Finding Functionally Equivalent Methods in Python
Using Automated Test Generation Techniques

Yusheng GUOT, Shiyu YANG', Akihiro TABATAT, and Yoshiki HIGO'

1 Graduate School of Information Science and Technology, Osaka University
1-5, Yamadaoka, Suita-shi, 565-0871 Japan

E-mail: 1{guoysh,yangsy,a-tabata,higo } @ist.osaka-u.ac.jp

Abstract As a popular programming language in modern software development, Python boasts an extensive open-source
codebase on GitHub. Code reuse is common across these vast repositories. This study leverages open-source Python projects
from GitHub and applies automated testing techniques to discover functionally equivalent method pairs. The research involved
collecting and processing methods from 5.1k Python projects on GitHub. Due to the lack of type checking in Python, grouping
methods present specific challenges. To address this, we performed detailed type inference on the methods and grouped them
based on the inferred types, providing a structured and comprehensive foundation for further analysis. Automated test generation
techniques were applied to create unit tests for each method. These methods were executed against one another within their
respective groups to identify candidate method pairs that produced identical outputs given the same inputs. Finally, through

manual checking, we identified 130 functionally equivalent method pairs from a pool of 2,400 candidates.

Key words functionally equivalent methods, source code analysis, dataset, code clone

1. Introduction

With the evolution of programming languages, modern languages
have become increasingly rich and complex in their syntactical
features, particularly dynamic languages like Python. Python, a
popular programming language, is widely embraced by develop-
ers worldwide due to its concise and readable syntax and powerful
standard library. It has a vast codebase and active user communi-
ties on platforms like GitHub. Python supports multiple program-
ming paradigms, including object-oriented, functional, and imper-
ative programming. This versatility enables the implementation of
identical functionality through different approaches, depending on
developers’ coding preferences.

The open-source community provides a vast array of software
projects containing rich and diverse code resources. It's common to
find methods within these codebases that, while functionally equiva-
lent, are implemented in different ways. Collecting such functionally
equivalent code snippets is highly valuable for software engineer-
ing research. These snippets can be utilized to create datasets of
equivalent methods, which can, in turn, drive advancements in areas
like code optimization, refactoring, and test generation. However,
identifying and collecting functionally equivalent methods remains
a complex challenge due to the variations in their structure.

Many existing code clone detection tools rely on identifying rep-
etitions in code snippets to detect clones, such as the token-based
SourcererCC [1] and the tree-based DECKARD [2]. These tools
are generally effective at identifying syntactically similar code frag-
ments, such as directly copied-and-pasted code or code with minor
changes in variable names. However, they often struggle to detect
functionally equivalent but structurally different codes. This is be-
cause these tools primarily focus on superficial code similarities and
overlook functionality. Therefore, there is an urgent need to de-
velop new techniques and tools capable of identifying functionally
equivalent code pairs rather than just syntactically similar fragments.

This study’s primary goal is to collect functionally equivalent
method pairs from open-source projects. Functionally equivalent

methods, referred to as FE methods, are defined as pairs of meth-
ods that return the same output given the same input (parameters).
The key idea of this research is to use Pynguin [3] to automatically
generate test cases for the extracted methods, followed by mutual
execution to identify methods that exhibit identical behavior under
the generated test cases. Subsequently, we manually check all po-
tential FE method pairs to identify the valid FE method pairs. This
study selects the Many Types4Py [4]dataset as the target for detecting
FE method pairs in Python. ManyTypes4Py contains approximately
5.1K type-checked Python repositories, comprising around 1.5 mil-
lion methods. From this dataset, we extract methods and perform
type inference, followed by grouping based on the type inference
results. Test cases are then automatically generated, and mutual
execution is conducted within each group. Ultimately, we obtained
7415 candidate FE method pairs and manually checked them.

2. Definition of FE Methods

FE methods refer to methods that may differ in implementation
but are equivalent in functionality. FE methods are characterized
by producing identical outputs when provided with identical inputs.
Although their code structures may vary, such as using different al-
gorithms, data structures, or coding styles, they ultimately achieve
the same functionality. The concept of functional equivalence is
especially important in code optimization, refactoring, and clone
detection, as identifying FE methods can help developers under-
stand potential redundant code or opportunities for improvement
within a codebase.

Code clone detection is typically categorized into four types
based on similarity and structural differences:

Type-1 Clones: Identical code fragments, except for variations in
whitespace, comments, or identifier names.

