
Comparison of Developer’s Work Efficiency
between Different Editors

Sentaro Onizuka†, Tetsuya Kanda†, Katsuro Inoue‡
†Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

Email: {s-onizuk, t-kanda}@ist.osaka-u.ac.jp
‡Faculty of Science and Technology, Nanzan University, Aichi, Japan, Email: inoue599@nanzan-u.ac.jp

Abstract—In this paper, as an example of comparing devel-
oper’s work efficiency between different editors, we propose a
method to collect and compare self-evaluations and quantitative
evaluations of developer’s work efficiency for each editor. We
also practiced the proposed method on Visual Studio Code and
Eclipse, and confirmed the applicability of the method.

Index Terms—Coding Process, Fine-grained Edit History,
Work Efficiency, Editor

I. INTRODUCTION

Although many studies have analyzed the coding process,

most studies have been limited to a single development en-

vironment, and few have compared the coding process across

different development environments. However, when develop-

ment environments are limited, the proficiency of the develop-

ment environment may affect the results of the analysis. For

this reason, it is important to develop methods to compare

coding processes in different development environments.

However, to compare the developer’s work efficiency be-

tween different editors, it is necessary to collect the edit history

from each editor under the same conditions. In addition,

more granular histories than those recorded in version control

systems can provide a more detailed understanding of the

coding process [1]. Therefore, we extended a fine-grained edit

history collection platform proposed by Ishida et al. [2]. The

fine-grained edit history in this platform is a record of all edit

operations of the source code by the developer on the editor.

In this platform, the history collection module is divided into a

language server and editor plug-ins so that only editor plug-ins

need to be newly developed for each editor. The infrastructure

of the history analysis part is implemented as a server, and

the server provides an API for retrieving the history, making

it easy to use the history with various tools.

Editors are an essential element in the coding process and

are important in influencing the efficiency of development. In

addition, each developer has subjective evaluations of each

editor, such as strengths and weaknesses. However, such sub-

jective evaluations do not always match actual work efficiency.

Therefore, there might be room for improving developer’s

development efficiency by finding a more efficient editor.

In this paper, as an example of comparing coding processes

between different development environments, we propose a

method to compare developer’s work efficiency between dif-

ferent editors by collecting and comparing self-evaluations and

quantitative evaluations of developer’s work efficiency for each

Fig. 1. An Overview of the Proposed Method

editor. We practice the method on Visual Studio Code and

Eclipse, and confirm that the method is applicable in practice.

II. PROPOSED METHOD

A. Overview

We propose a method to collect and compare “self-

evaluations” and “quantitative evaluations” of developer’s

work efficiency for each editor. The proposed method com-

pares two editors and is applicable to any editor that supports

Language Server Protocol [3], which is used in the history

collection part of the platform. A schematic diagram of the

proposed method is shown in Figure 1. Subjects are asked

to perform small tasks of similar estimated working time

with two editors and to answer questionnaires about the self-

evaluations. Quantitative evaluations are collected through the

tasks and compared with self-evaluations.

B. Self-evaluations

Self-evaluations are collected by taking questionnaires be-

fore and after the task. Specifically, developers are asked to

answer the question, “Which editor do you think is faster at

coding?” on a five-point scale from “Editor 1 is very fast” to

“Editor 2 is very fast”. The survey results are then converted

to a numerical value on a scale of -2 to +2, with the higher

value indicating that Editor 1 is faster and the lower value

indicating that Editor 2 is faster.

C. Quantitative evaluations

Quantitative evaluations are based on the fine-grained edit

history collected through the task process. To collect histories

572

2022 29th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/22/$31.00 ©2022 IEEE
DOI 10.1109/APSEC57359.2022.00086

Fig. 2. Meaning of each area in a scatter plot

from multiple editors under the same conditions, the platform

described in section I is used. We extended the platform to

provide a history API so that we can easily access the collected

history thereafter.

The data of the time required for each task in the progress

graph are used for evaluations. Specifically, the time required

for each task is normalized from a minimum value of 0 to

a maximum value of 1. The difference between the average

of normalized time in editor 1 (avg1) and editor 2 (avg2) is

calculated as “−(avg1 − avg2) × 100”. The range of value

calculated here is −100 to +100, where a larger value means

that editor 1 is more efficient and a smaller value means that

editor 2 is more efficient.

Using the collected history, we can conduct various visual-

ization of the development process. For example, visualizing

changes in the development progress rate over time based on

the edit distance to the files in their final state at each time.

D. Comparison

Scatter plots are created based on the values of self-

evaluations and quantitative evaluations, and the scatter plots

are used to determine whether they are in agreement or not.

Each point on the scatter plot corresponds to a developer’s self-

evaluations and quantitative evaluations. The x-axis is the self-

evaluation and the y-axis is the quantitative evaluation. Since

the self-evaluation is conducted twice, before and after the

task, we can create two types of scatter plots: “comparison of

pre-development self-evaluations and quantitative evaluations”

and “comparison of post-development self-evaluations and

quantitative evaluations”.

Two criteria are used to evaluate the agreement between the

self-evaluations and the quantitative evaluations based on the

scatter plots: one is the correlation coefficient of the scatter

plots, and the other is the classification by area. The scatter

plots are divided into three areas as shown in Figure 2, and

the agreement is judged by which area each point is located.

III. METHOD EXAMPLE

We conducted a small experiment with the proposed method

on Visual Studio Code and Eclipse. According to the proposed

method, we first developed plug-ins for each target editor to

Fig. 3. A scatter plot of comparing post-development self-evaluations and
quantitative evaluations of a source code transcription task

collect history from different environments. We also developed

a tool to visualize the time-series change of progress rate

based on the collected history using the API provided by

the platform. Eight participants were asked to do two tasks:

the first task required them to answer programming problems

of similar difficulty, and the second task required them to

transcribe source code. Self-evaluations are collected by taking

questionnaires before and after the task. Finally, we created

scatter plots for comparison based on self-evaluations and

quantitative evaluations.

As an example of the output obtained by the method,

Figure 3 shows a scatter plot comparing post-development

self-evaluations and quantitative evaluations of a source code

transcription task. The correlation coefficient calculated from

the plot is −0.27, indicating that there is no positive corre-

lation. Also, regarding the self-evaluations and quantitative

evaluations, three respondents were in agreement, three were

slightly out of agreement, and two were not in agreement,

indicating that only a small number of respondents were in

agreement. These results indicate that there is a gap between

the post-development self-evaluations and the quantitative

evaluations of the source code transcription task.

IV. CONCLUSION

We proposed a method to realize the comparison of devel-

oper’s work efficiency between different editors. We showed

an example output of the proposed method with two editors.

In future work, we need to improve the method of quanti-

tative evaluations. Currently, only information on time spent

coding is used, hence it is planned to consider information on

the coding process to more accurately evaluate work efficiency.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-

bers JP19K20239 and JP18H04094.

REFERENCES

[1] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig. “Is
it dangerous to use version control histories to study source code
evolution?,” In Proc. of ECOOP2012, pp. 79–103, 2012.

[2] N. Ishida, T. Kanda, K. Shimari, and K. Inoue. “Concept of Fine-Grained
Edit History Collection Platform Using Language Server””, SES2020
Workshop 5, no.5, September 2020 (in Japanese).

[3] “Language Server Protocol,” Microsoft, 2022. Accessed: October 12,
2022. Available: https://microsoft.github.io/language-server-protocol/

573

