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Abstract

“Extract Method” refactoring is a technique for consolidating code
clones. Parameterization approaches are used to extract a single
method from multiple code clones that contain differences. This ap-
proach parameterizes expressions and behaviors within a method. In
particular, behavior parameterization has been extensively studied
in Java programs, but little research has been conducted on other
programming languages.

Lambda expressions can be used to parameterize behaviors, but
the specifications of each programming language significantly affect
the applicability of this technique. Therefore, the optimal “Extract
Method” approach may vary depending on the programming lan-
guage.

In this study, we propose a C#-specific technique that uses lambda
expressions to analyze and consolidate code clones. We evaluated
our proposed method by applying it to code clones detected by the
NiCad clone detector and measuring how many of them could be
successfully consolidated.

In total, 2,217 clone pairs from 22 projects were included in our
evaluation. For the clone pairs determined to be refactorable, we also
attempted refactoring actually. The proposed approach determined
that 35.0% of all clone pairs were suitable for refactoring. Among
these, 28.9% were successfully refactored.
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1 INTRODUCTION

Code clones are similar code fragments within the source code. Pairs
of such code fragments are called clone pairs [5]. Refactoring code
clones reduces the size of the code base, helps prevent inconsistent
modifications to code clones [15], and lowers maintenance costs [8].

“Extract Method” is arefactoring technique that consolidates code
clones into a single method [2]. Since clones often contain minor
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differences, this technique parameterizes the differing portions to
unify the similar fragments [14].

When differences occur at the statement level, expression parame-
terization may be insufficient to extract them. This is because expres-
sions are smaller units than statements. One approach to dealing with
statement-level differences is to move the differing statements out-
side the consolidated code fragment. However, this reordering can
alter program behavior due to side effects, requiring careful analysis
to ensure correctness [9]. Previous studies have investigated the fea-
sibility of the Extract Method refactoring through statement reorder-
ing and expression parameterization, using data flow analysis [9].

Some code clones cannot be consolidated simply by reordering
statements. Alternatively, refactoring approaches that avoid state-
ment reordering may instead parameterize the statements them-
selves. Parameterization of statements is called behavior parameter-
ization.

Parameterized expressions are evaluated when the extracted
method is invoked, which may alter the original timing of execu-
tion [10]. In contrast, parameterized behavior does not change the
execution order. Lambda expressions are used to parameterize behav-
iors. Language-specific features significantly affect how behavior can
be parameterized using lambda expressions. Existing research [10]
has examined behavior parameterization using lambda expressions
in Java. However, it has not addressed its applicability to other pro-
gramming languages.

This study proposes techniques for behavior parameterization
using lambda expressions in C#. Using our proposed method, we
analyzed 2,217 clone pairs collected from 22 projects on GitHub
to assess their refactorability and performed refactoring on those
deemed suitable.

The contributions of this study are as follows:

e We provide useful techniques for Extract Method refactoring
based on behavior parameterization.

e We demonstrate the effectiveness of behavior parameteriza-
tion in Extract Method refactoring. Our results suggest that
it broadens the range of code clones that are refactorable.

This paper is organized as follows: Section 2 introduces back-
ground and preparatory concepts for Extract Method refactoring.
Section 3 presents the proposed approach. Section 4 describes the
evaluation and discusses the results. Section 5 discusses the results.
Section 6 considers threats to the validity of the study. Section 7
summarizes the conclusions.
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2 PREPARATION
2.1 Code clone

Code clones are similar code fragments within the source code. Pairs
of code fragments that are similar to each other are called clone
pairs [5]. Inconsistent changes between code clones can result in
missed updates, potentially leading to bugs [16]. Based on their
degree of similarity, code clones are classified into four types [14].

Type-1 Thecode fragmentsare entirely identical except for the changes
that may exist in whitespace and comments.

Type-2 The structure of the code fragments is the same, but the iden-
tifier names, types, whitespace, and comments may differ.

Type-3 In addition to changes in identifier names, types, whitespace,
and comments, some statements may have been modified or
deleted, and others may have been newly added.

Type-4 The code fragments differ syntactically, but are semantically
equivalent.

2.2 Refactoring code clones

The “Extract Method” refactoring is used to consolidate code clones
into a single method. Parameters can be introduced to apply the
“Extract Method” refactoring to Type-1 and Type-2 code clones [13].
The parameters are evaluated when the extracted method is called,
which may differ from the timing in the original source code. If the
parameterized expressions include method calls or object instantia-
tions, which may have side effects, the difference in evaluation order
may affect the program’s behavior [10].

