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Abstract

This paper discusses a new algorithm for a
reconfiguration problem (called the SPA problem) for nxn
ordinary processors using spare processors. The SPA
problem, originally presented by Melhem(1989), is to
find an assignment of spare processors to faulty
processors that minimizes the number of dangerous
processors. Here, dangerous processors are non-faulty
processors for which there remains no longer any spare
processor to be assigned if one more fault occurs. In this
paper, we develop an O(n2) algorithm for a basic SPA
problem where 2n spare processors are provided. Then, we
define an extension of the SPA problem and clarify
several interesting properties to solve them. In the
extension, the spare processors are assumed to become
faulty. Thus, it is expected that ideas presented in this
paper greatly contribute to the development of
reconfiguration algorithms for other fault-tolerant
systems.

1. Introduction

Recently, digital system applications that demand high
reliability and continuous operation are strongly desired.
Since it is impossible to guarantee that any given
component of the system will never fail, the system needs
to be designed to tolerate failures of components. The
development of such fault-tolerant systems is extensively
surveyed in (1), (13).

From the viewpoint of computing architecture, it is
very reasonable to provide a system with spare processors
and to reconfigure the system when faults occur. Many
reconfiguration algorithms have already been developed for
the hypercube architecture(3)(4), Especially for array
architectures(GX7)-(12)14)(15), numerous researchers have
focused on developing efficient reconfiguration
algorithms. In typical algorithms (1)(7)(9) for arrays,
when a faulty processor is detected, an entire row or

CH2985-0/91/0000/0452/$01.00 © 1991 IEEE

452

column containing the faulty processor is disconnected
and a spare row or column is used to replace it. The goal
is to utilize the minimum number of spare rows and/or
columns.

The problem (called the SPA problem) is stated as
follows(11); the array AP consists of n2 ordinary
processors and 2n spare processors. Some of ordinary
processors are specified faulty. Then, we should find a
spare processor assignment (that is a reconfiguration) to
faulty processors that minimizes :he number of dangerous
processors. Here, dangerous processors are ordinary
processors for which there remains no longer any spare
processor to be assigned if one more fault occurs in the
future,

In real time applications, continuous operation of the
system must be assured. For this purpose, the algorithms
should take notice of not only the faulty processors but
also of the processors that may become faulty in the
future. However, most of the proposed algorithms deal
with only the given faulty processors. Melhem (11)
recently proposed a new algorithm which tries to find
reconfigurations with respect to all possible faults that
may happen in a given array architecture. Unfortunately,
the proposed algorithm was inefficient from the viewpoint
of time complexity.

In this paper, we solve the SPA problem by
presenting an efficient algorithm. The proposed algorithm
finds an optimal assignment of spare processors to faulty
processors that minimizes the number of dangerous
processors. Then, we try to extend the model on which
the SPA problem is defined, and present an extended SPA
problem. In the extension, the spare processors may
become faulty.

This paper is organized as follows: Section 2 gives the
definitions of models (Models 1 and 2) for reconfiguration
arrays. Section 3 gives the definitions of the SPA
problem on Models 1 and 2, and compares the SPA
problem with other related problems. Then, Section 4



describes necessary and sufficient conditions and an
efficient algorithm to solve the SPA problem on Model
1. Section 5 presents necessary and sufficient conditions
to solve the SPA problem on Model 2. Finally, Section 6
summarizes the main resulis and future research work.

2. Reconfigurable Array Model

We introduce two kinds of reconfigurable array
models. Each model is specified by giving an array AP,a
set of faulty processors F and a cover T.

2.1 Basic model (Model 1)
(A) Array processor AP]

In Model 1, an array processor AP | is defined to be a
3-tuple AP =(OP1(n), S1(n), L1(n)), where OP1(n)={ cjj
11 i,j<n}is asetof nxn ordinary processors ,
Sim={aj, bi11sj ,J<n ) is a set of 2n spare processors
with OP j(n) n S1(n) = ¢, and L1(m)={(aj, cij ), (bi, cjj) |
1€ i,j<n)isasetof 2n? links.

