
Improving Accuracy of LLM-based Code Clone
Detection Using Functionally Equivalent Methods

Ryutaro Inoue, Yoshiki Higo
Osaka University, Japan, {ry-inoue, higo}@ist.osaka-u.ac.jp

Abstract—A code clone is a code snippet identical or similar to
another in the source code. The presence of code clones causes the
spread of bugs, which means that efficient code clone detection
and appropriate refactoring are necessary. Code clone detection
using large language models (in short, LLMs) is more accurate
than conventional tools that do not use LLMs for code clones
with low syntactic similarity. However, even for LLM-based clone
detection tools, detecting such code clones is still difficult, and
there is room for improvement. In this study, we improved the
accuracy of LLM-based code clone detection through fine-tuning
using FEMPDataset. The results showed that our fine-tuning
improved the accuracy of code clone detection.

Index Terms—code clone, large language model, fine tuning,
functionally equivalent methods

I. INTRODUCTION

A code clone is a code snippet identical or are similar to
another in the source code [1]. Changing the text of a code
clone requires consistent changes occationally; unintentional
inconsistent changes can lead to defects [2]. Thus, the presence
of code clones can significantly prevent source code changes
and impair the maintainability of software systems. Therefore,
detecting clones efficiently and refactoring them appropriately
is necessary.

Many code clone detection tools have been developed before
now. Well-known tools include CCFinder [3], NiCad [4], Oreo
[5], and NIL [6], which use lexical analysis and various
metrics for detection. Those tools tend to be highly accurate
in detecting clones with high syntactic similarity, while they
tend to be less accurate in detecting clones with low syntactic
similarity.

In contrast, code clone detection with large language models
(in short, LLMs) has demonstrated superior accuracy for code
clones with low syntactic similarity compared to conven-
tional tools. LLMs have shown promising results in various
fields, including natural language processing, and have gained
widespread attention [7]. ChatGPT, which can use models such
as GPT [8], has reached 100 million users in just two months
since its launch. Additionally, Meta’s Llama2 [9] and code-
llama [10], a fine-tuned model of Llama2, have also been
developed.

Dou et al. used several LLMs for code clone detection,
comparing their performance with conventional tools [11].
They found that conventional tools like NiCad and Oreo
struggled to detect code clones with low syntactic similarity.
On the other hand, LLM-based detection techniques, including
GPT-3.5-turbo, GPT-4-turbo, and Llama2, achieved higher

detection accuracy for code clones with low syntactic similar-
ity than conventional tools. However, the detection accuracy
of code clones with low syntactic similarity by GPT-3.5-
turbo and GPT-4 is not sufficiently high. Additionally, Llama2
inaccurately identified many pairs of code snippets that are not
code clones as code clones.

This study aims to enhance the detection accuracy of
code clones with low syntactic similarity through fine-tuning
LLMs. The LLMs targeted in this study are GPT-3.5-turbo,
Llama2-Chat-7B, and CodeLlama-7B-Instruct. Fine-tuning of
GPT-3.5-turbo has been executed using OpenAI’s API, ad-
justing hyperparameters such as epoch numbers and batch
sizes as necessary. LLMs require substantial GPU memory
and processing time for fine-tuning. For this reason, fine-
tuning of Llama2-Chat-7B and CodeLlama-7B-Instruct has
been executed using techniques such as Lora [12] and ZeRO
[13] to reduce GPU memory consumption. FEMPDataset [14],
a dataset of functionally equivalent but structurally diverse
Java methods, has been used for fine-tuning and evaluation.
This dataset has been divided into training, validation, and
testing blocks to assess improvements in detection accuracy.

Section II outlines the definition of clones, previous research
on LLM-based code clone detection, and the experimental
dataset. Section III describes the methodology of this study.
Section IV presents our experimental results. Section V dis-
cusses those findings, and Section VI concludes the study,
highlighting future challenges and directions.

II. PREPARATION

This section describes the definition of code clones, previous
research on LLM-based code clone detection, and the dataset
we use in this study.

A. Code Clone Classification

A code clone is a code snippet identical or similar to another
in the source code [1]. Code clones are created in the source
code for various reasons such as reusing existing code or
reimplementing similar functions [15]. A pair of code snippets
that are identical or similar to each other is called a clone pair.

1) Code Clone: Roy et al. classified clones into four types
based on their similarity [16].
Type-1(T1): Identical code snippets except for variations in

whitespace, layout, and comments.
Type-2(T2): Syntactically identical code snippets except for

variations in identifiers, literals, types, whitespace, layout,
and comments.



Type-3(T3): Similar code snippets with further differences
such as changed, added, or removed statements, and
variations in identifiers, literals, types, whitespace, layout,
and comments.

Type-4(T4): Two or more code snippets that perform the
same computation but are implemented by different syn-
tactic variants.

