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Abstract—In recent years, Automated Program Repair (APR),
which focuses on automatically fixing source code without human
intervention, has become a hot topic in the field of software
engineering, leading to the proposal of various automatic repair
techniques. Additionally, Lapvikai et al. introduced a new soft-
ware quality metric called “Autorepairability.” Autorepairability
is a metric that indicates how easily bugs in the target source code
can be fixed using APR techniques. By utilizing Autorepairability,
it becomes possible to pre-check whether the program repair
techniques will work effectively on the target software and
to perform refactoring to improve Autorepairability. However,
in the past two to three years, program repair using large
language models (LLMs) has become more prevalent, and several
studies have revealed that these models exhibit superior repair
capabilities compared to traditional APR techniques. In this
study, we applied Autorepairability to compare the performance
of multiple APR techniques. Specifically, we measured and
compared Autorepairability using ChatGPT and Gemini, which
are representative large language models, as well as kGenProg, a
traditional APR technique. The results demonstrated that Gemini
exhibited higher repair capabilities compared to both ChatGPT
and the traditional APR technique kGenProg. The five code
functionalities that Gemini offers higher Autorepairability scores
than ChatGPT include (1) geographic and mathematic opera-
tions, (2) validation, comparison, and searching operations, (3)
data conversion operations, (4) data extraction and comparison
operations, and (5) encoding operations.

Index Terms—Automated program repair, Large language
models, ChatGPT, Gemini

I. INTRODUCTION

Large Language Models (LLMs) represent an advanced
form of artificial intelligence (AI) that leverages machine
learning techniques to emulate human language. These models
are trained on vast datasets, enabling them to excel in tasks
such as language translation, text prediction, and content gen-
eration. Unlike traditional Natural Language Processing (NLP)
models, LLMs are characterized by their ability to process
much larger datasets and utilize a significantly higher number
of parameters. This increased complexity allows LLMs to
produce language outputs that are more sophisticated and
closely aligned with human communication. A recent survey
by Fan et al. [1] shows that LLMs can be effectively applied
to several software engineering tasks.

Automated program repair (in short, APR) is an automatic
technique to fix bugs without human intervention. Traditional
APR methods, often constrained by predefined patterns, strug-
gle to adapt to the diverse and complex errors that arise in

real-world software environments [2]. In contrast, LLMs, when
utilized as APR tools, possess the capability to dynamically
learn from and adjust to a wide array of programming errors.
This enables them to generate more precise and contextually
aware fixes, significantly improving the reliability of the
repair process. Moreover, this approach minimizes the need
for human intervention, making APR tasks more scalable
and effective in addressing the intricate challenges posed by
modern software development.

The previous study by Lapvikai et al. [3] introduces the
concept of “Autorepairability”, a new software quality char-
acteristic that measures the effectiveness of techniques for
specific code fragments, files, or projects (more detail in
Section II-A). The methodology involved generating artificial
bugs through mutation testing and applying any APR tools to
repair them. Their experiment conducted on 1,282 functionally
equivalent Java method pairs using kGenProg [4], an APR
tool based on genetic algorithm, found that the tool offers a
decent Autorepairability score of 0.45 on average. They also
identified four key code structures that significantly impact
Autorepairability at the syntactic level including curly braces
surrounding code block, usage of the ternary operator, com-
bined logical expressions in a conditional statement, and type
of conditional statements.

In the past two to three years, program repair using large
language models has become increasingly prevalent, and sev-
eral studies have demonstrated that their repair capabilities
surpass those of traditional APR techniques [5]–[7]. Nonethe-
less, there are no studies regarding the Autorepairability scores
of LLMs in the literature. This study aims to fill the gap
by performing a preliminary study of applying two LLMs,
ChatGPT and Gemini, as APR tools and measuring their
Autorepairability. The experiment focuses on comparing the
performance of two popular and accessible LLMs: ChatGPT-
3.5 Turbo, the most cost-effective paid option, and the Gemini-
1.5-Flash, the free version of Gemini, across various func-
tionalities. Understanding which model excels in different
functionalities is essential for enabling users to make informed
decisions about which LLM to use, balancing performance
with budgetary constraints. This comparison seeks to provide
valuable insights into the trade-offs between model capabilities
and financial considerations, ultimately guiding the selection
of the most suitable LLM for widespread deployment in cost-
sensitive environments.