Example 1  Figure 1 shows an array processor AP
for n = 6, AP=(OP1(6), $1(6), L1(6)). In the figure, the
ordinary processors czj's are represented by circles and the
spare processors a;'s and b/'s are represented by rectangles,
respectively. Only the connections between a3 and ¢;3's
and the connections between by and cy4;j's are illustrated
by arcs in Figure 1.

(B) Cover 71 and set F:

When an ordinary processor, say c53, fails, one of the
spare processors takes over the task. In Model 1, b5 and
a3z have connections to ¢53. Thus, either b5 or a3 is
assigned to take over ¢53. More generally, for a set of
faulty ordinary processors F1,a set of the spare processors
are assigned to realize array reconfiguration.

A set of faulty processors F1 is specified to be a
subset of the set of ordinary processors OP1 (). Thus Fq
COPq (n). Then an injection Ty : Fq —81(n) satisfying
the conditions (1) and (2) is called a cover T for the given
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Figure 1 Array processor AP}
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Fj.

(1) For any cjjeFy, if T(cij)=ak then k =j,
=by then k = i.

(2) For any aj, bi € S1(n), at most one faulty processor cij
is assigned to a;j or b; .

and if t(cij)

Example 2 Consider the array processor AP in
Example 1. Assume that F'1= { ¢22,¢24, €31, €32, €34,
c46, €53, €55 }» and each faulty processor in F1 is shown
by a cross in Figure 2. Then, an example of Ty is shown
by the arcs in Figure 2.

2.2 Extended model (Model 2)

In Model 1, spare processors are assured to be non-
faulty. Now, we will relax this condition and extend
Model 1 by allowing any of spare processors to be faulty.

Thus, in Model 2 for an array processor AP)
=(0P(n), S2(n), L2(n)) with OP2(n)=0P1(n),
Sa(n)=S1(n), Lo(n)=L1(n), a set of faulty processors F2
is defined to be a subset of the union of two sets OP,(n)
and So(n). That is to say, F2 COPy(n)uSa(n). Then a
cover T for a given F2 is an injection 12 : F2 —82(n) -
F that satisfies conditions (1) and (2) mentioned in 2.1

Figure 3 Cover 72
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Figure 4 Dangerous processors

(note that F and §1(n) in the conditions must be replaced
by F7 and S2(n), respectively).

Example 3 Consider AP in Figure 1 again. Assume
that Fo= {ay4, b, 14, ¢22, €23, €32, €33, €41, €45, C56).
Thus, two spare processors a4 and bg are assumed to be
faulty, which is shown by a cross in a rectangle in Figure
3. Then, an example of 1 is shown by the arcs in
Figure 3.

3. Spare Processor Assignment Problem
3.1 Definition of problem

For the given cover Ty, and F); (u=1, 2), any ordinary
processor d satisfying the conditions (3) and (4) is called
adangerous processor.

(3)d €OPy(n) - (F ynOPy(m)

(4) if d=c;; , then all of spare processors b; and aj are
assigned to faulty processors with respect to Ty Or
are faulty spare processors.

We represent a set of dangerous processors with respect
to Ty by D(tp) = {d}, and the number of elements in

The definition of dangerous processors implies that

even if an ordinary processor cij € D(ty) fails afterwards,
one of b; and g; is surely assigned to ¢ij, and thus the
system can survive. On the other hand, if an ordinary
processor cije D(ty) fails afterwards, then there remain no
spare processors to take over cjj.

Example 4  Consider the cover 1] given in
Example 2. Then D = {c21, €25, €26, €35, €36, €51, €52,
€54, c56}. These nine dangerous processors are shown by
dark circles in Figure 4.

The spare processor assignment problem (shortly the
SPA problem) on Model 1 (1 = 1, 2) is defined as
follows: When an array processor APy and a set of faulty

processors F|, are given as the input of the problem, we
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should find a cover 7,* for Fy such that #D(ty*) is
minimum among all possible covers T's for .