Type-2 Clones: Code fragments that are largely similar but may
include changes in identifiers, such as variable names or func-
tion names, and some code formatting modifications.

This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

Copyright ©2023 by IEICE

Type-3 Clones: Structurally similar code with some differences
in code fragments or logic modifications.

Type-4 Clones: Code fragments that have the same functionality
but different implementations, also known as semantic clones.
These clones are not based on superficial code similarity but
rather on the behavior or functionality of the code.

Traditional code clone detection tools primarily focus on de-
tecting Type-1 and Type-2 Clones, which depend on code structure
and syntax similarity. These tools identify clones by searching for
similar code fragments, but their limitation lies in their inability to
effectively detect code fragments that are functionally identical but
structurally different.

This research aims to overcome this limitation by using auto-
matic generation techniques to detect functionally equivalent but
differently implemented code clones, specifically Type-4 Clones.
Type-4 Clones are particularly challenging, as they do not depend
on syntactical similarities but instead require an analysis of method
behavior to establish functional equivalence. Detecting these clones
is crucial for code refactoring and optimization, as it reveals code
fragments that are entirely different in implementation but identical
in functionality.

3. Key Idea for Automatically Identifying Can-
didate FE Method Pairs from FEMPDataset

Previous research in this field has explored techniques such as
automatic test case generation and mutual execution methods. The
literature [5] proposed an approach to obtaining a set of FE meth-
ods by mutually executing the generated test cases. Additionally, a
dataset of FE method sets was constructed using Borge’s dataset [6].
It contains 276 FE method pairs. Similarly, the FEMPDataset [7],
created using similar approaches, consists of 1,342 FE method pairs
in Java, validated by three independent programmers.

In the research on FEMDataset, FE method pairs are automati-
cally collected by leveraging both the static features (e.g., method
signatures) and dynamic behavior (test results) of Java methods.
Static features include return types and parameter types, with meth-
ods sharing the same features grouped together. The EvoSuite tool
is then used to generate test cases for methods within the same
group. Test cases generated by automated test generation techniques
have the property that the test cases always succeed. Mutual ex-
ecution of these test cases is performed to determine whether the
methods exhibit equivalent behavior. If a method can pass the test
cases generated for another method, and vice versa, the two methods
are considered functionally equivalent. Finally, manual checking
is conducted to confirm the valid functional equivalence of method
pairs, despite differences in implementation. The success of the
FEMPDataset highlights the effectiveness of utilizing automatic test
case generation tools and mutual execution techniques to identify
FE methods. Its success primarily stems from the ability to ver-
ify whether two methods produce identical outputs given the same
inputs.

Given Python’s widespread use and growing importance across
various application domains, extending the key ideas of FEM-
PDataset to Python has significant research and practical value.
Python’s flexibility and ease of use result in diverse implementa-
tions of functions and methods. However, its dynamic nature, which
lacks static type checking, presents unique challenges in code clone
detection and functional equivalence analysis. Nonetheless, Python
offers a wealth of libraries and tools that support automated test case
generation and type inference, providing a solid foundation for de-
tecting FE method pairs. Therefore, this research proposes to extend
these ideas to Python.

4. Procedure of Dataset Construction

In this study, the following process is used to construct a dataset
of FE method pairs:

STEP-1: Extract Python methods from open-source projects on
GitHub and perform an initial filtering.

STEP-2: Perform type inference on each method and group them
accordingly.

STEP-3: Generate test cases for each method.

STEP-4: Mutually execute methods within the same group to
identify candidate FE method pairs.

STEP-5: Manually check each candidate FE method pair to con-
firm if they are valid FE method pairs.

Figure 1 provides an overview of the five steps described above.
STEP-1 through STEP-4 is automatically performed by the devel-
oped tool, while only Step 5 is executed manually. The detailed
process for each step is as follows:

4.1 STEP-1

To build the dataset of FE method pairs, we selected the Many-
Types4Py'" dataset as the basis for our experiment. This is a Python
benchmark dataset for machine learning-based type inference, con-
taining 5,382 Python projects sourced from GitHub. It offers a
diverse collection of open-source Python projects, covering various
types and application scenarios and providing an abundant sample
of methods. A key reason for choosing this dataset is its suitability
for type inference.