The results from our study show that Gemini offers higher
Autorepairability scores than ChatGPT and kGenProg, show-
ing its promising future as an APR tool. Additionally, we study
the code functionalities that have high Autorepairability scores
by LLMs, which offers insights into the code semantics that
can be effectively repaired by LLMs. By closely examining
how these models handle different types of programming
errors and semantics, this research highlights the practical
implications of their use, offering recommendations for op-
timizing their deployment in real-world software development
environments. We believe that this study paves the way for
future studies in using LLMs for automated program repairs.

II. BACKGROUND AND RELATED WORK

A. Measuring Autorepairability

Autorepairability is a software quality characteristic that
assesses how well APR techniques can fix bugs in a specific
project or codebase. It reflects the ease with which APR
tools can identify and correct errors, making it a metric
for determining whether a software system is suitable for
automated repairs. By measuring Autorepairability, developers
can gauge the effectiveness of applying APR techniques to
their projects, helping to ensure more efficient and reliable
software maintenance.

According to Lapvikai et al. [3], the process starts with
generating artificial bugs for the given project and measuring
how well an APR technique can fix such artificial bugs.
Mutation testing techniques are employed to generate artificial
bugs [8], [9]. The process inputs include (1) source code SP

and test cases TP of a target project P , (2) a mutation testing
technique MU , and (3) an APR tool A.

To measure Autorepairability, the following three steps need
to be performed. Step-1: One generates mutants of source
code SP , that come with a set of unit test cases TP , by
using a mutation testing technique MU . Each mutant µ 2 M
is a source code that is slightly different from the original
source code. Step-2: The technique applies an APR tool
being assessed A to each of the generated mutants. Each
mutant µ includes a different bug similar to mutation testing.
The generated fix, i.e., a patch, from A that passes all the
tests in TP is called a solution s. Set S represents all the
solutions that A can generate over all the mutants in M . A is
not applied to the mutant if a mutant passes all test cases
in TP . Step-3: One calculates the ratio of the number of
generated solutions |S| per the number of mutants |M |, i.e., the
Autorepairability score. The calculation of Autorepairability is
shown in Equation II-A below.

Autorepairability =
|S|
|M | (1)

One can use this score to compare how easily different
programs are to be repaired by multiple APR tools.

B. Related work
There are a few recent studies on using LLMs for APR.

Sobania et al. evaluated ChatGPT’s bug-fixing capabilities
using the QuixBugs benchmark, which includes challenging
Python programs [6]. They repeatedly used the same prompt
for each problem to assess the correctness of ChatGPT’s fixes,
comparing its performance to traditional APR methods and
deep learning models like Codex and CoCoNut. The study
also explored how providing contextual hints in dialogue could
improve ChatGPT’s success, demonstrating its potential as an
automated program repair tool.

A study by Xia et al. [7] explores the use of large language
models (LLMs), like Codex, to enhance automated program
repair. The study evaluates how effectively LLMs can generate,
repair, and refine code snippets based on natural language
descriptions and existing code structures. Results show that
LLMs can produce a variety of useful patches, though they
sometimes struggle with complex contexts and perfect syntax.
Despite these limitations, the research demonstrates the po-
tential of LLMs in improving early-stage code repair, offering
valuable suggestions for developers to refine.

Although these studies evaluate and give early insights into
the effectiveness of using LLMs for APR, they do not compare
different LLMs on the APR tasks.

III. METHODOLOGY

In this study, we aim to answer two research questions.
RQ1: What are the Autorepairability scores of ChatGPT

and Gemini? We aim to understand the Autorepairability of
Java programs using LLMs. So, we employed the two widely
used LLMs, ChatGPT and Gemini for automated program
repair tasks and measured the Autorepairability score. We also
compare the Autorepairability of the two LLMs.

RQ2: What are the functionalities that affect the Autore-
pairability of the two LLMs? To understand the functionalities
that are suitable for repairs by each LLM. We manually
classified the code pairs that had strong differences in Au-
torepairability scores between ChatGPT and Gemini. This will
provide more insights into the differences at the semantic level
that affect using LLMs as APR tools.