Example § Consider, as an input of the SPA
problem on Model 1, the array processor AP in Figure
1 and the set of faulty processors F1 in Figure 2. Then, a

cover T1* shown in Figure 5 realizes the minimum

number of dangerous processors. In this case #D(t1*)=7,
that is less than #D(t1)=9 in Figure 4.

3.2 Comparison with other related problems

The SPA problem on Model L is closely related to the
spare allocation (reconfiguration} problem in References
(1), (9). The spare allocation problem can be modeled as a
rectangular array with M x N cells with SR spare rows
and SC spare columns. The reconfiguration algorithm
should select the minimum number of spare rows and/or
columns that cover all the faulty cells(1).

There exist three differences (a)-(c) between the
definitions of the spare allocation problem and the SPA
problem.

(a) In the SPA problem on Model p (L = 1, 2), spare
processors Sy(n) are 1 X n and n x 1 arrays. However,
in the spare allocation problem spare cells are placed in
SR xN columns and MxSC rows, respectively.

(b) In the SPA problem on model p, a single spare
processor is individually assigned to a faulty processor
cij. On the other hand, in the spare allocation problem,
either a single row or a single column of spare cells is
collectively allocated to faulty processors.

(¢) In ordinary reconfiguration problems including the
spare allocation problem, the goal is to relieve only the
faulty processors. But the SPA problem is to minimize
the number of dangerous processors that will arise in
the system in the future.

Kuo and Fuchs have already shown that the
complexity of optimal spare allccation problem is NP-
complete, and presented good heuristic algorithms to
solve the problem(®).



4. SPA Problem on Model 1
4.1 Existence of cover Ti

In this subsection, we will present a necessary and
sufficient condition that assures the existence of the cover
71 for a given F1. For the given APy and F1, we
construct a bipartite graph(6} Gapy = (V.E) such that
V=VaUVs, where Va= {a;!aj€S1(n) and Ik (1<k<n)
[ckje F1l), Vo= {b; | b; eSl(n) and 3k (I<k<n) [cik €
F1]} and E=((b;a)) | cij € F1). Wecall nodes aj € V,; and
b; € Vp an a-node and b-node, respectively. Let C4op;
=(g1, g2, ... s} be a set of connected components®) of
the bipartite graph Gapl.

Example 6 Consider the array processor AP and
faulty processors F1 shown in Figure 2. A bipartite
graph Gpj shown in Figure 6(a) is constructed. There
exist three connected components Capy ={g1, 92, 93 }
which are shown in Figure 6(b).

For Gop1=(V4 UV, E ), we define a function p: E
-V, UV, called a node assignment, as follows:
(1) For any edge e = (b;, ;) in E, the value p(e) is either
bjor aj.
(2) For any pair of edges e, ez inE, if e; # e then

4
b2 o Q,
b3 03
bs o
bs 0 ac
© 2
(a) Bipartite graph Gap1
b, 0y
bs a, d,
a
bso———o0as Q2
(,4 N
bs a; 9

(b) Connected components of G4p1

Figure 6 Bipartite graph G4pj and its
components
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plep)#p(e2) (thatis, p is an injection).

Lemma 1 Consider an array processor AP and a set
of faulty processors F1. Then a cover 77 exists for F if
and only if a node assignment p exists for a bipartite
graph GapJ.

Theorem 1  Consider an array processor AP; and a
set of faulty processor F1. Then, a cover T} exists for Fy
if and only if for each connected component g; =(V;.E;) in
Cap either IV;1=IE;lor IV;1=IEj| + 1 holds.

(Proof) Onlyif ... Assume that a cover T} exists. Then
we can conclude that 1V; I2IE; 1 holds. Additionally, for
each connected component g; =(V;,E;) , the relation E; |
+1 2 IV; | holds. These two facts imply that IV;!=IE; +1
or V;i=IE;l.

