
PyVerDetector: A Chrome Extension Detecting the
Python Version of Stack Overflow Code Snippets

Shiyu Yang1, Tetsuya Kanda1, Davide Pizzolotto1, Daniel M. German2, Yoshiki Higo1
1Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

2Department of Computer Science, University of Victoria, Victoria, Canada
yangsy@ist.osaka-u.ac.jp, t-kanda@ist.osaka-u.ac.jp, davidepi@ist.osaka-u.ac.jp, dmg@uvic.ca, higo@ist.osaka-u.ac.jp

Abstract—Over the years, Stack Overflow (SO) has accumu-
lated numerous code snippets, with developers going to SO for
problem solutions and code references. However, in the case of
the Python programming language, Python 3 is not necessarily
backward compatible with Python 2. The major implication of
this versioning problem is that code written in Python 2 may
not be interpreted by Python 3 without modifications. This issue
may affect the usability of Python code snippets on SO. We
investigate how many Python code snippets on SO suffer from
version compatibility issues, and find that about 10% of the
snippets exhibit this problem. Moreover, of the code snippets
that are interpretable only by Python 2 or Python 3, less than
17% are tagged with the Python version.

In this paper, we present a Chrome extension called PyVerDe-
tector. This extension allows the user to select a given version
of Python and verifies whether the code snippets on a given SO
question are compatible with the user’s selected Python version,
providing error messages if not. The tool parses snippets and
can determine versioning errors due to differences in syntax and
also provides the user with a list of Python versions capable of
interpreting each code snippet.

Index Terms—Stack Overflow, Python version detector, Com-
patibility

I. INTRODUCTION

Stack Overflow (SO) is a Q&A website for developers
where users can post questions, answer questions, and search
for content. The questions and answers on SO contain nu-
merous code snippets, and this vast amount of ready-to-use
code snippets provides developers with an easy way to find
solutions to daily programming problems. Nowadays, copying
code examples from SO is common [1].

While searching for the required code snippets on SO is
convenient, recent studies have shown that code snippets can
be toxic [2], obsolete [3], [4], and low-quality [5], leading
to software quality issues [3], [6], license violations [7], or
migration of security vulnerabilities [8].

There are many reasons why code snippets on SO are
problematic. One of the reasons is the use of outdated pro-
gramming language features in the code snippet. Existing
programming languages constantly evolve to meet new needs.
Popular programming languages often use versions to indicate
their evolution, with more recent versions usually representing
more mature forms of the language. Many popular program-
ming languages are backward compatible, which means that
programs compiled with an earlier language version can be
compiled with a later version and exhibit the same behavior

as the previous version. However, Python is known to break
backward compatibility at almost every release (its backward
compatibility policy, including its rules to break compatibility,
is documented in PEP 387 [9]). Python 3.0 significantly broke
backward compatibility with Python 2, while most releases
make small changes that only affect a small proportion of
features in the language (every release since Python 3.5 has
removed deprecated features needed by older Python programs
to run). The lack of backward compatibility of Python snippets
may thus reduce their usability.

To understand how common SO Python code snippets have
version compatibility issues, we conducted an empirical study.
We structure our study by answering the following research
questions:

• RQ1: How many Python code snippets have version
compatibility issues in the top answers to SO ques-
tions?
About 10% of code snippets have version compatibility
issues in the top answers to questions.

• RQ2: How many of the code snippets interpretable
only by Python 2 or only by Python 3 are tagged
with such Python version?
Only about 17% of code snippets interpretable only by
Python 2 or only by Python 3 are tagged with the Python
version.

Based on those results, we noticed that the version com-
patibility issues of Python code snippets on SO could not be
ignored. When looking for a desired code snippet, users need
to check whether the snippet can be interpreted by their desired
Python version, and the tags of questions can not help users
solve this issue.

In this work, we have developed a Chrome extension called
PyVerDetector that detects whether a given code snippet on
SO can be interpreted by the developer’s selected Python
version (2 or 3), and provides an error message if it cannot.
This tool is publicly available on GitHub1. Although some
research tools to detect Python versions have been developed,
such as PyComply [10], these tools perform code parsing
locally, which cannot provide real-time, online Python code
snippets version checking for SO users.