From the selected Python projects, we extracted all Python meth-
ods. Initially, we used Python’s Abstract Syntax Tree (AST) mod-
ule to parse all .py files within the projects. This allowed us to
construct the abstract syntax tree for each file and extract method
definitions. We then traversed these abstract syntax trees to gather
method-related information. In total, we obtained 1,500,000 Python
methods. For each method, the following information was collected
and recorded in a database: method name, (original) source code,
normalized source code, the number of statements and conditional
predicates, file path, start line, and end line.

After processing the extracted Python methods, we normalized
the source code. This process involved standardizing all variables,
string constants, and code indentation using the ast library. These
steps helped eliminate formatting differences and excluded the im-
pact of different variable names. Due to the extensive standard
library of built-in types in Python, we chose not to normalize the
names of method calls.

Figure 2 shows an example of normalization. Subfigure 2(a)
shows the original method code, and subfigure 2(b) shows the code
after normalization. During the normalization process, we first
removed the type hints and default values from the method declara-
tions. Next, we renamed all variables, attribute names, and string
literals. For all method calls, only the method itself and its recursive
calls were renamed.

The reason for not renaming other method calls is that Python
has many powerful built-in methods, and renaming all method calls
might result in different methods being incorrectly identified as du-
plicate code. Additionally, any code that calls user-defined external
methods is excluded in subsequent steps, as it is beyond the scope
of this study.

After completing the code normalization, we generated a unique
hash value for each normalized method code. By calculating the
hash value of the method code, we could effectively detect and
identify duplicate methods. The primary purpose of this step is to
eliminate any potential duplicate methods in the dataset, ensuring

(1): It was presented in the data showcase of the MSR’21 conference.

i

_—

QQQ

automatically

J— Method A Testcases A
p— generate
— — Method Group 1 — —H> Q Q Q
int.int)->int automatically
Method A Method A — () Method B generate Testcases B
- f— —
Extracting and | —— f— Ferform type e Q Q Q
filtering |nfererjce and Method C Testcases C
grouping
Source files Method B Method B Method Group 2 . °
o . (str,str)->bool . o
L]
STEP-1 : ° . Method Group 1
L]
(a) STEP-1 (b) STEP-2 (c) STEP-3
Testcases A Testcases B Testcases C
Method A Result A_B Result A_C — I | f—
= @\ @ @ @ @ @ Method A ‘ Method B
Method B Result B_A Result B_C A R A
Method C Result C_A Result C_B
(d) STEP-4 (e) STEP-5
Fig.1 Steps to obtain pairs of functionally equivalent Python methods

def get_open_business_day(business, day):

"\n Helper function which returns 'day' dictionary of
corresponding day for\n given business dictionary. If the day
is not found, returns None.\n "

if (len(business.open_hours) == 0):

return None

for open_day in business.open_hours:

if (open_day.day == day):
return open_day

return None

(a) Original Method

def func(vall, val2):
if len(vall.attrl) ==
return None
for val3 in vall.attrl:
if val3.attr2 == val2:
return val3
return None

(b) Normalized Method
Fig.2 Example of normalization

that each method pair in the dataset is unique.

Next, we filtered the remaining methods to remove those not
meeting our research requirements. This step ensured that only rel-
evant methods were retained in the dataset. The following types of
methods were excluded:

¢ Methods with no parameters or return values: These meth-
ods cannot be effectively evaluated through test cases, as their
behavior cannot be adequately judged. Consequently, they
did not provide helpful information for functional equivalence
analysis and were excluded.

* Methods with self in their parameters: Methods containing
the self parameter are typically instance methods in object-
oriented programming. Since our research focuses on gener-

def crossOff(possible, prime):

nextPrime = None
for i in range(prime, len(possible)):
if possible[i] % prime == 0:
possible[i] = ©
if possible[i] and (not nextPrime):
nextPrime = possible[i]
return nextPrime

(a) Original Method

def crossOff(possible: list, prime: int) -> int:

nextPrime = None
for i in range(prime, len(possible)):
if possible[i] % prime ==
possible[i] = ©
if possible[i] and (not nextPrime):
nextPrime = possible[i]
return nextPrime

(b) Method after type inference
Fig.3 Example of type inference

ating unit tests for standalone methods, instance methods were
removed from the dataset.

