Extract Method Refactoring in C# with Lambda Expression

Takuto Kawamoto Yoshiki Higo

The University of Osaka, Japan

Code Reuse

The practice of using existing code fragments in
other contexts.

Good Approaches: Extract Method, Inheritance,...

Good Maintainability
Complicated Work, Risk of Bugs Being Introduced

Bad Approach: Copy and Paste

Fast, Easy
Occurrence of Code Clones, Reduced maintainability

Combined Approach

o > > [

Refined
Source Code

Automated
Extract Method Refactoring

Code Reuse using
Copy and Paste

Developers can focus on simple implementation,
while the system handles the removal of code clone.

Target Code Clone

- There are some gaps between the code fragments.
- The gap may span multiple statements.

Motivations

Our Automated Refactoring Steps

1. Statement Mapping

2. Variable Mapping

3. Exit Block Checking

4. Argument Determination
5. Source Code Generation

Our process assesses if a clone pair is refactorable,
and if so, apply the refactoring.

Evaluation

1. Collect projects from GitHub

2. Detect code clones by NiCad

3. Apply the proposed automated refactoring
4. Verify behavior via existing tests

We collected 2,714 code clones from 28 C# projects.

How many code clones can be refactored?

Not Refactorable 1,699

Refactorable 1,015

How many cases passed the tests?

Passed 652 Not Passed 363

How many cases used a lambda expression?

Used 477 Not Used 175

Conclusion

In existing studies,

- The target programming language is limited to Java.
- Jump statements are not taken into account.

e.g. return, break, continue statement

intsum = 0;
foreach (var e in collection) {
sum+ e.Method() + 1;

retu m sum,

intsum = 0;
foreach (var e in collectlon) {
sum += e.Property * 5;

|f e.Flag) break;

f lambda(ref sum, e)) break

Extracted Method

Two patterns of
behavior

Code Clone

Int Subroutine<T> (T[] collection, Lambda lambda) {

Int sum = 0;
foreach (var e in collection) {

Emulates all
possible behaviors

- 30.2% of the discovered code clones

can be refactored.
- 73.2% of verified cases used lambda expressions.

Future Work

- Improve implementation
- Automate other Code Reuse approaches

return Subroutine(collection,
(ref sum, e) =>{
sum +=e.Method() +
return false;

};

1;

return Subroutine(collection,

(ref sum, e) =>{

sum += e.Property * 5;
If (e.Flag) return true;
return false;

};

Uses Method



	Slide 1