Prior studies have found that most syntactically similar code
clones are Type-2 or Type-3, while Type-1 clones are relatively
rare [9]. Therefore, refactoring techniques that can consolidate Type-
2 and Type-3 code clones play an important role.

“Extract
Method” with behavior parameterization

2.3

Some code clones cannot be consolidated into a single method, even
with expression parameterization. Figure 1 shows such an example.
In these code fragments, the highlighted parts differ, which classifies
them as Type-3 code clones.

These code fragments cannot be consolidated into a single method
with expression parameterization. They cannot be parameterized
because the differing parts are statements rather than expressions. A
combined behavior and expression parameterization approach has
been proposed [10]. Function objects, such as lambda expressions, de-
fer evaluation until runtime, thereby preserving program behavior.

In some programming languages, lambda expressions can cap-
ture variables and functions from the scope in which the code clone
appears. For example, lambda expressions can be used for behav-
ior parameterization in Java, C#, and Python. In JavaScript, arrow
functions serve the same purpose. For simplicity, we collectively
refer to such function objects, including arrow functions, as lambda
expressions throughout this study.

Figure 2 shows an example of method refactoring using behavior
parameterization, based on the code in Figure 1. The common parts
between the code fragments are highlighted in orange. Furthermore,
the differing parts are highlighted in distinct colors. In both code
fragments, the original code has been rewritten to call the newly
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Figure 1: Examples difficult to extract via expression param-
eterization

Subroutine("Path", (line) => {

DE

Subroutine("OtherPath", (line) => {

DR

Figure 2: Example of refactoring Figure 1

generated method Subroutine, where the second argument is a
lambda expression representing the differing parts of the original
source code. The definition of Subroutine is shown in Figure 3. The
definition contains the common parts of both code fragments and
invokes to the lambda expressions passed as arguments to replace
the differing parts.

The lambda expression may be executed multiple times during
a single run of the code fragment, outputting a string to the console
each time. This behavior cannot be achieved with simple expression
parameterization.

Previous research [10] proposed a technique for “Extract Method”
refactoring using lambda expressions in Java. However, this tech-
nique cannot be directly applied to code clones in other programming
languages. This is because the proposed technique is specific to the
Java language. For example, this technique accounts for checked
exceptions and final variables [12], both of which are not present in
C#. Instead, C# includes features such as properties, which require
careful consideration when performing expression parameterization.
According to arecent review [11], apart from the technique proposed
for Java, no other refactoring techniques using lambda expressions
have been proposed. Therefore, this study proposes a technique for
“Extract Method” refactoring using lambda expressions in C#. Ad-
ditionally, we examine the applicability of the proposed technique
to other programming languages.

For simplicity, we refer to “Extract Method” refactoring using
behavior parameterization simply as “Extract Method” refactoring,
and to the extracted method as a subroutine.
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delegate void LambdaType(string v);
void Subroutine(string v1, LambdaType lambdal) {
StreamReader reader = new StreamReader(v1);
while (reader.Peek() !'=-1) {
string line = reader.ReadLine();
lambdal.Invoke(line);

reader.Close();

Figure 3: Method consolidated with Figure 2

3 OURAPPROACH

3.1 Overview

Our approach takes the source code and a Type-1, Type-2, or Type-
3 clone pair as input, and applies “Extract Method” refactoring to
produce the refactored source code. The code fragments in the clone
pair are limited to sequences of one or more consecutive statements.
Figure 4 provides an overview of our approach. The approachiden-
tifies the portions of the given clone pair that should be parameterized
using lambda expressions and then generates a subroutine. Specif-
ically, the subroutine generation process is divided into five steps:

(1) Statement mapping,

(2) Variable mapping,

(3) Exit block checking,

(4) Argument determination, and
(5) Source code generation.

In the remainder of this section, we explain each step in detail.

3.2 Statement mapping

First, this approach maps the statements in the input clone pair. It
scans the code fragments from the beginning and identifies matching
statement pairs, while ignoring differences in identifiers.

Through this mapping, the statements in each fragment are clas-
sified as either matching or non-matching with those in the other
fragment. During code generation, non-matching statements are
parameterized using lambda expressions, while matching ones are
directly included in the subroutine.