In the rest of the paper, in order to save space, we will
refer to a specific version of Python by its number only. For

1https://github.com/ysy-dlg/PyVerDetector

https://github.com/ysy-dlg/PyVerDetector


example, instead of Python 3.0 we represent it as 3.0.

II. EMPIRICAL STUDY

To investigate the extent of code snippets with version
compatibility issues on SO, we use Python interpreters to
check Python code snippets from SO top answers. The reason
for choosing top answers lies in the fact that they are expected
to be correct answers and most likely to be used by other users.

A. Data Collection

To conduct the empirical study, we first need to obtain code
snippets written in Python from the top answers posted on SO.
We determine the top answer for each question based on the
number of upvotes for the answer. We used the following two
criteria to identify the code snippets required for this study:

• Code snippet from top answers with at least one question
tag containing the word “Python”.

• Posting data is the latest version.
We used SOTorrent [11], version SOTorrent20 03, to extract

Python code snippets on SO. Based on our criteria above,
we extracted 1,256,503 questions. Based on these questions
we extracted 2,427,602 answers, of which 698,506 were top
answers. Considering that an answer may contain multiple
snippets, we extracted a total of 1,260,442 code snippets.

B. Code Snippet Analysis

We used multiple Python interpreters to parse Python code
snippets; one major release of Python 2 (2.7) and four major
releases of Python 3 (3.5 to 3.8). Other versions, older versions
which are difficult to prepare an execution environment, and
newer versions released after the dataset was released were
excluded. A code snippet is considered to be interpretable by a
Python version if it can be parsed by the Python interpreter for
that Python version. This is checked by attempting to compile
the script using the py_compile module. Otherwise, the
code snippet is deemed uninterpretable by that Python version.

C. Results

1) RQ1: How many Python code snippets have version
compatibility issues in the top answers to SO questions?

Analyzing the obtained Python interpreter parsing results of
code snippets, we found that the code snippets can be divided
into the following five categories:

• Pass all versions (Pass all): The code snippet passes
parsing for Python 2 and all Python 3 versions.

• Fail for all versions (Fail for all): The code snippet fails
for parsing for Python 2 and any Python 3 versions.

• Pass Python 2, Fail for some Python 3 (Pass 2&3): The
code snippet passes parsing for Python 2 and at least one
parsing for Python 3, but not all Python 3 versions.

• Fail for Python 2, Pass all or some Python 3 (Only
pass 3): The code snippet fails for Python 2 parsing but
passes all or some Python 3 parsing.

• Fail for all Python 3, Pass Python 2 (Only pass 2):
The code snippet fails for any Python 3 parsing but passes
Python 2 parsing.

TABLE I: Compatibility Of Code Snippets In Top Answer.

Categories #Snippets Percentage
Pass all 760,394 60.33%
Fail for all 382,275 30.33%
Pass 2&3 131 0.01% Tagged version Percentage
Only pass 3 48,045 3.81% 10,157 21.14%
Only pass 2 69,597 5.52% 9,122 13.11%

Of the above categories, the results are shown in the first
three columns of Table I. As shown in the table, “Pass 2&3”,
“Only pass 3”, and “Only pass 2” are the three types of code
snippets with version compatibility issues.

In addition, the data shows that nearly 30% of the code
snippets are not executable by any Python version in this
study. This means that these code snippets fail for all Python
versions. There are several possible reasons: (1) Code snippets
using old Python versions such as 2.0 and 3.0. (2) Answers
tagged “Python” containing non-Python code snippets, such as
program output and code snippets written in other languages.
(3) Programming errors, such as syntax errors.

Answer to RQ1: About 10% of code snippets have version
compatibility issues in the top answers to questions.

2) RQ2: How many of the code snippets interpretable only
by Python 2 or only by Python 3 are tagged with such Python
version?