If ...Assume that for each g; =(V,E)) , either IV; | =IE; +1
or IV;1=IE;| holds. We can construct a node assignment
p; for each connected component .

(Case 1) IV;lI=IE;|+1 -~ In this case, g; is a tree.
Select any node z in g; as the root node. Assume that
(x,y) is any edge in g; , and the length of the path
between the root and x is less than the length of the path
between the root and y. Then, we define p;((x,y))=y.

(Case 2) IV;I=IE;1- In this case, g; = (Vi,E})
contains exactly one loop. So we construct a rooted
spanning tree(®)T; =(V;,E) of g; with root z. Assume
that (z,w) is an edge such that (z,w)€ E; -E; . Then, for
each edge (x,y) in T;, we define p; ((x,y))=y in the same
way as in Case 1. Finally, p; ((z,w))=z.

Then we can easily compose a node assignment p
from p1, P2, ..., Ps, since E=EJUEVL ... VEs and E;
NEj =¢ (i # ). From Lemma 1 we can conclude that a
cover T} exists. |

Example 7 Consider the set of connected
componenis Cap; ={g1, 92, g3 ) in Figure 6(b). For i
=23, IV; | =1 E;! +1 holds. For i =1, Wl =1 Ej | holds.
Thus, at least one cover Ty exists. Examples of such
covers are shown in Figures 4 and 5.

4.2 Necessary and sufficient condition
Assume that Cap; ={ g1, G2. ... Os} is rearranged

into Bap; =(01, 02, ... Gk * Gk+1s .- Gs) as follows:
each §; =(V;, E; ) (1<i <k ) satisfies IV;|=IE; l+1, and
each g; =(V;, E; ) (k+1<i <s) satisfies IV; | =IE; | .

Lemma 2 Define IA = {(x1,x2, ..., xklx;€ V) fora
bipartite graph Gopj =(V.E ). Then there exists a node
assignment p: E =V for Gapj =(V,E ) with p(E) =V -



JAifandonlyifx; inJAisanodein §;e Cap; (1 <i
<k).

Lemma 3 Let p: E -V be the node assignment for
Gap] =(V,.E ),V =V, U V}, that satisfies p(E) =V - IA
mentioned in Lemma 2.Next, define a function p(/A) as

follows:
k

p1UA) = (Vgl-0) *(Vp |- B) - IE 1 + 3. deg(xi),

1=
where o=V, IA |, B=1Vp N TA | and deg(x;) is the
degree of the node x;. Then the value p1(/A) represents the
number of dangerous processors with respect to a cover 11
that corresponds to p.
(Proof) See Reference (5). |
Example 8 Consider the connected components C4p;
={02, g3 : g1 } in Figure 6(b) and /A = {a3, byq}. Then, we
can compute p({A)=(4-1)*(6-1)-8+(1+1)=9. On the other
hand, the cover T, in Figure 2 is obtained by applying
the procedure mentioned in Proof of Theorem 1. Then, the

number of dangerous processors, which are shown with
dark circles in Figure 4, is also 9.

We define IA,;;, to be an JA ={x;,x2,....x¢]), for
which the value of pj(JA) is minimum. For each
connected component § ; =(V;,E;) (1<i<k)inC4py,
we define the minimum degrees of a-nodes and b-nodes as
follows:

min_deg(a,i ) = min { deg(x) | xe V,; NV},
min_deg(b,i ) = min { deg(x)|lx € V, NV},

Proposition 1 Each node x; (1<i<k)in IAyp,
satisfies the following condition C1.
min_deg(a,i) ifx;eVanV;
C)  deglx) = min_deg(b,i) ifxjeVynV;
(Proof ) Let D= (V4| - ) (IVp |- B) - IE |. Then, by the
k

definition, p1(TA)=D + ‘Z deg(x;). Since D is a constant

=
and p1(JA) is minimum, the condition C1 must be held
for each x; in TA,;;p. ]

For each connected component g ; =(V;,E;) (1<i <k)
in C4p;, we define the difference A(i ) = min_deg(a,i) -

min_deg(b,i). Let Ind(a)={ i|x elAnV and x e V; for §.