¢ Methods that invoke external classes or methods: To ensure

that the methods in our dataset are self-contained and can be
independently analyzed, any method that calls external classes
or methods was filtered out. These methods would fail dur-
ing automatic test case generation, so they were removed in
advance to better facilitate the detection of FE method pairs.

By applying these filtering criteria, we ensured that the remain-

ing methods in the dataset are better suited for further analysis and
the identification of candidate FE method pairs. After completing

these steps, 28,353 methods were retained for subsequent analysis.

4.2 STEP-2
Since Python is a dynamically typed language and lacks static

— 3

@pytest.mark.xfail(strict=True)
def test_case_2():

int_@ = -1741

int_1 = 2067

int_2 = module_0.inv(int_1, int_0)
assert int_2 == -1740

(a) Test case with the ‘xfail’ marker

def test_case_0():
bool_© = True
set_0 = {bool_0, bool_0, bool_0}
module_0.set_add(set_0, set_0)

(b) Test case without assert statements

Fig.4 Example of removed test cases

type checking, this poses challenges for subsequent operations. To
improve the effectiveness of automated analysis, it is necessary to
perform type inference on methods and group them based on the
inferred types. Methods with explicit type information tend to per-
form more reliably in automated test case generation, making type
inference essential.

In this study, we used the TypeT5 [8] tool for type inference.
TypeTS5 is a Transformer-based model specifically designed for type
inference in Python code. It can infer the types of variables and
parameters and return values directly from the source code, par-
ticularly excelling when explicit type hints are absent. Leveraging
TypeTS5 allows for a better understanding of method type informa-
tion, providing a solid foundation for subsequent test generation and
functional equivalence detection.

In the subsequent automated test case generation, we will rely on
type hints to generate test cases. If the type hints for a method in-
clude Python non-built-in types, the test case generation will fail out-
right. Therefore, before performing inference, developer-provided
type hints were initially processed, with non-built-in type hints be-
ing removed. Next, we used the TypeT5 tool to infer the types of
parameters and return values for methods lacking explicit type hints.
After completing the type inference, We rechecked each method’s
parameters and return values to ensure they all belong to Python’s
built-in types. Methods that still contain non-built-in types in param-
eter types or return value types will be removed. This step ensured
that the final retained methods had clear built-in type information.
Ultimately, 21,503 methods were preserved for grouping and the
next step of automated test case generation.

Figure 3 presents an example of type inference. In the original
code, the methods lack any type hints. After applying type inference,
as shown in the red-highlighted section of the figure, we annotate
the variable possible as a list, prime as an int, and the return value
as an int. Based on these results, we grouped the methods accord-
ingly. This method is grouped together with other methods that have
parameter types (list, int) and a return type of int.

Following this, we grouped all methods based on their parame-
ters and return types. Only methods with identical parameters and
return types were grouped together. In the end, there were 726
groups, and each group contained at least two methods. In STEP-4,
we will perform mutual execution within these groups.

4.3 STEP-3

In this step, our primary goal was to generate corresponding test
cases for all the methods. We chose the Pynguin [3] for automatic
test case generation. Pynguin is a Python-based automatic test case
generation tool that can produce a comprehensive set of test cases for
a given method, ensuring that all functional aspects of the method
are thoroughly tested. By utilizing Pynguin, we could automatically
generate test cases for all methods obtained in the previous steps,
ensuring each method was adequately validated.

After generating the test cases, we performed initial filtering to

remove those test cases that contained ‘xfail’ markers or lack of
assert statements. In Figure 4, we present a test case marked with
‘xfail’ and another test case lacking an assert statement. The ‘xfail’
marker indicates that the test case is expected to fail, which gener-
ally means that it cannot effectively validate the correctness of the
method, making it unsuitable for functional equivalence analysis.
On the other hand, test cases lacking ‘assert’ statements cannot ver-
ify whether the method’s actual output matches the expected results.
They only checked whether the method could run correctly under
given inputs, and therefore, these cases were also excluded. This
filtering process aims to ensure that the test cases effectively vali-
date the behavior of the methods rather than merely executing code
without actual verification.

Next, we conducted coverage testing on the remaining test cases
using the coverage component provided by pytest. The purpose of
coverage testing is to assess the extent to which the test cases cover
the method’s code. To ensure the effectiveness and comprehensive-
ness of the test cases, we retained only those with 100% coverage.
This means that these test cases can cover all code branches and
paths in the method, ensuring no code segments that could impact
functionality are omitted. Test cases with 100% coverage provide
the most thorough validation, ensuring that the functional equiva-
lence analysis in subsequent steps is based on complete and accurate
test results.