A. Dataset
Similar to the study by Lapvikai et al. [3], the dataset

used in this research is based on Higo et al.’s dataset of
functionally equivalent Java methods [10]. We used 1,282
Java method pairs from this dataset. Each pair, containing
two Java methods, performs the same functional task but
differs in implementation style, reflecting various approaches
or methodologies to achieve the same outcome. Additionally,
the dataset includes multiple variants, or mutants, of each
method, with each mutant containing different bugs. Lapvikai
et al. used PIT [9] mutation testing techniques to create
artificial bugs, which we refer to as mutants. We reused them.
Test case files accompanying these mutants which come with
the Higo et al.’s dataset were generated by EvoSuite [11].
The tool automatically generates test cases with assertions



for classes written, which are used to evaluate the software’s
performance, verify its correct operation, and identify any
errors that need to be addressed.

These components in the dataset are used to assess the
automated program repair capabilities of the Large Language
Models (LLMs) in the study.

B. Experimental Procedure
In this experiment, two advanced LLMs were selected for

evaluation: Gemini-1.5-Flash (free version) and ChatGPT-3.5
Turbo (the most cost-effective paid version). We decided to
use these versions of the two LLMs because of two reasons.
First, it enables the reproducibility of the study. Second, it
is also possibly the versions that the developers are mostly
affordable. The overall framework is illustrated in Figure 1.
The experiment involves four main steps to evaluate the
Autorepairability performance of the two LLMs. We explain
each step in detail below.

1) Step 1: Prompt Engineering: We issue prompts based
on the same prompt template across both models to assess
their performance. These interactions were facilitated via the
models’ API connections, ensuring a consistent environment
for comparing the models’ outputs in terms of response quality,
accuracy, and overall efficiency. The prompt template is identi-
cal for each model, except the code to be repaired and the test
cases, to ensure consistency in the comparison. The template
of the prompt that we used is shown in Figure 2. The prompt
includes Java code that has failed certain test cases, along with
its corresponding unit test cases. The models are instructed to
fix the provided Java code to ensure it passes all the test cases.
The LLMs were instructed to provide only the repaired Java
code back as their output without any explanations for the ease
of result analysis.

2) Step 2: Checking Correctness of the Repaired Code: In
this step, the repaired code generated by the LLM models
was executed against the provided test cases to evaluate
the effectiveness of the fixes. The primary objective was to
determine whether the modifications made by the models
successfully addressed the issues present in the original code.
The repaired code was run using the same set of test cases
that initially exposed the bugs. If the repaired code passed all
the test cases, it indicated that the models had resolved the
issues, thereby successfully repairing the code, i.e., creating
a solution. Conversely, if any of the test cases still failed, it
suggested that the code had not been fully repaired, and the
models were unable to completely fix the underlying problems.

3) Step 3: Autorepairability Score Calculation: In this step,
the Autorepairability score was calculated based on the Equa-
tion II-A. According to this methodology, the Autorepairability
score is determined by dividing the number of successfully
generated solutions, where the repaired code passes all test
cases, by the total number of mutants in the dataset. This
approach provides a quantitative measure of how effectively
the models can generate correct solutions in response to
the given prompts, offering a clear indicator of the models’
capability to repair code automatically.

TABLE I
COMPARISON OF MAXIMUM, MINIMUM, AND AVERAGE VALUES OF

AUTOREPAIRABILITY

Value KGenProg ChatGPT Gemini

Max 1.00 1.00 1.00
Min 0.00 0.00 0.00
Median - 0.43 0.77
Standard Deviation - 0.30 0.31
Average 0.45 0.44 0.69

4) Step 4: Manual Inspection of Java Methods: we per-
formed a manual investigation of the original Java methods
used to generate the mutants. To do the manual investigation,
the first author, who has 4 years of experience in writing Java
programs, carefully read the Java method to derive their func-
tionality at a semantic level to identify which code functionali-
ties are successfully repaired by LLM-based methods. We lim-
ited our manual analysis to only the code pairs that had large
differences in terms of the Autorepairability scores between
ChatGPT and Gemini, meaning that one LLM is better than the
other in repairing such functionality. We filtered the methods
to be looked at by finding the differences in Autorepairability
scores of each method between Gemini and ChatGPT, i.e.,
|AutorepairabilityGemini �AutorepairabilityChatGPT|, were com-
puted and ranked. Then, the methods with a score difference
greater than 0.5 were selected, indicating a significant dis-
crepancy in Autorepairability between Gemini and ChatGPT.
Moreover, only those methods having more than 10 mutants
were included in the analysis to make sure that the model
sufficiently fixed the bugs in the code pairs.