;) and Ind()={i |x€elANVp andxeV;for g;} be set
of indices of nodes in IA. Note that

Ind(a)yulnd(b)={1,2,....k} for Cap;.

Proposition 2 Let Ind(a)=( i | x €elApin NV, and
xeV; for§;) and Ind(b)={i |x € [Apin "Vp and x
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eV; for g ;) for a given IAg;,. Then, the set JA,, i,

satisfies the following condition C2 for A(f).

(C2) Foranyl, m with ! € Ind(a) and m € Ind(b),

A(l) £ Aim).

(Proof) See Reference (5). ||
Consider a sequence (A(1), A(2), ..., A(k)) and sort it

in a nondecreasing order of values A(i)'s. Let 3 = (A(sp),

A(s2), ..., A(sE)), 15s57,52,...,5k<k, be the resultant

sequence, for which A(s;) € A(s2) £ ... £ A(sg) holds.

Let JAy be IA={x, x2, ..., x} where x;is anode in g ;
(1<i <k ) such that the number of a-nodes in 4 is v.

Proposition 3 Lety be the number of a-nodes in a
given JAp;,, and let min_p1(y) = (Wal-7) (Wp | - (k -
k oy
Y)) - IE 1+ Y, min_deg(b,i) + ). A(s;) for the sequence z
i i=1
= (A(s1), A(s2), ..., A(sk)). Then the value p1(IAmin)
must satisfy the following condition,
(C3) p1UAmin) = min { min_py(y) 1 0S y<k }.
(Proof) By the definitions of py, Ind(a) and Ind(b),
p1UA) =Dy+ 3 deg(xj) + Y deg(xj)
i eInd(a) i €Ind(b)
is derived where Dy= (Vg1 -v) (Vp | -(k-Y)) - IE |. Then,
k
p1(IA9) 2Dy + 3 min_deg(bi)+
=1

i=

j=

X A®G) .
i elnd(3)

By the property of A,
k Y

p1UAy 2 D7+'Zmin_deg(b,i)+' ZIA(s,' Y=min_p1(Y).
i= i=

If we select a special JAy satisfying the conditions
C1 and C2, then p1(TA+) = min_p(y) is derived.

Next, assume that the minimum value of min_p1(¥)'s
is min_p1(m). Then by definition of JA,,;, , the number
of a-nodes in /A,,;, must be m. Thus, p1(JAnin) = min
{ min_p1(y) 10<y<k } is derived. u

Theorem 2 Let JA be asetJA = (x;,x2, ..., Xk)
where x; (1<i<k) is anode in g ; for C4p; =(g1. G2, ...,
Ok Gk+1r..o Gs). Then IA = IApin if and only if all
the conditions C1, C2 and C3 are satisfied by the set /A.
(Proof) Only if ... This part is clearly proved by
Propositions 1, 2 and 3.

If ... Assume that /A satisfies the conditions C1, C2 and

C3. Let m be the number of a-rodes in /A . On the other
hand, let JA* be any sequence (x7, x2, ..., x¢) such that

x'; isanodein g; (1<i<k). Let Ind'(a)=( i lx e IA’ NV,

and xeV; for g;} and Ind'(b)={i | x€lA’ "Vpand x

€V; for §;}. Let m’ be the number of a-nodes in JA".
Then, by the definition of »sn_deg and A(i) and 3,



2 deg(x’)
i elnd'(b)

Y. min_deg(b,i)
i eInd'(b)

2 AQ)
i eInd'(a)

p1dA) =Dpy+ X deg(x'D +

i eInd(a)
Y min_deg(a,i) +
i elnd'(a)