Ultimately, after this filtering and coverage testing step, we ob-
tained a high-quality set of test cases, including a total of 6,500 test
cases for methods. This step took approximately 40 hours. These
test cases can comprehensively and accurately validate the func-
tional behavior of each method. We will use these methods and
their corresponding test cases for mutual execution in the next step.

44 STEP-4

In this step, we utilize the high-quality test cases and method in-
formation retained from Step-3, as well as the grouping information
from Step-2, to perform mutual execution among methods within the
same group. The primary objective of this step is to validate whether
the methods are functionally equivalent through cross-testing.

The detailed process is as follows:

(1) Preparation of Test Cases and Methods:

Suppose we have method A and method B, each with corre-
sponding test cases A and test cases B. These test cases were rig-
orously filtered in Step-3 to ensure that they have 100% coverage,
thereby thoroughly assessing the functionality of the methods.

(2) Execution of Tests:

First, we execute method A using test cases B. This step aims
to evaluate the performance of method A under the test cases
from method B, confirming whether method A can pass all the
tests in test cases B. If method A passes all the tests in test
cases B, we proceed to the next step: executing method B using
test cases A. This step is intended to verify the performance of
method B under the test cases from method A.

Through this approach, we conduct cross-testing between
methods A and method B to ensure that both methods can pass
under different test cases.

(3) Result Analysis:

If method A passes all tests in test cases B and method B
passes all tests in test cases A, it indicates that methods A and B
are likely functionally equivalent under the given test cases. This
result suggests that both methods produce identical outputs for
the same inputs and may be functionally equivalent. Therefore,
we mark this pair of methods as candidate FE method pairs.

Conversely, if any test case fails during the testing process,
it indicates a functional discrepancy between methods A and B
under the given test cases. In this case, we exclude this method

pair from the candidate FE method pairs to ensure that only
method pairs that consistently perform similarly across all test
cases are considered functionally equivalent.

For method pairs marked as candidate FE method pairs, further
validation and analysis are required. Although the preliminary mu-
tual execution provides initial evidence of functional equivalence,
the test cases are limited, and this only indicates functional equiva-
lence under specific conditions. In practical applications, additional
verification steps are necessary to ensure that these method pairs
exhibit consistent behavior across all possible input conditions.

4.5 STEP-5

In this phase, we perform a detailed manual checking of all
candidate FE method pairs. The primary objective of this step is
to confirm whether these method pairs indeed exhibit functional
equivalence through human judgment.

After completing the mutual execution step, we obtained a list
of candidate FE method pairs. Each pair was selected based on the
cross-testing results, where both methods passed all tests in each
other’s test cases. Although this result provides preliminary evi-
dence of functional equivalence, further validation is required to
confirm this equivalence.

For candidate method pairs identified as functionally non-
equivalent during manual checking, we created new test cases to
highlight their functional differences. We designed test inputs that
could potentially cause the two methods to produce different results
and executed these newly created test cases on both methods. If the
methods produce different outputs for the same test case, it indi-
cates that their behavior diverges under certain conditions, thereby
demonstrating a functional difference between them.

Finally, we record those method pairs that are confirmed to be
valid FE method pairs and use these pairs to construct a dataset.

5. Dataset

In this section, we describe the dataset we constructed. The
dataset is built using source code from ManyTypes4Py [3], which in-
cludes approximately 5.1k open-source Python projects. From these,
we extracted a total of 1,500,000 methods to build our dataset. In
STEP-1, based on research requirements, we retained 28,356 meth-
ods for type inference. In STEP-2, these methods were grouped into
726 categories according to the results of the type inference. After
filtering out groups with only one method, we proceeded with the
subsequent steps. In STEP-3, we used Pynguin to generate test cases
for the remaining methods automatically. After processing the test
cases and removing those with ’xfail’ markers and those without as-
sert statements, we rechecked that the coverage of the test cases was
100%. Ultimately, we had 2,434 methods and their corresponding
test cases that met the requirements for mutual execution. These
were divided into 129 groups, with the largest group containing 528
methods. In STEP-4, we identified a total of 7,415 potential FE
method pairs. These pairs were then subjected to manual checking.
We manually checked 750 candidate FE method pairs and identified
150 valid FE method pairs.