B. FEMPDataset

FEMPDataset [14] is a dataset of functionally equivalent
methods with different structure1. Functionally equivalent
method pairs in FEMPDataset are classified as T4 in the above
categories. FEMPDataset extracts candidates for functionally
equivalent method pairs by using mutual execution of test
cases and then collects truly functionally equivalent methods
by visually determining whether the candidates have the same
functionality.

C. LLMs(large language models)

Large-scale Language Models (LLMs) are language models
trained on a large corpus. There has been a significant increase
in the models’ scale and the data volume for training.

D. Fine-tuning techniques of LLMs

LLMs have many parameters, requiring substantial GPU
memory for fine-tuning. This subsection discusses several
techniques to reduce GPU memory consumption through fine-
tuning.

1) Lora (Low-Rank Adaptation): Lora (Low-Rank Adapta-
tion) [12] is a technique that reduces the number of parameters
updated through fine-tuning, thereby enabling fine-tuning with
fewer resources. Lora approximates the differences between
the parameters before and after fine-tuning with a low-rank
matrix, reducing the number of parameters and enabling effi-
cient learning. The size of the low-rank matrix is determined
by specifying the hyperparameter r, which reduces the number
of parameters as r decreases.

2) ZeRO (Zero Redundancy Optimizer): ZeRO (Zero Re-
dundancy Optimizer) [13] is a technique that minimizes the
GPU memory required per GPU for training by leveraging
multiple GPUs.

During fine-tuning, it is necessary to maintain and calculate
information on the dynamic change of learning rate, gradients,
and weights on the GPU. ZeRO allows each GPU to make
parameter changes for specific layers of the LLMs and then
combines the results to change all the parameters of the
LLMs. By assigning each GPU to make parameter changes
for specific layers, ZeRO reduces the GPU memory required
per GPU compared to conventional methods.

E. Indicators of Detection Accuracy

Recall, Precision, and Accuracy are used as performance
metrics for code clone detection and LLMs evaluation. The
meaning and calculation formulas of those metrics are as
follows.

1The dataset is available at https://github.com/YoshikiHigo/FEMPDataset

Recall: Percentage of method pairs determined to be clones
out of method pairs that are clones.

Recall =
TP

TP + FN

Precision: Percentage of method pairs detected as clones that
are clones.

Precision =
TP

TP + FP

Accuracy: Percentage of method pairs that the detection
system has correctly identified.

Accuracy =
TP + TN

TP + FP + FN + TN

TP (True Positive), FP (False Positive), FN (False Negative),
and TN (True Negative) are as follows.
TP: Number of method pairs that are detected as clones out

of the methods that are clones.
FP: Number of method pairs that are detected as clones out

of the methods that are not clones.
FN: Number of method pairs that are not detected as clones

out of the methods that are clones.
TN: Number of method pairs that are not detected as clones

out of the methods that are not clones.

F. Previous Research on Code Clone Detection using LLMs

We introduce the study by Dou et al. as previous research
on code clone detection by LLMs [11]. Their study compared
the performance of existing tools without LLMs and LLMs
using a single prompt as input based on BigCloneBench [17].

The results show that existing tools have higher recall for
clones with high syntactic similarity, while LLMs have higher
recall for clones with low syntactic similarity.

Additionally, GPT-3.5-turbo and GPT-4-turbo show higher
detection rates than existing tools in detecting Type-4 clones
with low syntactic similarity. However, the detection accuracy
is not sufficiently high, and there is room for improvement.
Llama2-chat-7B shows high recall but low precision, recog-
nizing almost all method pairs as clone pairs. Therefore, this
study aims to improve the accuracy of code clone detection
by LLMs through fine-tuning.

III. EXPERIMENT

This section describes the experimental methodology.
Target LLMs in the experiment are as follows.
• GPT-3.5-turbo
• Llama2-Chat-7B
• CodeLlama-7B-Instruct
The experiment aims to improve the detection accuracy of

clones with low syntactic similarity through fine-tuning. We
experimented with the following steps.
STEP1: Fine-tuning

Executing fine-tuning of LLMs using FEMPDataset.
STEP2: Clone Detection

Giving method pairs of test data in FEMPDataset to
LLMs before and after fine-tuning, and answers are got
as either ”Yes” or ”No.”



STEP3: Performance Evaluation
Aggregating the answers of LLMs before and after fine-
tuning and comparing their performance.

A. Fine-tuning

FEMPDataset is used for fine-tuning. The dataset is divided
into training, validation, and testing data for fine-tuning. Fine-
tuning is executed using training and validation data, and
performance evaluation is executed using testing data. The
number of method pairs for each data is shown in Table I.