2Dy +

k
=Dy + 3, min_deg(b,i) +
=

k m
> D+ Ymin_deg(b.i)+ LA(si) =min_p1(m").
i=1 i=
Furthermore, since IA satisfies the condition C3,
min_p1(m’') 2 min_p1(m) s derived. Next, consider the
derivation of p1(IAy) 2 min_p1(y) in the proof of
Proposition 3. In this case, since /A satisfies the
conditions C1 and C2, two inequalities can be replaced by
equalities. Thus we can get p1(IA) = min _pi(m). As the
result, p1(IA") 2 p1({A) is derived for any JA'". |

Example 9 Consider Cap;={g2,93:91} in
Example 8, again. Then min_deg(a,2)=1, min_deg(b,2)=1,
min_deg(a,3)=1, min_deg(b,3)=2, and thus we get A(2) =
0, A(3) = -1, and A = (-1, 0). Now, we compute
min_p1(0)=6%(4-2)-8+1+2=7, min_p1(1)=(6-1)*(4-1)-
8+1+2+(-1)=9, and min_p1(2)=(6-2)*4-8+1+2-1=10.
Finally, we get m=0, IAmir={b4, bs}.

4.3 Algorithm for SPA problem on Model 1

Based on the conditions C1, C2 and C3 in Theorem 2,

an algorithm, called Algorithm SPA-1, for the SPA
problem can be developed.
{Algorithm SPA-1]

Step 1 (Checking the existence of T1)

1.1 Construct the bipartite graph Gap; and the set
Cap1 ={gi=(Vi.ED).

1.2 Check whether each g; € Cap;j satisfies the
condition ( IV;t = IE;l+1 or IV}l = IE;l) or not. If it
is satisfied, rearrange into Cap; =(07, 32, ... Gk

. gk+ Jsovn gs}.

Step 2 ( Computation of IA;n )

2.1 Get the values min_deg(a,i), min_deg(b,i) for
each g; (1 <i<k).

2.2 Get the value A() foreach g;j (1 <i<k) and
sort the sequence (A(1), AQ2), ..., A(k)) in
nondecreasing order. Let A = (A(s]), A(s2), ...,
A(sp)) be the resultant sequence.

2.3 Get the set {mir_p1(y)|0<y<k }, and find
the value Y givirg the minimum value of
min_p1(Y). Let m te the resultant value.

2.4 Finally, let JApin = (X515 X525 +ovs Xsms Xsm+1»
..., Xg; ) such that each xg; (1<i < m) is a-node in

O with deg(xs; ) = min_deg(a, s;), and each xg;
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(m+1< i <k) is b-node in §5; with deg(xs) =
min_deg(b,s;).
Step 3 (Construction of 71)
3.1 Determine an assignment p; (1<i <s ) as follows:

(Case 1) Foreach g (1 £i <m ), define ps; by
the procedure of Case 1 in Theorem 1's proof
with selecting a-node xg; as the root. Then, for

each § s (m+1 <i<k), define pg; by the same
procedure with selecting b-node x; as the root.
(Case 2) For each g; (k+1< i < 5 ), define pj by the
procedure of Case 2 in Theorem 1's proof.
3.2 Compose an assignment p for G4p; from py,
PZ: +-esPse
3.3 Define a cover 11 by applying Lemma 2.

Example 10 Consider APy in Figure 1 and F1 in
Figure 2 as an input of the SPA problem. Then at Step 1,
we construct a bipartite graph Gap; shown in Figure 6,

and get Cap; =(92, 93 : g1)- At Step 2, we get IApin
described in Example 9. Finally at Step 3, we can
construct an optimal cover T3 shown in Figure 5.

Theorem 3 Algorithm SPA-1 solves a given SPA
problem on Model 1 in O(nz) time, where n? is the
number of ordinary processors.

(Proof) At first, we explain the correctness of Algorithm
SPA-1. Step 1 is based on the necessary and sufficient
condition mentioned in Theorem 1. If the condition is not
satisfied, there exists no solution of the given SPA
problem. The set C4p; can be easily constructed by
applying a depth-first search algorithm(®),

Step 2 is the most essential part of Algorithm SPA-1,
and utilizes the conditions C1, C2 and C3 in Theorem 2.
At Substep 2.2, a sorting algorithm, for instance heap
sort algorithm(2), is applied to the sequence (A(1), A(2),
..., A(k)) to get the sequence A, then at Substep 2.3, we
compute min_p1(Y) (0<y<k).