The number of candidate FE method pairs obtained in STEP-4
is quite large. Due to the limitations of automatically generated test
cases, it is challenging to detect functional differences in methods
that involve string manipulations. This also applies to methods that
return boolean values, as it is difficult to capture edge cases with a
limited number of test cases. This introduces some challenges for
manual checking.

To address this, we adopted the following approach to extract a
subset of candidate FE method pairs for manual checking: For each
method pair, if neither method has been inspected in any previous

def sumld(s:int, e:int) -> int:

c=20

for i in range(s, e):
c+=1

return c

(a) Method sum1d

def while_count(s:int, e:int) -> int:
i=s
c=20
while i < e:
c+=1
i+=1
return c

(b) Method while_count
Fig.5 Example of FE method pairs

pair, the pair is selected for checking. The current pair is skipped if
either method has already been included in a previously inspected
pair. After this filtering process, the number of method pairs requir-
ing checking was reduced to 750. We spent approximately 10 hours
manually checking these pairs, ultimately identifying 130 valid FE
method pairs.

In the end, We constructed the dataset and published it on
GitHub. The dataset consists of three tables: methods, pairs,
and verifiedpairs. The methods table records all relevant in-
formation about each method, including the original method, its
normalized version, the number of lines in the method, the test cases
generated for the method, and the method’s grouping information
(see Table 1). The pairs table contains all the candidate equivalent
method pairs obtained in STEP-4. Each method pair is linked to the
corresponding original methods in the methods table based on the
pair’s information. Additionally, every candidate method pair has
a unique ID. The verifiedpairs table records the IDs of the method
pairs that have been manually verified as functionally equivalent.

Figure 5 shows an example of FE method pairs identified in
STEP-5. Both methods calculate the sum of all integers from s to
e-1 but differ in their implementation.

The sumld method uses a for loop to iterate over all integers from
sto e-1, withrange (s, e) generating a sequence of integers from
s to e-1. The for loop automatically iterates through this sequence.

In contrast, the while_count method uses a while loop for ac-
cumulation. The while loop requires manual updating of the loop

Table 1 Schema for the methods Table

Column Name | Data Type Description
signature STRING Method signature
name STRING Method name
rtext BLOB Raw text of the method
ntext BLOB Normalized text of the method
size INT Lines of code
branches INT Number of branches
hash BLOB Hash of ntext
path STRING File path of the method
start INT Start line of the method
end INT End line of the method
repo STRING Project repository name
revision STRING not used in this dataset
compilable INT The methods used in STEP-4
tests INT not used in this dataset
Target_ESTest BLOB Automatically generated test cases
Target_Tesecase BLOB The test cases used in STEP-4
grouplD INT Group identifier for the method
id INTEGER Method ID

def gcd(a: int, b: int) -> int:
while a != 0:
(a, b) = (b % a, a)
return b

(a) Method ged

def mutated_gcd(a: int, b: int) -> int:
if a < b:
(a, b) = (b, a)
while b != 0:
(a, b) = (b, a % b)
return a

(b) Method mutated_gcd
Fig.6 Example of functionally non-equivalent method pairs

variable i and checking the loop condition i < e. Here, i starts
from s, and i is incremented by 1 in each iteration.

Figure 6 shows an example of functionally non-equivalent
method pairs identified in STEP-5. Both methods are designed to
calculate the greatest common divisor (GCD) of two integers using
the same algorithm—the Euclidean algorithm. However, differences
in specific implementation details lead to divergent outputs for some
inputs.

The gcd method is a classical implementation of the Euclidean
algorithm, which iteratively swaps (a, b) in a while loop under the
condition a is not equal to 0 until a becomes 0, at which point it re-
turns b. The mutated_gcd method also implements the Euclidean
algorithm but adds an if statement at the start to ensure that a is
always greater than or equal to b. If a is less than b, the values of a
and b are swapped. The swapping continues inside the while loop
until b equals 0, at which point it returns a.

When both input parameters are either positive or negative, the
two methods return the same result regardless of the values of a
and b. However, when a and b have opposite signs and a is greater
than b, the results differ in terms of their signs. This discrepancy
arises because the termination condition of the while loop in the two
methods depends on different variables gcd relies on a. In contrast,
mutated_gcd relies on b. For instance, with the input (12, -8),
the gcd method returns 4, while the mutated_gcd method returns
-4. This difference went undetected in the test cases primarily be-
cause the mutated_gcd method only checks the relative magnitude
of a and b and does not account for the signs of the numbers.