Questions on SO require tags to be assigned to describe the
topic of the question. “Python 2.x” and “Python 3.x” tags now
exist on SO for users to tag questions for Python 2 or Python
3 only. For example, if the “Python 3.x” tags correctly identify
a code snippet that cannot be used by Python 2, then users
can avoid using that code snippet in Python 2. We would like
to know how many of the code snippets that are interpretable
only by Python 2 or interpretable only by Python 3 are tagged
with such Python version.

For this purpose, we further processed the parsing results of
the code snippets. The results are shown in Table I. The fourth
row of the table is a code snippet that can only be interpreted
by Python 3. Its fourth column corresponds to the number of
code snippets that have the tag “Python 3.x” in the question.
The last row of the table is for code snippets that can only
be interpreted by Python 2. The fourth column corresponds to
the number of code snippets with the “Python 2.x” tag in the
question.

Answer to RQ2: Only about 17% of code snippets inter-
pretable only by Python 2 or only by Python 3 are tagged with
the Python version.

It is clear that the version compatibility issues of code
snippets exist at SO and cannot be ignored. However, since
code snippets are not well tagged with the Python version,
SO users cannot simply determine the Python version of the
snippet by the tag, which may lead to misuse of the snippet.
Therefore, we need to provide a tool for users to determine
the Python version of Python code snippets on SO.

III. PYVERDETECTOR

We developed a Chrome extension, PyVerDetector to help
SO users address the issue of version compatibility of Python



Fig. 1: Overview of PyVerDetector.

code snippets. PyVerDetector has two main features:

1) For each code snippet inside a code block, the tool
determines if the code snippet is compiled without errors
using the user-selected Python version.

2) If not, the tool provides the error message and the
location of the error.

PyVerDetector consists of two components: a frontend part
(running on the user’s browser) responsible for fetching the
code snippet from SO and displaying the results, and a
backend part (running on a server) responsible for statically
analyzing the given code snippet across multiple Python
versions. The overview of PyVerDetector is shown in Figure 1.
Upon loading a SO page, for each Python snippet, the frontend
calls the backend and retrieves the parse result containing
all the supported Python versions for that snippet. Finally,
the frontend alters the page to present the result to the user.
PyVerDetector supports versions (2.0 to 2.7, 3.0 to 3.8).

A. Frontend

The frontend has two main features:
1) Format code snippet: The frontend fetches Python code

snippets from the page, formats the code snippets of the REPL
mode, and sends them to the backend for parsing. The frontend
also copies the formatted code snippet to the clipboard for the
user to use.

2) Display result: The result from the backend contains
the parsing results of the code snippet for all Python versions.
The frontend presents them to the user according to the Python
version selected by the user in the drop-down menu inserted
below the code snippet. The frontend shows the following two
types of messages on the page:

• The parsing result of the user-selected Python version
(default: 3.8). If the code snippet passes the parsing of
that version, the message “No error for Python X.X”
is displayed. Otherwise, the error message and the line
number of the error that occurred are displayed.

• If there are some Python versions other than the selected
one which passes the parsing of the code snippet, output
them like “Also works for: Python 3.8”.

B. Backend

The backend part is inspired by CPython and Py-
Comply [10]. Since it is not practical to wrap multiple execu-
tion environments of the old Python versions inside a Chrome
extension, we decided to use an Abstract Syntax Tree (AST)
parser following the grammar of Python. If the Python snippet
can be parsed, with a grammar for a specific Python version,
we assume the snippet is compliant for the particular version.
We used a combination of Flex2 and Bison3 to generate the
code snippet’s AST, reporting compliance only in case this
AST is generated successfully.

Naively wrapping the output of Flex and Bison, however, is
not sufficient. Unlike PyComply, the web-based nature of our
tool required us to perform heavy modifications to the gen-
erated parsers in order to support asynchronous invocations,
and join multiple parsers together in a single executable. In
our approach, a code snippet is tested against each grammar
sequentially, and the various error message collected in a
JSON message to be sent to the frontend.