Step 3, based on the result of Theorem 1, gives a
concrete solution for the given SPA problem. At Substep
3.1, we must construct a spanning tree for each connected
component g; (k+1<i <s). The spanning tree is also found
by applying a depth-first search algorithm(2),

As mentioned above, Steps 1, 2 and 3 are based on the
results in Theorems 1 and 2. Theorem 2 proves that
IAmin optimally satisfies the conditions C1,C2 and C3.
Thus our algorithm SPA-1 is correct.

Next, we briefly mention the time complexity of
Algorithm SPA-1. Since the size of Fpis generally
O(n2), the number of edges in the bipartite graph becomes
O(n2). Thus, the depth-first search algorithm requires
O(n2) time at Substep 1.1 with respect to the worst-case
time complexity. Furthermore, when a cover 1; exists,



the number of connected component in Cqp; is O(n).
Thus, both £ and s have the value of O(n). The sorting
at Substep 2.2 takes O(n logn) time. Each of Substeps
2.1, 2.2 and 2.4 takes O(n) time.

The size of Fy1 is bounded by 2n when a cover 11
exists for the SPA problem. The depth-first search
algorithm requires O(n) time at Substep 3.1. Substeps 3.2
and 3.3 take O(n) time also. Thus, Algorithm SPA-1
takes O(n2) time with respect to the worst-case time
complexity. [ ]

5. SPA Problem on Model 2
5.1 Existence of cover 13

For the given AP, and F7, we construct a bipartite
graph Gapy = (V.E ), V=V, U Vp in the same way as
mentioned in Subsection 4.1. Let C4p2 ={g;, g2, ...,
g5}, gi=(Vi,E;)(1 <i<s) be a set of connected
components of the bipartite graph G4p2. Then, we divide
Vi(1<i<s) into two disjoint subsets V; = Viru Vi,
where Vir = (b;, ajl b;,aje Fp } and Vi, = { by, ajlbje
Fy,aje Fa}. Let Ve=VirU Voru ... UV and Vy, =
VinvVopu ... u Vg,

Next, we define a node assignment where p: E =V, as

b, a
b, a,
by a3
b, a,
bs as
T a0

(a) Bipartite graph Gap2

blo"—'—qa4 gl
b, a

2
N
Aal
b4 2 8, @
bo—— o@ g,

(b) Connected components of G4p2

Figure 7 Bipartite graph G4p; and its
components

follows:
(1) For any edge e = (b;, @) in E, the value p(e) is either
b or aj. (Note that p(e) & F7 is assured.)
(2) For any pair of edges e;, e2 inE, if ¢; e2 then
plen)#p(e2).
Then a cover 17 exists for F if and only if a node
assignment p exists for a bipartite graph G4 p;.

Theorem 4 Consider an array processor APy and a
set of faulty processors F. Then a cover 17 exists for Fp
if and only if each connected component g; =(V;,E;) in
Cap2 satisfies either IV, | = 1E; lor Vi, | = IE; | + 1,

Example 11 Consider AP; and Fo shown in Figure
3. Then, a bipartite graph Gap, shown in Figure 7(a) is
constructed. There exist four connected components C4p2
={91, 92, 93, g4 } shown in Figure 7(b). In the figure, b;
or a; with a cross represents a faulty spare processor.
Thus, g7 =(V1, E1), V1= (b1, a4), E1= {(b1, a4))
produces Vjr={a4) and V, = {b1}. On the other hand,
93 =(V3,E3), V3= (ba, a1, as}, E3= {(ba.a1), (b4, as)}
produces V3r= ¢, V3, = V3. Clearly, for i = 1, 2, IV,
=lE;| holds and for i = 3,4, Vi, | =IE;| + 1 holds.
Thus, at least one cover T2 (shown in Figure 3) exists.