6. Related work

This research is inspired by the FEMPdataset study [7]. In FEM-
Pdataset’s work, a dataset of 1,342 FE method pairs in Java was
constructed by automatically generating test cases and mutual exe-
cution. This paper primarily extends that approach to Python, with
several key differences outlined below.

e The IJADataset used in FEMPdataset contains approximately
314 million lines of code, from which 23 million methods
were extracted. In contrast, this study uses the ManyTypes4Py
database, extracting 1.5 million methods. Additionally, the
size of the constructed datasets differs: FEMPdataset includes
1,342 FE method pairs, whereas the dataset in this paper con-
tains 130 FE method pairs.

* In FEMPdataset, Java method types were directly used for
grouping. However, since Python lacks static type checking,
this study uses TypeTS5 for type inference to facilitate the group-
ing and mutual execution process.

* In FEMPdataset, test execution was skipped when fewer than
five test cases were generated. In this study, no such limita-
tion was imposed. Due to differences in the test case generation

tools, this study checked test case coverage, retaining only those
test cases with 100% branch coverage.

¢ During the final manual checking phase, FEMPdataset’s candi-
date functionally equivalent pairs were evaluated independently
by three individuals. In this study, I conducted the visual check-
ing alone. However, for pairs deemed non-equivalent, I gener-
ated new test cases to demonstrate their functional differences.

7. Conclusion

In this study, we extracted Python methods from open-source
projects and automatically generated test cases for them. These gen-
erated test cases were then mutually executed to identify candidate
functionally equivalent method pairs. We manually checked a subset
of these candidate FE method pairs. Ultimately, from 7,400 candi-
date functionally equivalent pairs, a total of 750 pairs were selected
for manual verification, of which 130 pairs were confirmed to be
functionally equivalent. In the future, we plan to utilize this dataset
for additional research in code clone detection, such as evaluating
existing clone detection tools.

Currently, one of the primary challenges of this research is the
large number of candidate functionally equivalent method pairs.
Manual checking of all these pairs is impractical. This issue primar-
ily arises from the low quality of the automatically generated test
cases. To address this, we plan to develop a better filtering process
for the test cases to reduce the number of method pairs requiring
manual checking. Enhancing the quality of the test cases will be
crucial in improving the efficiency and accuracy of identifying func-
tionally equivalent method pairs.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Num-
ber JP24H00692, JP21K18302, JP21H04877, JP23K24823, and
JP22K11985.

References

[1] H. Sajnani, V. Saini, J. Svajlenko, C.K. Roy, and C.V. Lopes, “Sourcer-
ercc: Scaling code clone detection to big-code,” 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), pp.1157—
1168, 2016.

[2] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” 29th International
Conference on Software Engineering (ICSE’07), pp.96-105, 2007.

[3] S.Lukasczyk and G. Fraser, “Pynguin: Automated unit test generation
for python,” 44th IEEE/ACM International Conference on Software En-
gineering: Companion Proceedings, ICSE, pp.168-172, ACM/IEEE,
May 2022.

[4] A.M. Mir, E. Latoskinas, and G. Gousios, “Manytypes4py: A bench-
mark python dataset for machine learning-based type inference,”
IEEE/ACM 18th International Conference on Mining Software Repos-
itories (MSR), pp.585-589, IEEE Computer Society, May 2021.

[5] Y. Higo, S. Matsumoto, S. Kusumoto, and K. Yasuda, “Constructing
dataset of functionally equivalent java methods using automated test
generation techniques,” 2022 IEEE/ACM 19th International Confer-
ence on Mining Software Repositories (MSR), pp.682-686, 2022.

[6] H. Borges, A. Hora, and M.T. Valente, “Understanding the factors
that impact the popularity of github repositories,” 2016 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
pp.334-344, 2016.

[7]1 Y. HIGO, “Dataset of functionally equivalent java methods and its ap-
plication to evaluating clone detection tools,” IEICE Transactions on
Information and Systems, vol.E107.D, no.6, pp.751-760, 2024.

[8] J. Wei, G. Durrett, and 1. Dillig, “Typet5: Seq2seq type inference us-
ing static analysis,” The Eleventh International Conference on Learning
Representations, 2023.

