly step on which it depends. Our technique can be
applied without any training step in 20 different architectures,
analyzing any given number of executables at the same time.

When performing the comparison, our work showed to be
capable of detecting function clones with precision ranging
from 91% to 99% when comparing binaries from the same
architecture and 75% when comparing binaries in different
architectures. In addition, we showed that our approach can
detect the presence of functions coming from a particular
library.

VII. REPLICATION
The dataset used in our study can be found on Zenodo at the
following URL [47], while source code can be found publicly
onGitHub.4 OnGitHub, the branchexperiments contains
all the experimental data and results used in this paper.

REFERENCES
[1] S.Morasca, ‘‘Why do developers adopt open source software? Past, present

and future,’’ in Proc. IFIP Int. Conf. Open Source Syst. Montreal, QC,
Canada: Springer, 2019, pp. 104–115.

[2] F. Fischer, K. Bottinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, ‘‘Stack overflow considered harmful? The impact of copy & paste
onAndroid application security,’’ inProc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 121–136.

[3] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
‘‘Toxic code snippets on stack overflow,’’ IEEE Trans. Softw. Eng., vol. 47,
no. 3, pp. 560–581, Mar. 2021.

[4] D. M. German, M. Di Penta, Y.-G. Gueheneuc, and G. Antoniol, ‘‘Code
siblings: Technical and legal implications of copying code between appli-
cations,’’ in Proc. 6th IEEE Int. Work. Conf. Mining Softw. Repositories,
May 2009, pp. 81–90.

[5] L. Prechelt, G. Malpohl, and M. Philippsen, ‘‘Finding plagiarisms among
a set of programs with JPlag,’’ J. Univers. Comput. Sci., vol. 8, no. 11,
p. 1016, 2002.

[6] H. Zhang and K. Sakurai, ‘‘A survey of software clone detection from
security perspective,’’ IEEE Access, vol. 9, pp. 48157–48173, 2021.

[7] N. Yoshida and E. Choi, ‘‘Clone evolution and management,’’ in Code
Clone Analysis. Berlin, Germany: Springer, 2021, pp. 197–208.

[8] K. Inoue and C. K. Roy, Code Clone Analysis. Berlin, Germany: Springer,
2021.

[9] D. Yu, J. Wang, Q.Wu, J. Yang, J. Wang,W. Yang, andW. Yan, ‘‘Detecting
Java code clones with multi-granularities based on bytecode,’’ in Proc.
IEEE 41st Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jul. 2017,
pp. 317–326.

[10] I. Keivanloo, C. K. Roy, and J. Rilling, ‘‘Java bytecode clone detection via
relaxation on code fingerprint and semantic web reasoning,’’ in Proc. 6th
Int. Workshop Softw. Clones (IWSC), Jun. 2012, pp. 36–42.

4http://github.com/davidepi/bincc

[11] P. M. Caldeira, K. Sakamoto, H. Washizaki, Y. Fukazawa, and T. Shimada,
‘‘Improving syntactical clone detection methods through the use of an
intermediate representation,’’ in Proc. IEEE 14th Int. Workshop Softw.
Clones (IWSC), Feb. 2020, pp. 8–14.

[12] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu, ‘‘Value-based pro-
gram characterization and its application to software plagiarism detection,’’
in Proc. 33rd Int. Conf. Softw. Eng., May 2011, pp. 756–765.

[13] F. Zhang, Y.-C. Jhi, D. Wu, P. Liu, and S. Zhu, ‘‘A first step towards algo-
rithm plagiarism detection,’’ in Proc. Int. Symp. Softw. Test. Anal. (ISSTA),
2012, pp. 111–121.

[14] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, ‘‘DiscovRE: Efficient
cross-architecture identification of bugs in binary code,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2016, pp. 58–79.

[15] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, ‘‘Cross-
architecture bug search in binary executables,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2015, pp. 709–724.

[16] C. Ragkhitwetsagul and J. Krinke, ‘‘Using compilation/decompilation to
enhance clone detection,’’ in Proc. IEEE 11th Int. Workshop Softw. Clones
(IWSC), Feb. 2017, pp. 1–7.