Finally, in order to run the backend inside a web extension,
we used the Emscripten toolchain4 to compile the original C
code into cross-platform WebAssembly to be bundled inside
the extension.

C. Python Grammars and Extensibility

Being our tool based on the Flex and Bison parser gen-
erators, it implies the necessity of having an input grammar
representing the Python Language. While writing a different
grammar for each Python version is certainly not impossible,
being up-to-date with the annual Python release schedule by
manually writing a new grammar for each release would re-
quire considerable effort nonetheless. Fortunately, the Python
website provides the full changelog5 and grammar of each
released version since Python 2.26.

These grammars, however, are written for a LL(1) parser,
while Bison is an LALR(1) parser. Despite every LL(1)
grammar being LR(1), but not necessarily LALR(1) [12], these
two in practice have a great intersection. For this reason, we
managed to write a tool to convert the provided grammars from
LL(1) EBNF syntax found in the Python archives to LALR(1)
Bison syntax expected by our parser generator.

Unfortunately, since version 3.10, CPython switched from
a LL(1) parser to a PEG parser [13], with the grammars being
provided only in PEG syntax since Python 3.9. Converting
from a PEG grammar to LALR(1) is not as easy as converting
from a LL(1) to LALR(1). In fact, the equivalence between
PEG and Context-Free Grammars such as EBNF has been
proven undecidable [14]. For this reason, our extension works
with Python versions up to 3.8, but to extend it to future
versions of Python, an additional parser for PEGs should be
wrapped alongside the current Context-Free Grammar parser.

2https://github.com/westes/flex
3https://www.gnu.org/software/bison
4https://emscripten.org/
5https://docs.python.org/3/whatsnew/changelog.html
6https://docs.python.org/release/2.2/ref/grammar.txt

https://github.com/westes/flex
https://www.gnu.org/software/bison
https://emscripten.org/
https://docs.python.org/3/whatsnew/changelog.html
https://docs.python.org/release/2.2/ref/grammar.txt


Fig. 2: Example of how the extension works in the default version. (Left): Parse error, (Right): Pass.

Fig. 3: User manually selects a version of Python, incompat-
ible with the given snippet.

IV. USAGE SCENARIOS

A. Displaying the latest version as default

The default value displayed by PyVerDetector is the parsing
result for the latest available version. As shown in Figure 2,
when the user opens a SO page7 with some Python code
snippets, PyVerDetector will immediately display its parsing
results for 3.8 for all Python code snippets on the page. We use
green to show pass messages and red to show error messages.
This allows the user to quickly get an at-a-glance view of the
compatibility of the code snippets for a recent Python version.

B. Accurate display of results for selected versions

When the user wants to know the compatibility of a code
snippet for a particular Python version, PyVerDetector can
show the user exactly the relevant information. As shown in
Figure 3, the same question in Figure 2, the user has selected
3.7, and PyVerDetector returns an error message that the code
snippet cannot be interpreted by 3.7 because the “Positional-
only parameters” is used in the fourth line of the snippet. This
feature, in fact, has only been supported since 3.8.

V. EVALUATION OF ACCURACY

In this section, we evaluate the accuracy of PyVerDetector
and compare it with an existing tool: PyComply [10].

We apply PyVerDetector and PyComply to the dataset of top
answer code snippets and obtain their respective parsing results

7https://stackoverflow.com/questions/28243832

TABLE II: Comparison results of PyVerDetector (PyVer) and
PyComply (PyC)

Python Version Precision Recall Accuracy
PyVer PyC PyVer PyC PyVer PyC

Ver2.7 98.28% 98.28% 99.95% 99.95% 98.82% 98.82%
Ver3.5 98.02% 98.02% 99.98% 99.98% 98.72% 98.72%
Ver3.6 97.98% 97.98% 99.98% 99.98% 98.67% 98.67%
Ver3.7 97.98% - 100.00% - 98.68% -
Ver3.8 97.98% - 100.00% - 98.67% -

using the same method as described in Section II-A. We use
the parsing results of Python interpreters as the ground truth.
The accuracy of PyVerDetector and PyComply was measured
by comparing their respective parsing results with the ground
truth in terms of code snippets. We evaluate PyVerDetector us-
ing the well-known metrics for binary classification: precision,
recall, and accuracy.