We apply the Longest Common Subsequence (LCS) algorithm to
perform this mapping. In our approach, the LCS algorithm is used to
obtain the longest common subsequence of statements, rather than
substrings.

Typically, the LCS algorithm is applied to strings to find the longest
common subsequence of characters. It also requires a comparison
function for the sequence elements. When applied to strings, these el-
ements are characters, and thus a simple character-level comparison
suffices. However, in our case, the elements are program statements,
which require a comparison function capable of evaluating their sim-
ilarity. The following describes the statement comparison function
used in our approach.

3.2.1 Statement comparator. The LCS algorithm requires a com-
parison function to determine equivalence. We consider statements
equivalent if they are so similar that they do not require behavior
parameterization. Our approach uses a comparator that considers
statements to match if they differ only in whitespace, type names,
or identifiers.
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Ultimately, statement comparison is performed using a simple
string comparison. To allow for specific differences, the statements
to be compared are normalized. In other words, the comparison
function normalizes both statements and then simply compares the
normalized versions.

Whitespace and comments can easily be ignored in the abstract
syntax tree obtained from the source code. Furthermore, for identifier
normalization, our approach masks identifier names. For example,
constants and variables are masked because they can often be pa-
rameterized.

There are constraints on expressions that can be parameterized,
so identifier normalization must be handled carefully. Expressions
in the source code are further categorized into finer-grained types,
and some grammar rules restrict which types can be used in specific
contexts. For example, expressions used in case labels of switch
statements must be constant expressions whose values are deter-
mined at compile time. Since the parameters are clearly not constant
expressions, the identifier names appearing within the switch case
labels must not be masked. We conducted a detailed analysis of the
grammar rules of C# and restricted identifier parameterization to
those that meet the following criteria:

(1) Member identifiers,

(2) Type identifiers,

(3) Method and constructor identifiers,

(4) Identifiers in case labels of switch statements, and
(5) Identifiers used in pattern matching.

3.2.2  Nested statements matching. For statements containing multi-
ple inner statements—such as for or while loops—simply determin-
ing whether they match is not sufficient. We refer to the statements
that contain inner statements as nested statements.

Partial behavior parameterization may be desirable within a for
loop. For example, most of the inner statements of a for loop may
match, while some inner statements may differ.

For nested statements, the comparison is first performed by ig-
noring their inner statements. The LCS algorithm is then applied
to the inner statement sequences of the nested statements that are
determined to match. This process of applying the LCS algorithm
is repeated recursively according to the nesting depth.

The way inner statements are ignored varies depending on the
type of statement. For example, in the case of an if statement, only
the conditional expression is compared. For a for statement, the
statement comparator ignores inner statements and considers only
the loop variable declaration, the loop continuation condition, and
the update statement.

3.3 Variable mapping

Second, in expression parameterization, we map corresponding ex-
pressions within matching statements. These expressions may in-
clude local variables, members, fields, and literals. However, in this
study, we exclude expressions that contain operators.

From the matching statements identified in the statement map-
ping step, we extract parameterizable expressions that occur at the
same positions in both statements. Our approach then assigns pa-
rameters to these expression pairs. Identical expression pairs share
the same parameter, while distinct pairs receive different parameters.
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Figure 4: Overview of our approach

List<int> list = [1, 2, 31;

[S RIS

List<int> list = [1, 2, 3];
Subroutine<List<int>>(list, (c) => {

DR

HashSet<int> set = [4, 3, 6];

[T

HashSet<int> set = [4, 3, 6];
Subroutine<HashSet<int>>(set, (c) => {

DE

Figure 5: Code clones requiring generics

Variables that can be reassigned, such as the left-hand side of an
assignment statement, should be parameterized by reference.

If a parameter is passed to a subroutine by value, any changes
made to it inside the subroutine are not preserved after it exits. Pa-
rameters that are assigned values within the subroutine should be
passed by reference.

3.3.1 Parameter typing. Each parameter must have a type. If both
expressions being parameterized share the same type, the parameter
should also use this type. If the expressions have different types,
we check whether there is a common parent type that can safely
be used for both. If such a type exists, the parameter type is set to
this common parent type. Otherwise, our approach considers using
generics as an alternative.