Fine-tuning of GPT-3.5-turbo is executed using OpenAI
API. Fine-tuning of Llama2-Chat-7B and CodeLlama-7B-
Instruct is executed using Lora and ZeRO to reduce GPU
memory consumption. The hyperparameter r of Lora, as
explained in Section II-D, is set to 2. Fine-tuning is executed
by two GPUs, Quadro RTX 8000 and Tesla V100.

B. Clone detection (LLMs execution)

LLMs before and after fine-tuning are executed with the
following steps.

1) Getting Method Pairs
Getting functionally equivalent method pairs and func-
tionally inequivalent ones from FEMPDataset. Those
pairs are targets of clone detection to check whether the
target LLMs can recognize clone pairs correctly.

2) Creating Prompts
Converting each method pair into prompts asking whether
it is a clone pair .

3) Getting Answers
Inputting the prompts to LLMs before and after fine-
tuning to get either ”Yes” or ”No” answers.

1) Dataset for Evaluation: LLMs performance is evaluated
using the testing data of the divided FEMPDataset.

2) Prompts: The prompts consist of two roles: ”system”
and ”user.” In the system role, the answers are instructed as
”Yes” or ”No.” In the user role, the prompts are instructed to
determine whether the two methods are a clone pair or not.

C. Performance Evaluation

We aggregate the answers from LLMs and calculate the
three values of Recall, Precision, and Accuracy to evaluate
the performance. We used 219 method pairs in FEMPDataset
as test data for evaluating performance.

TABLE I
NUMBER OF METHOD PAIRS FOR EACH DATA

Train data2 Validation data Test data
Clone method pairs 1,081 132 129
Non-clone method pairs 674 88 90
Total 1,755 220 219

2We excluded one non-clone method pair from the train data that exceeded
4,096 tokens at the prompt to reduce the GPU resources required.

0.76 

0.74 

0.91 

0.81 

0.84 

0.83 

0.68 

0.69 

0.84 

0.00 0.20 0.40 0.60 0.80 1.00

Accuracy

Precision

Recall

GPT-3.5-Turbo fine-tuned GPT-3.5-Turbo GPT-4-turbo

Fig. 1. Comparison of GPT-3.5-turbo and GPT-4-turbo performance

IV. EXPERIMENTAL RESULTS

This section describes the results of the experiment. The
comparisons before and after fine-tuning of GPT-3.5-turbo,
Llama2-Chat-7B, and CodeLlama-7B-Instruct were executed
using the testing data of FEMPDataset.

A. Evaluation of GPT-3.5-turbo

Recall, Precision, and Accuracy of GPT-3.5-turbo before
and after fine-tuning and GPT-4-turbo are shown in Table II.

After fine-tuning, GPT-3.5-turbo shows significant improve-
ment in Precision. Recall remains almost the same. This result
indicates that fine-tuning has enabled the correct classification
of non-clone pairs.

Comparing GPT-4-turbo and fine-tuned GPT-3.5-turbo, the
fine-tuned GPT-3.5-turbo has higher Accuracy.

B. Evaluation of Llama2-Chat-7B

Recall, Precision, and Accuracy of Llama2-Chat-7B before
and after fine-tuning are shown in Table III. A graphical
summary of the above results is shown in Figure2.

Before fine-tuning, Llama2-Chat-7B recognized all func-
tionally equivalent method pairs and functionally inequivalent
ones as clone pairs. However, after fine-tuning, Llama2-
Chat-7B can correctly classify some functionally inequivalent
method pairs. Although Recall has declined, Precision and
Accuracy have also improved. This result indicates that the
performance has improved compared to Llama2-Chat-7B be-
fore fine-tuning.

TABLE II
EVALUATION OF GPT-3.5-TURBO, FINE-TUNED GPT-3.5-TURBO, AND

GPT-4-TURBO

model Recall Precision Accuracy
GPT-3.5-turbo 0.84 0.69 0.68
fine-tuned GPT-3.5-turbo 0.83 0.84 0.81
GPT-4-turbo 0.91 0.74 0.76

TABLE III
EVALUATION OF FINE-TUNED LLAMA2-CHAT-7B AND LLAMA2-CHAT-7B

model Recall Precision Accuracy
Llama2-Chat-7B 1.00 0.60 0.60
fine-tuned Llama2-Chat-7B 0.78 0.66 0.63



0.63 

0.66 

0.78 

0.60 

0.60 

1.00 

0.00 0.20 0.40 0.60 0.80 1.00

Accuracy

Precision

Recall

Llama2-Chat-7B fine-tuned LLaMA2-Chat-7B

Fig. 2. Comparison of Llama2-Chat-7B performance

0.77 

0.85 

0.73 

0.59 

0.71 

0.51 

0.00 0.20 0.40 0.60 0.80 1.00

Accuracy

Precision

Recall

CodeLlama-7B-Instruct fine-tuned CodeLlama-7B-Instruct

Fig. 3. Comparison of CodeLlama-7B-Instruct performance

C. Evaluation of CodeLlama-7B-Instruct

Recall, Precision, and Accuracy of CodeLlame-Instruct-7B
before and after fine-tuning are shown in Table IV. A graphical
summary of the above results is shown in Figure 3.