IV. RESULTS

A. Answering RQ1

After completing the analysis of both LLMs’ repaired code
snippets, we calculated the Autorepairability scores of the two
models as summarized in Table 1. We also include the results
from Lapvikai et al.’s study [3] using kGenProg for a more
comprehensive comparison with a traditional APR tool. The
highest Autorepairability scores for both ChatGPT and Gemini
are 1.00, indicating that in some cases, the models were able to
fully repair the code, while the lowest scores are zero, showing
instances where the models failed to repair the code at all. This
is also similar to the results from kGenProg.

The average Autorepairability score for ChatGPT is 0.44,
meaning it successfully resolved about slightly half of the
mutants. Interestingly, the average score for Gemini is around
0.69, indicating that it was able to fix more bugs than
ChatGPT. We can also see that ChatGPT did not outperform
kGenProg by having a slightly lower Autorepairability score
of 0.44 (ChatGPT) compared to 0.45 (kGenProg) respectively.
The median scores also show the same observation with
similar standard deviations of the Autorepairability scores of
the two LLMs.

We also looked at the differences in Autorepairability scores
of the two methods that form a pair in the dataset. The two



Fig. 1. The Experiment Framework

[Code of the Java method to be repaired]
[Unit test cases of the method]

From the Java code above, this code fail on some test case.
Please update the code to make it run pass all the test case.
Respond only with the updated Java code (do not include
the test code) in this format:

���java
Repaired code
���

Fig. 2. The prompt template used in this study

Fig. 3. Differences of Autorepairability Scores of Method Pairs

methods in the same pair should provide the same function-
ality. Thus, we can see how effective are the two LLMs at
fixing bugs in the code snippets with the same functionality
but different implementations. In this case, the lower the differ-
ence, the better. The result from 1,282 method pairs is shown
as a boxplot in Figure 3. We can see that Gemini has lower
differences in Autorepairability scores compared to ChatGPT,
i.e., median scores of 0.10 compared to 0.15 respectively. This
means it can fix a higher number of bugs in code with the same
functionality but different implementations.

Therefore, to answer the first research question, Our study
demonstrates that, using the dataset of functionally equiv-
alent Java methods, Gemini outperforms ChatGPT and the
traditional APR tool kGenProg in terms of Autorepairability
with an average score of 0.69 compared to 0.44 by ChatGPT
and 0.45 by kGenProg. Moreover, Gemini also outperforms

TABLE II
AUTOREPAIRABILITY SCORE OF EACH FUNCTIONALITY

Functionality #Methods Gemini ChatGPT

Validation, Comparison, & Searching 66 0.92 0.22
Data Extraction & Comparison 34 0.89 0.25
Data Conversion 20 0.90 0.25
Encoding 7 0.89 0.16
Geographic & Math 3 0.85 0.27

ChatGPT in fixing bugs in the code with the same functionality
but different implementations.

B. Answering RQ2
Our manual analysis revealed that Gemini had higher Au-

torepairability scores than ChatGPT in 130 methods, while
ChatGPT had a higher score in only 2 methods (i.e., Au-
torepairability score difference of the two LLMs on the same
method is more than 0.5). After reading and understanding
each method at the semantic level, we discovered five common
coding functionalities that create large differences in the
Autorepairability scores of ChatGPT and Gemini.

1. Geographic and Mathematical Operations: This func-
tionality group encompasses methods primarily focused on
geographic calculations and mathematical operations. These
methods are often utilized in tasks requiring precision in
mapping or spatial analysis, such as determining the correct
zone or calculating differences between geographical points.

2. Validation, Comparison, and Searching Opera-
tions: This functionality ensures data integrity by validating
formats, comparing values (e.g., greater than, less than, equal
to), and searching data structures for specific elements. It is
essential to verify data before processing to ensure accuracy.