A simple example of a code clone requiring generics is shown in
Figure 5. The Insert and RemoveAt methods in the code can be used
only with lists, whereas the Overlaps method is only applicable to
sets. The Add method is used with both lists and sets, and is defined
in the common parent interface ICollection<int>.

In the subroutine definition shown in Figure 7, only methods
compatible with ICollection<int> are used. In contrast, the caller
in Figure 6 uses methods defined for their respective, more specific
types. Generics are useful when different types need to be used at
each call site. To enable the use of methods defined in a common
parent class within the subroutine, the generic variable must be
constrained to inherit the required type.

If no suitable common parent type exists and generics cannot be
used, an error is raised. In this case, the refactoring is terminated.

3.4 Exitblock checking

Handling statements that alter control flow, such as break state-
ments, poses a significant challenge for the Extract Method refactor-
ing. In a Control Flow Graph, which represents program execution
paths as a directed graph, the final node to be executed is called an
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Figure 6: Example of refactoring Figure 5

delegate void LambdaType<T>(T v);
void Subroutine<T>(T collection
, LambdaType<T> lambda) where T : ICollection<int> {

lambda.Invoke(collection);

Figure 7: Method consolidated with Figure 6

int total = 0;

int max = 0;

Figure 8: Code clones containing jump statements

exit block. This study defines an exit block as either the last exe-
cutable statement in a code fragment or the end of the code fragment
if control can reach it. In C#, such last executable statements in-
clude break, continue, return, and goto statements. Different exit
blocks lead to distinct subsequent behaviors after exiting the code
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int total = 0;
Subroutine((number) => {

DB

int max = 0;
Subroutine((number) => {

DE

Figure 9: Example of refactoring Figure 8

delegate bool LambdaType(int number);
void Subroutine(string path, LambdaType lambda) {

if (lambda.Invoke(number)) break;

3

Figure 10: Method consolidated with Figure 9

fragment. Crucially, a code fragment with a single exit block cannot
emulate the behavior of one with multiple exit blocks.

A function call statement has only a single exit block, whereas
a code fragment composed of several statements may contain mul-
tiple exit blocks. The Extract Method refactoring replaces a code
fragment with a function call. A code fragment with multiple exit
blocks cannot be replaced by a simple function call. Therefore, we
emulate the behavior of multiple exit blocks by carefully designing
the subroutine’s return value and its handling at the call site.

For simplicity, break, continue, and return statements are con-
sidered the end of code fragments in this study. We excluded the goto
statement from our analysis. Since goto statements can jump to ar-
bitrary locations and make control flow difficult to track, we omitted
them. A more detailed discussion on the impact of including goto is
discussed later. This execlusion is justified because the use of goto
is widely considered poor practice that reduces code readability [4].

Specifically, the subroutine’s return value indicates the type of
exit block to the call site. The call site of the subroutine inserts an if
statement after the function call to execute the appropriate behav-
ior for each exit block, thereby emulating the original control flow
containing multiple exit blocks. To ensure that only necessary exit
blocks are emulated, it is essential to check the exit blocks included in
the code fragments of the clone pair and in parameterized behavior.

Figure 8 illustrates an example requiring the emulation of exit
block behavior. The matching code segments are highlighted in or-
ange, while the behaviors parameterized by a lambda expression
are highlighted in blue and green. This parameterized behavior con-
tains a break statement, resulting in multiple exit blocks. Figure 9
shows the source code after refactoring, and Figure 10 presents the
definition of the extracted subroutine. Within the parameterized
statement, the break statement is replaced by a return statement
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that returns a Boolean value. This return value informs the call site
which behavior to emulate.

The extracted method is similar to the common higher-order func-
tion reduce. However, unlike reduce, this method can terminate the
loop prematurely. Our approach provides developers with insights
into refactoring using higher-order functions.

This approach can be a bit tricky to apply in some programming
languages. One notable programming language is Java. Java supports
labeled continue and break statements, which can result in multiple
possible target locations for control transfer. To accurately emulate
the behavior of continue and break statements, it is necessary to
take labels into account. JavaScript also has similar characteristics. A
similar problem occurs with the goto statement, which, like labeled
statements, enables transfers to multiple destinations. This is why
our research does not consider the goto statement.

3.5 Argument determination

Arguments must be appropriately passed to both subroutines and
lambda expressions used for behavior parameterization.