[17] H. Flake, ‘‘Structural comparison of executable objects,’’ in Proc. Int. GI
Workshop Detection Intrusions Malware Vulnerability Assessment, 2004,
pp. 161–174.

[18] J. Oh, ‘‘Fight against 1-day exploits: Diffing binaries vs anti-diffing bina-
ries,’’ in Proc. Blackhat Tech. Secur. Conf., 2009, pp. 1–28.

[19] M. Sharir, ‘‘Structural analysis: A new approach to flow analysis in
optimizing compilers,’’ Comput. Lang., vol. 5, nos. 3–4, pp. 141–153,
Jan. 1980.

[20] J. R. Ullmann, ‘‘An algorithm for subgraph isomorphism,’’ J. ACM, vol. 23,
no. 1, pp. 31–42, Jan. 1976.

[21] W. Amme, T. S. Heinze, and A. Schafer, ‘‘You look so different: Finding
structural clones and subclones in Java source code,’’ in Proc. IEEE Int.
Conf. Softw. Maintenance Evol. (ICSME), Sep. 2021, pp. 70–80.

[22] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, ‘‘Detecting
code clones in binary executables,’’ in Proc. 18th Int. Symp. Softw. Test.
Anal. (ISSTA), 2009, pp. 117–128.

[23] A. Schulman, ‘‘Finding binary clones with opstrings function digests: Part
III,’’ Doctor Dobbs J., vol. 30, no. 9, p. 64, 2005.

[24] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, ‘‘Finding software
license violations through binary code clone detection,’’ in Proc. 8th Work.
Conf. Mining Softw. Repositories (MSR), 2011, pp. 63–72.

[25] F. Engel, R. Leupers, G. Ascheid, M. Ferger, and M. Beemster, ‘‘Enhanced
structural analysis for C code reconstruction from IR code,’’ in Proc. 14th
Int. Workshop Softw. Compil. Embedded Syst. (SCOPES), 2011, pp. 21–27.

[26] D. Brumley, J. Lee, E. J. Schwartz, and M. Woo, ‘‘Native x86 decompi-
lation using semantics-preserving structural analysis and iterative control-
flow structuring,’’ inProc. 22ndUSENIX Secur. Symp., 2013, pp. 353–368.

[27] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith, ‘‘No more
gotos: Decompilation using pattern-independent control-flow structuring
and semantics-preserving transformations,’’ in Proc. Netw. Distrib. Syst.
Secur. Symp., 2015, pp. 1–15.

[28] M. Bourquin, A. King, and E. Robbins, ‘‘BinSlayer: Accurate comparison
of binary executables,’’ in Proc. 2nd ACM SIGPLAN Program Protection
Reverse Eng. Workshop (PPREW), 2013, pp. 1–10.

[29] D. Gao, M. K. Reiter, and D. Song, ‘‘BinHunt: Automatically finding
semantic differences in binary programs,’’ in Proc. Int. Conf. Inf. Commun.
Secur. Cham, Switzerland: Springer, 2008, pp. 238–255.

[30] A. Lakhotia,M.D. Preda, andR.Giacobazzi, ‘‘Fast location of similar code
fragments using semantic ‘juice,’’’ in Proc. 2nd ACM SIGPLAN Program
Protection Reverse Eng. Workshop (PPREW), 2013, pp. 1–6.

[31] J. Ming, D. Xu, Y. Jiang, and D. Wu, ‘‘BinSim: Trace-based semantic
binary diffing via system call sliced segment equivalence checking,’’ in
Proc. 26th USENIX Secur. Symp., 2017, pp. 253–270.

[32] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K. Tan,
‘‘BinGo: Cross-architecture cross-OS binary search,’’ in Proc. 24th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2016, pp. 678–689.

[33] Y. Hu, Y. Zhang, J. Li, and D. Gu, ‘‘Binary code clone detection across
architectures and compiling configurations,’’ in Proc. IEEE/ACM 25th Int.
Conf. Program Comprehension (ICPC), May 2017, pp. 88–98.

[34] Y. Hu, Y. Zhang, J. Li, H. Wang, B. Li, and D. Gu, ‘‘BinMatch:
A semantics-based hybrid approach on binary code clone analysis,’’ in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2018,
pp. 104–114.