3. Data Conversion Operations: This functionality focuses
on converting data between formats, such as transforming
bytes into integers. It is crucial in environments where binary
data needs to be interpreted or processed in human-readable
formats, enabling advanced data manipulation.

4. Data Extraction and Comparison Operations: This
functionality involves extracting key information from data
structures and comparing elements. It is vital for workflows
requiring precise data manipulation and integrity checks.

5. Encoding Operations: This functionality handles data
encoding by converting numerical values or bit sequences into



TABLE III
EXAMPLE JAVA METHODS WITH A LARGE DIFFERENCE IN AUTOREPAIRABILITY SCORES BY CHATGPT (C) AND GEMINI (G). CA AND GA STAND FOR

CHATGPT’S AND GEMINI’S AUTOREPAIRABILITY SCORES RESPECTIVELY

Method Name Mutant Gemini’s Solutions ChatGPT’s Solutions GA CA Difference (GA� CA)

getUTMLatitudeZoneLetter 99 97 41 0.98 0.41 0.57
isFormatValid 12 10 1 0.83 0.08 0.75
byte2int 23 23 10 1.00 0.43 0.57
getKeyValues 11 9 1 0.82 0.09 0.73
getBase64Char 12 10 3 0.83 0.25 0.58

character representations using Base64 encoding. It is critical
for data serialization, secure transmission, and storage.

Table II shows the average Autorepairability scores of
ChatGPT and Gemini across the five functionalities. We can
see that the largest group of methods is Validation, Compari-
son, and Searching operations with 66 methods, followed by
Data Extraction and Comparison operations (34), and Data
Conversion operations (20). Among these five functionalities,
the average Autorepairability scores of Gemini are higher than
ChatGPT ranging from 0.85 to 0.92, compared to 0.16 to 0.27.

Additionally, we show examples of the manual anal-
ysis results in Table III. We can see that for the 5
methods that perform the five identified functionalities,
getUTMLatitudeZoneLetter (Geographic and Mathe-
matical Operations), isFormatValid (Validation, Compari-
son, and Searching Operations), byte2int (Data Conversion
Operations), getKeyValues (Data Extraction and Com-
parison), getBase64Char (Encoding Operations), Gemini
offers a large gap of Autorepairability scores compared to
ChatGPT in these five methods. On the other hand, ChatGPT
demonstrated superior Autorepairability in only two methods
with Data Conversion operations involving bytes with slight
variations. The methods where ChatGPT excelled involved
converting a string, particularly an IP address, into bytes.

To answer RQ2, based on the investigation, we found five
functionalities that are better repaired using Gemini com-
pared to ChatGPT. These functionalities include Geographic
and Mathematical Operations, Validation, Comparison, and
Searching Operations, and Data Conversion Operations.

V. THREATS TO VALIDITY

Internal Validity: The manual investigation of function-
ality, conducted by a single individual, introduces potential
sources of human error, experiences, and biases which can
affect the consistency and reliability of the findings. Addition-
ally, the prompts used to interact with LLMs play a critical
role in shaping the responses and may affect the validity of
the results. External Validity: The results presented in this
paper are only limited to the Higo et al.’s dataset [12] and
may not be generalized to other datasets. Second, LLMs like
ChatGPT and Gemini exist in different versions, each with its
own set of capabilities. Consequently, the results obtained in
this study may not be entirely representative of other LLMs
or other versions of Gemini and ChatGPT.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the Autorepairability of two widely
used LLMs, ChatGPT and Gemini, on a dataset of 1,282
functionality-equivalent Java methods. We found that Gemini
outperforms ChatGPT in fixing bugs based on the generated
mutants. We also identified five functionalities for which
Gemini largely outperforms ChatGPT. For future work, we
plan to strengthen the study by (1) including more LLMs
such as Llama, Claude, and other open-source LLMs, and (2)
repeating the experiment with more datasets, especially real-
world software projects, to increase the generalizability of the
findings and applicability of the Autorepairability metric in
practical scenarios, (3) performing a comparative analysis of
Autorepairabitliy scores across different datasets which could
reveal trends and insights that are not apparent in a single
dataset. We believe that the early results shown in this paper
are beneficial for future studies on using LLMs as APR tools.
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