If a local variable declared in a subroutine is accessed within a
parameterized lambda expression, it must be passed as an argument
from the subroutine to the lambda expression. Additionally, the
subroutine must receive the lambda expression to be invoked as an
argument.

When a lambda expression is passed as an argument for behav-
ior parameterization, its type must also be explicitly specified. In
C#, delegate types, which are used to reference functions, must be
declared in advance.

3.6 Source code generation

The subroutine is generated using one of the code fragments in the
clone pair as a template. In our approach, the static class defining the
subroutine is placed in the global namespace. To define this static
class, a new source file is added to the project.

In addition to the static class, this source file defines the delegate
type for lambda expressions and an enumeration representing exit
block types. Both types are declared with the internal access mod-
ifier. The internal modifier allows access only within the same
project. Compared to the public modifier, internal supports more
refactoring scenarios because it avoids the need to expose refactored
components to external projects.

3.7 Related characteristics of C#

Our approach relies significantly on the specifications of the pro-
gramming language. This section outlines the C# language features
most pertinent to our approach.

3.7.1  Parameter modifier. In C#, parameters are generally passed
by value. In this case, a function cannot reassign a value to the caller’s
variable through a parameter. However, by adding the ref modifier
to a parameter, the function can pass it by reference, allowing it to
modify the caller’s variable.

The ref modifier can only be applied to variables that have already
been initialized. If a variable is uninitialized, the out modifier can be
used instead of ref, enabling the function to initialize the variable
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within its body. Our approach uses appropriate parameter modi-
fiers to create subroutines that reassign parameter values without
significantly changing the original code structure.

3.7.2  Restriction of parameter modifier. C# supports asynchronous
methods and iterator methods, also known as generators in other lan-
guages. However, parameter modifiers cannot be used in these meth-
ods.! Therefore, this study excludes from refactoring any code clones
that appear in contexts where parameter modifiers cannot be used.

3.7.3  Property. A property is a class or structure member consist-
ing of a getter, a setter, or both. Since properties are accessed the
same way as fields or variables, it is impossible to distinguish be-
tween property access and field or variable access based solely on
static syntactic analysis. However, unlike fields and other members,
properties cannot be passed by reference to functions using param-
eter modifiers. Nevertheless, to achieve pass-by-reference behavior,
getter and setter functions must be passed as delegates.

3.8 Integration with code clone detector

The proposed approach takes a clone pair as input. The suitabil-
ity of the clone pair for Extract Method refactoring is not verified
beforehand. The proposed approach must determine whether the
given clone pair is suitable for refactoring, either before or during
the process. During the process, the approach may terminate with
an error. Such an error can be interpreted as an indication that the
clone pair is unsuitable for refactoring.

The reasons why a clone pair may be deemed unsuitable are as
follows:

(1) Cross-project code clones,

(2) No matching statements,

(3) Variable type mismatch,

(4) The required ref or out modifiers cannot be added,
(5) Code clones containing method calls,

(6) Code clones containing yield, async, await, and
(7) Source code analysis failed.

(1) indicates that no matching statements could be found during
statement mapping. (2) indicates that the parameter types could
not be determined during variable mapping. (3) indicates that ref
or out modifiers are required in variable mapping but cannot be
applied. Sometimes, ref and out modifiers cannot be used inside
lambda expressions. (4) indicates that the code clone contains an
instance method call. Since the subroutine is defined in a separate
class, the instance methods from the original class cannot be invoked
directly. (5) indicates that the code clones are located within iterator
methods or asynchronous methods. This study excludes code clones

within iterator or asynchronous methods from refactoring targets.

(6) represents other abnormal cases, such as broken projects that
could not be correctly analyzed.

In addition to performing refactoring, the proposed approach
may report one of the errors listed in (1) through (6). In particular,
detecting errors (1) through (5) indicates that the clone pair is either
out of scope or not suitable for refactoring.

!As of the latest C# version released in 2025, parameter modifiers are allowed in
asynchronous and iterator methods under certain conditions.
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4 EVALUATION
4.1 Procedure

To evaluate the accuracy and applicability of the proposed subrou-
tine generator, we applied it to clone pairs extracted from real-world
software projects. We assessed the correctness of the generated
subroutines by comparing project test results before and after ap-
plying the subroutine generator to the input clone pairs. If the test
results were identical, we determined that the project’s behavior
was preserved after subroutine generation.