VOLUME 10, 2022 124505

D. Pizzolotto, K. Inoue: BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural Binaries

[35] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, ‘‘A combination method for
Android malware detection based on control flow graphs and machine
learning algorithms,’’ IEEE Access, vol. 7, pp. 21235–21245, 2019.

[36] H. Xue, G. Venkataramani, and T. Lan, ‘‘Clone-slicer: Detecting domain
specific binary code clones through program slicing,’’ in Proc. Work-
shop Forming Ecosystem Around Softw. Transformation (FEAST), 2018,
pp. 27–33.

[37] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, ‘‘Scalable graph-
based bug search for firmware images,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2016, pp. 480–491.

[38] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, ‘‘Neural machine
translation inspired binary code similarity comparison beyond function
pairs,’’ 2018, arXiv:1808.04706.

[39] Y. Duan, X. Li, J. Wang, and H. Yin, ‘‘DeepBinDiff: Learning program-
wide code representations for binary diffing,’’ in Proc. Netw. Distrib. Syst.
Secur. Symp., 2020, pp. 1–16.

[40] S. H. H. Ding, B. C. M. Fung, and P. Charland, ‘‘Asm2Vec: Boosting static
representation robustness for binary clone search against code obfuscation
and compiler optimization,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 472–489.

[41] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, ‘‘Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 363–376.

[42] C. K. Roy, J. R. Cordy, and R. Koschke, ‘‘Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach,’’ Sci.
Comput. Program., vol. 74, no. 7, pp. 470–495, 2009.

[43] A. Moser, C. Kruegel, and E. Kirda, ‘‘Limits of static analysis for malware
detection,’’ in Proc. 23rd Annu. Comput. Secur. Appl. Conf. (ACSAC),
Dec. 2007, pp. 421–430.

[44] A. Gonzalvez and R. Lashermes, ‘‘A case against indirect jumps for secure
programs,’’ in Proc. 9th Workshop Softw. Secur., Protection, Reverse Eng.
(SSPREW), 2019, pp. 1–10.

[45] C. Cifuentes and M. Van Emmerik, ‘‘Recovery of jump table case state-
ments from binary code,’’ Sci. Comput. Program., vol. 40, nos. 2–3,
pp. 171–188, Jul. 2001.

[46] G. Fowler and P. Vo. (May 1991). Fowler/Noll/Vo (FNV) Hash. [Online].
Available: http://isthe.com/chongo/tech/comp/fnv

[47] D. Pizzolotto andK. Inoue. (Apr. 2021).Binary Software Compiled for Dif-
ferent Architectures With Different Optimization Levels. [Online]. Avail-
able: https://doi.org/10.5281/zenodo.4659370

[48] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, ‘‘Sourcer-
erCC: Scaling code clone detection to big-code,’’ in Proc. 38th Int. Conf.
Softw. Eng., May 2016, pp. 1157–1168.

[49] ARMV8 Instruction Set Overview, document PRD03-GENC-010197,
Architecture Group, vol. 15, no. 11, Oct. 2011.

[50] D. Pizzolotto and K. Inoue, ‘‘Identifying compiler and optimization
level in binary code from multiple architectures,’’ IEEE Access, vol. 9,
pp. 163461–163475, 2021.

DAVIDE PIZZOLOTTO received the B.S. and
M.S. degrees in computer science from the Uni-
versity of Trento, in 2015 and 2019, respectively.
He is currently pursuing the Ph.D. degree with
the Graduate School of Information Science and
Technology, Osaka University. Previously, he was
a Research Assistant at Fondazione Bruno Kessler
(FBK). His research interests include code obfus-
cation, binary code analysis, and source code
analysis and transformation.

KATSURO INOUE received the Ph.D. degree
from Osaka University, in 1984. He was an Asso-
ciate Professor with the University of Hawaii at
Manoa, from 1984 to 1986. After becoming an
Assistant Professor at Osaka University, in 1986,
he was a Professor, from 1995 to 2022. He is
currently a Professor at Nanzan University. His
research interests include software engineering,
especially software maintenance, software reuse,
empirical approach, program analysis, code clone
detection, and software license/copyright analysis.

124506 VOLUME 10, 2022