5.2 Necessary and sufficient condition
Assume that Cqp2 =( g1, 2, ... gs)} is rearranged

into C4p2 =(q1, G2, ... Gk : Gk+1, ... gs} as follows:
Forg; =(Vi,E;) (1<i <k ), Wp | =IE;}+1 hold, for g;
=(V;, E;) (k+1<i <5 ), Vi | =IE; | holds.

Additionally, we define two sets Tg= {a;| aj
€ S2(m)NFp and YV k (I<k<n) cxje Fal}, Tp= {b;1b;
€S2(n)nFpand Yk (I<k<n) [cjx & Fal).

Lemma 4 Define JA = {x;,x2, ..., xk | x;e V) for a
bipartite graph Gapz =(V,E ). Then a node assignment
p: E =V, for Gapz =(V.E ) with p(E) =V - IA exists if

and only if x; inJA isanode in § ; € C4py (1<i <k).

Lemma 5 Letp: E —V, be the node assignment for

Gap2 =(V,E ) that satisfies p(E) =V - IA mentioned in

Lemma 4. Next, define a function py(/A) as follows:

prJA) = (Wl +1Tgl-t)* Wyl +1Tp1-(k-t)) - E|
k

+ 2deg(x))
i=1

where t=IVynIAIl k-t =lVpnIA| deg(x;) is the
degree of the node x;. Then the value py(7A) represents the
number of dangerous processors p2(/A) with respect to a
cover 13 that corresponds to p.



For each connected component § ; =(V;, E; ) (1<i k),
we define min_deg(a.i), min_deg(b,i) and AG) in the same
way as mentioned in Subsection 4.1. Then we also define
TApin to be an JA={x1,x2, ..., xg} for which the value
of pa(IA) is minimum.

Theorem 5 Let JA be aset A = (x], x2, ..., Xk)
where x; (1<i<k) isanode in §; for Cap2=(g1, 92, -
Ok i Gk+1r . Gs). Then IA = IApip if and only if all
the conditions C4, C5 and C6 are satisfied by the set /A.
(C4) is the same as C1 in Proposition 1.
(C5) is the same as C2 in Proposition 2.
(C5) p2(UAmin ) = min{min_p2(y) 1 0 < y< k}, where
min_pa(Y) = (Val +1Tg!-7) (Vb 1+Tpl - (k- 7))
k Y
-IE W 3 min_deg(b.i) + X, A(s:).
i i=1

i=1

Example 12

again. We rearrange Capy into Cap2 = {g3,94: 91, G2).
We get ITg =0, ITpl=1. For g3, g4, we get
min_deg(a,3)=1, min_deg(b,3)=2, min_deg(a,4)=1,
min_deg(b,4)=1, and thus A(3)=—1, A(4)=0. Thus we
compute min_p2(0)=6*(6-2)-8+1+2=19, min _pa(1)=(6-
1)*(6-1)-8+2+1-1=19, and min_p2(2)= 6*(6-2)-8+2+1-1
=18. As the result, we get m=2. [Apin={as.a¢) is
obtained and the cover 17 in Figure 3 is constructed from

IAmin ={as, ag}.

Consider AP3, Fo in Example 11

6. Conclusion
We have presented two kinds of models (Models 1 and

2) to formulate reconfiguration for fault-tolerant array

with spare processors. For the SPA problem on Models 1

and 2, we have developed the algorithms that find an

optimal solution in O(n?) time where n? is number of
ordinary processors in the array.
The future research work includes the following:

(1) Another extension of tae SPA problem ... To develop
new applications, we should extend the definitions to
n-dimensional hypercubes, and develop efficient
algorithms to solve the extended problem.

(2) Application to spare allocation problem MmO ...
There exist many similarities- between the spare
allocation problem and the SPA problem. Thus, the
ideas in this paper may possibly be applied to develop
a new approach to the spare allocation problem.
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