The input code clones for the subroutine generator were obtained
from the NiCad code clone detector [3], which detects Type-1, Type-
2, and Type-3 code clones. We collected 22 C# projects from GitHub
that include tests and evaluated 2,217 clone pairs detected by NiCad.

However, this simple comparison is not sufficient. If the refac-
tored portions of code are not executed by any test, the behavior may
appear unchanged even when the refactoring is incorrect. To address
this, we intentionally applied incorrect refactoring and compared the
resulting test outcomes. If the test results before and after applying
the incorrect refactoring differed, we determined that the affected
code was exercised by the tests. From this point onward, we refer
to the subroutine generator that applies incorrect refactoring as the
incorrect subroutine generator. The only difference between the sub-
routine generator and the incorrect subroutine generator is the func-
tionbody of the generated subroutines. Specifically, the incorrect sub-
routine generator generates subroutines that throw exceptions. Both
generators output the same source code, except for the function body.
The evaluation procedure using the incorrect subroutine generator is
described below. The authors prepared three versions of the project:

(1) original project,
(2) project after applying the subroutine generator, and
(3) project after applying the incorrect subroutine generator.

We ran tests for each version and compared their test results. If the
test results of the original project differed from those of the project
with the incorrect subroutine generator, we assumed that the refac-
tored code had been run by the tests. If those results matched the ones
from the project with the correct subroutine generator, we concluded
that the subroutine generator correctly preserved the program’s be-
havior. To eliminate non-deterministic test results, we ran each test
four times and confirmed no variations in the test outcomes.

4.2 Results

Table 1 shows the classification of code clones produced by our pro-
posed approach. Items (1) to (7) correspond to the error categories
described in Section 3.8. 35.0% of the total, 775 to be exact, clone pairs
were determined to be refactorable, and were actually refactored.
They were then evaluated using the procedure described earlier.
The evaluation results for each clone pair are shown in Table 2. The
clone pairs were classified into three categories based on build suc-
cessand test results. “Refactored successfully” refers to clone pairs for
which the refactored source code built successfully. The correctness
of the refactoring was also verified through testing. “Refactored, not
tested” refers to clone pairs where the refactored source code built
successfully. However, there were no tests covering the refactored
portions, so the correctness of the refactoring could not be confirmed.
“Failed to refactor” refers to clone pairs for which refactoring failed.
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Among the refactorable clone pairs, 32.1% had refactored source
code that both built successfully and passed the tests. In addition,
61.0% of the refactorable clone pairs built successfully.

5 DISCUSSION
5.1 Why do code clone statements not match?

Table 1 shows thatin 38.0% of the clone pairs, no matching statements
were found. Since clone pairs consist of similar groups of statements,
the absence of matching statements may seem surprising. NiCad de-
tects Type-2 code clones, which are identified by ignoring differences
in identifier names. NiCad disregards identifier name differences re-
gardless of the type of identifier. In contrast, our approach selectively
ignores identifier name differences based on the type of identifier.

In practice, some clone pairs included switch statements with
differing case labels. Such differences can explain the absence of
matching statements.

Additionally, we observed cases where matches inside nested
constructs were missed. In this study, for statements were treated
as one of the constructs that form nested structures. A for statement
was considered a match only when its loop variable definition and
continuation condition were identical. If the code fragment consisted
solely of for statements and there were slight differences in their
continuation conditions, no match was detected.

An example where refactoring was not possible due to minor dif-
ferences in the continuation conditions of for statements is shown
in Figure 11. In this example, all statements inside the for loops
match except for differences in identifier names. However, the loop
variable definitions and continuation conditions differ significantly,
making it difficult to consolidate the code fragments into a single
method through expression parameterization. Although only the
highlighted line containing the for loop condition differs, the rest
of the source code is nearly identical. Nonetheless, the entire code
fragment cannot be directly extracted as a single method. While ex-
tracting the entire code fragment as a method is not straightforward,
it would be possible to extract only the inner part of the for loop.