All Recall, Precision, and Accuracy have improved.
The performance has improved significantly compared to
CodeLlama-7B-Instruct before fine-tuning.

V. DISCUSSION

As a result of fine-tuning GPT-3.5-turbo, Llama2-Chat-
7B, and CodeLlama-7B-Instruct, the improvement of code
clone detection accuracy was confirmed for all three language
models. This result suggests that fine-tuning is effective in
code clone detection using LLMs.

The effect of fine-tuning depends on the type of pre-trained
data and the performance of the model before fine-tuning.
CodeLlama is a model that learned about programs based
on Llama2, and Llama2-Chat is a model that learned about
dialogue in chat format. CodeLlama-7B-Instruct shows a more
significant improvement in performance before and after fine-
tuning than Llama2-Chat-7B. This result suggests that the pre-
trained data affects the effect of fine-tuning.

VI. CONCLUSION

In this study, we attempted to improve the accuracy of
code clone detection by LLMs through fine-tuning using

TABLE IV
EVALUATION OF FINE-TUNED CODELLAMA-7B-INSTRUCT AND

CODELLAMA-7B-INSTRUCT

model Recall Precision Accuracy
CodeLlama-7B-Instruct 0.51 0.71 0.59
fine-tuned CodeLlama-7B-Instruct 0.73 0.85 0.77

FEMPDataset. As a result of fine-tuning, all models in the
experiment improved in code clone detection accuracy.

The following three points are raised as future research
directions.
Adding models of the experiment

We believe conducting similar experiments for models
not covered in this study (e.g., models focused on source
code) will allow for performance comparison between
models.

Performance evaluation using other benchmarks
We believe executing similar experiments for other
datasets than FEMPDataset would provide a more de-
tailed evaluation of fine-tuning performance.

Improvement of Prompt
In this study, we did not improve the prompts. We believe
improving the prompts using technologies such as Chain
of thought [18] will improve performance.

ACKNOWLEDGEMENTS

This research was supported by JSPS KAKENHI Japan
(JP21K18302, JP21H04877, JP22H03567, JP22K11985).

REFERENCES

[1] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proc. ICSM, 1998, pp. 368–
377.

[2] M. Mondal, C. Roy, and K. Schneider, “A Fine-Grained Analysis on
the Inconsistent Changes in Code Clones,” in 2020 IEEE ICSME, 2020,
pp. 220–231.

[3] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Software Engineering, vol. 28, no. 7, pp. 654–670, 2002.

[4] C. Roy and J. Cordy, “NICAD: Accurate Detection of Near-Miss Inten-
tional Clones Using Flexible Pretty-Printing and Code Normalization,”
in 2008 IEEE ICPC, 2008, pp. 172–181.

[5] V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. Lopes, “Oreo:
detection of clones in the twilight zone,” in ESEC/FSE 2018, 2018, p.
354 ‒ 365.

[6] T. Nakagawa, Y. Higo, and S. Kusumoto, “NIL: large-scale detection of
large-variance clones,” in ESEC/FSE 2021, 2021, p. 830 ‒ 841.

[7] W. X. Zhao et al., “A Survey of Large Language Models,” 2023.
[8] OpenAI, “GPT-4 Technical Report,” 2023.
[9] H. Touvron et al., “Llama 2: Open Foundation and Fine-Tuned Chat

Models,” 2023.
[10] B. Rozière et al., “Code Llama: Open Foundation Models for Code,”

2023.
[11] S. Dou et al., “Towards Understanding the Capability of Large Language

Models on Code Clone Detection: A Survey,” 2023.
[12] E. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models,”

in ICLR 2022, 2022.
[13] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “ZeRO: Memory

optimizations Toward Training Trillion Parameter Models,” in SC20,
2020, pp. 1–16.

[14] Y. Higo, “Dataset of Functionally Equivalent Java Methods and Its
Application to Evaluating Clone Detection Tools,” IEICE Trans. Inf.
& Syst., 02 2024.

[15] C. Roy and J. Cordy, “A Survey on Software Clone Detection Research,”
School of Computing TR 2007-541, pp. 3–7, 01 2007.

[16] C. Roy, J. Cordy, and R. Koschke, “Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach,” Science
of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[17] J. Svajlenko, J. Islam, I. Keivanloo, C. Roy, and M. Mia, “Towards a
Big Data Curated Benchmark of Inter-project Code Clones,” Proc. 30th
ICSME, pp. 476–480, 09 2014.

[18] J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models,” 2022.