The results are shown in Table II. We can see that PyVerDe-
tector (PyVer) and PyComply (PyC) have the same accuracy
for the three Python versions 2.7, 3.5, and 3.6. However,
PyVerDetector can provide code detection for the two newer
Python versions, 3.7 and 3.8, and has shown high accuracy in
both versions.

VI. CONCLUSION

In this paper, we conducted an empirical study to understand
the extent of Python code snippets in SO that have version
compatibility issues. We found that version compatibility
issues exist in SO code snippets. In response, we developed a
Chrome extension, PyVerDetector, which can identify version-
ing errors due to different syntax. PyVerDetector helps users
detect whether the code snippets on a given SO question are
compatible with their selected Python version and provides
error messages if not. We evaluated PyVerDetector by com-
paring it with PyComply, showing comparable performance
but with newer versions supported by our tool, making code
snippet detection on SO more convenient and efficient.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers JP20H04166, JP21K18302, JP21K11820, JP21H04877,
JP22H03567, JP22K11985, JP19K20239.

https://stackoverflow.com/questions/28243832


REFERENCES

[1] S. Baltes and S. Diehl, “Usage and attribution of stack overflow code
snippets in github projects,” Empirical Software Engineering, vol. 24,
no. 3, pp. 1259–1295, 2019.

[2] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on stack overflow,” IEEE Transactions on Software
Engineering, vol. 47, no. 3, pp. 560–581, 2019.

[3] H. Zhang, S. Wang, T.-H. Chen, Y. Zou, and A. E. Hassan, “An empirical
study of obsolete answers on stack overflow,” IEEE Transactions on
Software Engineering, vol. 47, no. 4, pp. 850–862, 2019.

[4] J. Zhou and R. J. Walker, “Api deprecation: a retrospective analysis and
detection method for code examples on the web,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2016, pp. 266–277.

[5] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do developers uti-
lize source code from stack overflow?” Empirical Software Engineering,
vol. 24, no. 2, pp. 637–673, 2019.

[6] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy&paste
on android application security,” in 2017 IEEE Symposium on Security
and Privacy (SP), 2017, pp. 121–136.

[7] L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack overflow: A code
laundering platform?” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2017, pp.
283–293.

[8] M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and A. K.
Motlagh, “An empirical study of c++ vulnerabilities in crowd-sourced
code examples,” IEEE Transactions on Software Engineering, 2020.

[9] B. Peterson and B. Cannon, “Backwards compatibility policy,” PEP
387, 2009. [Online]. Available: https://peps.python.org/pep-0617/

[10] B. A. Malloy and J. F. Power, “Quantifying the transition from python
2 to 3: An empirical study of python applications,” in 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), 2017, pp. 314–323.

[11] S. Baltes, C. Treude, and S. Diehl, “Sotorrent: Studying the origin, evo-
lution, and usage of stack overflow code snippets,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR),
2019, pp. 191–194.

[12] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: principles,
techniques, & tools, 2nd ed. Pearson, 2007, p. 242.

[13] G. van Rossum, P. Galindo, and L. Nikolaou, “New peg parser for
cpython,” PEP 617, 2020. [Online]. Available: https://peps.python.org/
pep-0617/

[14] B. Ford, “Parsing expression grammars: a recognition-based syntactic
foundation,” in Proceedings of the 31st ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, 2004, pp. 111–122.

https://peps.python.org/pep-0617/
https://peps.python.org/pep-0617/
https://peps.python.org/pep-0617/

	Introduction
	Empirical study
	Data Collection
	Code Snippet Analysis
	Results
	RQ1
	RQ2


	PyVerDetector
	Frontend
	Format code snippet
	Display result

	Backend
	Python Grammars and Extensibility

	Usage Scenarios
	Displaying the latest version as default
	Accurate display of results for selected versions

	Evaluation of Accuracy
	Conclusion
	References