Table 1: Classification Results

Category Code clones
Refactorable code clones 775
(1) No matching statements 842
(2) Variable type mismatch 46
(3) ref, out modifiers cannot be added 100
(4) Code clones containing method calls 119
(5) Code clones containing yield, async, await 293
(6) Source code analysis failed 42
Total 2,217

Table 2: Evaluation Results

Category Code clones
Refactored successfully 249
Refactored, not tested 224
Failed to refactor 302

Total 775
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Figure 11: Example of code clone with nested syntax

As a possible countermeasure, we could consider applying the Ex-
tract Method refactoring within the nested structure itself. This is ap-
plicable when the surrounding nested constructs do not match. How-
ever, attempting to refactor every possible combination of nested
structures within a code fragment results in exponential growth
in computational complexity. This complexity increases with the
number of nested constructs.

Another possible improvement is to implement more flexible
expression parameterization to absorb larger differences in loop
variable declarations and continuation conditions.

5.2 Why does refactoring fail?

Table 2 shows that refactoring failed in 39.0% of the refactorable code
clones. One factor contributing to refactoring failure is the use of
private classes. The class that defines the subroutine is external to
the original classes that contain the code clones. Therefore, it cannot
access private classes used in the original source code. The proposed
approach does not take into account the accessibility of classes used
within the code fragments.

To solve this problem, it is effective to check the accessibility of the
used classes and members. Another solution is to consider changing
the location where the subroutine is defined. Defining the subroutine
in the class that contains the code clone can resolve accessibility
issues and avoid problems related to instance method calls. However,

Table 3: Evaluation Results with Behavior Parameterization

Category Code clones
Refactored successfully 175
Refactored, not tested 34
Total 209
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this approach cannot be used when the code fragments in the clone
pair belong to different classes.

Additionally, relying on interfaces can sometimes resolve accessi-
bility problems. If there is a public interface with a private implemen-
tation, using the interface instead of the implementation can avoid
accessibility issues. This measure is effective if using the interface
sufficiently replicates the original behavior. In our variable mapping,
our approach selected the most specific common class that closely
matches the actual variable types. To address accessibility issues, the
parameter type should be selected as the most specific common class
that is publicly accessible and closest to the actual variable types.

5.3 How effective is behavior parameterization?

The proposed approach performs behavior parameterization only
when the clone pair contains statements that differ. We investigated
how many clone pairs were refactored using behavior parameteriza-
tion. Table 3 shows how many clone pairs were refactored using be-
havior parameterization. Among the refactorable clone pairs, 27.0%
were successfully refactored using behavior parameterization. This
result demonstrates that behavior parameterization is effective in
a substantial number of cases.

6 THREATS TO VALIDITY

There are two primary threats to the validity of this study.

Internal validity may be threatened by the evaluation method.
To verify the correctness of refactoring, we compared test results.
The quality of the tests affects the reliability of the results. Since test
results are not always stable, there is a risk of coincidental matches
or mismatches. To eliminate unstable tests, we ran the tests multiple
times. Additionally, to avoid false negatives from tests that do not
cover the refactored portions, we introduced an incorrect subroutine
generator. We then evaluated whether the tests could detect the
incorrect behavior.

External validity may be threatened by the quality of the evalu-
ation data. The results of the evaluation are affected by the quality
of the code clone pairs used for testing. To reduce bias in clone pair
quality, we conducted evaluations across 22 different projects. Fur-
thermore, the quality of the clone pairs also depends on the code clone
detector used. In this study, we used NiCad [3]. Other code clone
detectors capable of detecting clones in C# include CCFinder [6] and
Simian [1]. Future studies are encouraged to consider using different
code clone detectors or conducting validation on different projects.

7 CONCLUSION

In this study, we proposed and implemented an Extract Method
refactoring approach for C#, which utilizes behavior parameteriza-
tion. Furthermore, we evaluated our approach using projects that
included test cases. We applied the proposed refactoring and analysis
approach to 2,217 clone pairs detected from 22 C# projects. We then
verified the correctness of the refactoring for the clone pairs that
were successfully refactored.

The proposed approach determined that 35.0% of all clone pairs
were suitable for refactoring.

Furthermore, 61.0% of the refactorable projects built successfully.
For 32.1% of these projects, the provided tests passed, confirming the
behavioral correctness. In the remaining 28.9% of cases, behavioral

Kawamoto et al.

correctness could not be confirmed because the test suite did not
cover the refactored source code.

In this study, we used the detection results from NiCad [3]. Future
work could investigate how the results differ when using other code
clone detectors. Variable names in both the subroutine and the caller
were generated mechanically using sequential numbering. Improv-
ing readability through variable name refactoring [7] is a promising
direction for future work.
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