
PyGress: Tool for Analyzing the Progression of
Code Proficiency in Python OSS Projects

Rujiphart Charatvaraphan*, Bunradar Chatchaiyadech*, Thitirat Sukijprasert*, Chaiyong Ragkhitwetsagul*,
Morakot Choetkiertikul*, Raula Gaikovina Kula†, Thanwadee Sunetnanta*, Kenichi Matsumoto‡

*Faculty of Information and Communication Technology, Mahidol University, Thailand
†Graduate School of Information Science and Technology, The University of Osaka, Japan
‡Graduate School of Information Science, Nara Institute of Science and Technology, Japan

Abstract—Assessing developer proficiency in open-source soft-
ware (OSS) projects is essential for understanding project dy-
namics, especially for expertise. This paper presents “PyGress”,
a web-based tool designed to automatically evaluate and visualize
Python code proficiency using pycefr, a Python code proficiency
analyzer. By submitting a GitHub repository link, the system
extracts commit histories, analyzes source code proficiency across
CEFR-aligned levels (A1–C2), and generates visual summaries
of individual and project-wide proficiency. The PyGress tool
visualizes per-contributor proficiency distribution and tracks
project code proficiency progression over time. PyGress offers
an interactive way to explore contributor coding levels in Python
OSS repositories. The video demonstration of the PyGress tool
can be found at https://youtu.be/hxoeK-ggcWk, and the source
code of the tool is publicly available at https://github.com/
MUICT-SERU/PyGress.

Index Terms—Code proficiency, Python, OSS

I. INTRODUCTION
Python, known for its ease of use and adaptability to

various domains, stands as a versatile and most popular
language [1] with a plethora of popular open-source soft-
ware (OSS) projects. Python’s simplicity in coding empowers
developers to swiftly prototype and construct applications.
What sets Python apart is its rich ecosystem, encompassing a
multitude of OSS libraries that cater to diverse needs. Libraries
such as NumPy, Pandas, and Scikit-learn are pivotal in the
fields of data science and machine learning. Matplotlib, Plotly,
and Seaborn are used for static plots and data representations.

OSS projects thrive on contributions from developers with
diverse backgrounds and varying levels of expertise. Under-
standing contributors’ proficiency can help uncover patterns
of project success, contributor retention, and growth. A dis-
tinctive characteristic of OSS is its emphasis on transparency.
In contrast to commercial projects, open-source initiatives
embrace a collaborative development model, distributed con-
trol, and a diverse contributor base. The survival of open-
source projects hinges on factors like robust community sup-
port, dedicated maintainer commitment, adequate funding,
and ongoing relevance. The bus factor [2], representing a
project’s vulnerability to knowledge loss caused by losing
key project contributors, is also a concern in OSS, urging
practices such as documentation, diverse contributions, and
shared responsibilities. Thus, OSS maintainers must focus

Fig. 1: Current state-of-the-art only depicts contributions over
time. This example is from the Django-silk Project

on fostering a welcoming community for new and existing
contributors, and ensuring the long-term sustainability of
the project, often within a volunteer-based environment with
flexible deadlines [3].

To effectively ensure the expertise required to maintain
an OSS project, our key idea lies in assessing developers’
proficiency, i.e., an individual’s programming skills. This
encompasses the capability to not only write code but also
understand and effectively debug it. By knowing the con-
tributor’s proficiency, maintainers can guide and mentor new
contributors, which includes delegating suitable coding tasks
for them [3].

Currently, there is a noticeable gap in the Python OSS
ecosystem—there is no automated way available for mea-
suring and visualizing proficiency levels over time, which is
crucial for tracking contributions in OSS projects. OSS project
maintainers lack a reliable method to differentiate contributors
based on their code proficiencies, hindering the ability to
understand the skill distribution within the teams. For example,
Figure 1 shows the contributors and their code contributions
to the django-silk1 project, a live profiling and inspection tool
for the Django framework, on GitHub. With this information,
the maintainers of the project only know the amount of
code committed by each contributor over time. However, this
contribution summary merely shows the frequency of the

1https://github.com/jazzband/django-silk

ar
X

iv
:2

51
1.

05
82

1v
1 

 [
cs

.S
E

] 
 8

 N
ov

 2
02

5

https://youtu.be/hxoeK-ggcWk
https://github.com/MUICT-SERU/PyGress
https://github.com/MUICT-SERU/PyGress
https://arxiv.org/abs/2511.05821v1


commits, and the maintainers do not gain any insights into
the proficiency levels of such committed code.

To address this, we introduce PyGress, a web-based proto-
type tool for automated analysis and visualization of developer
proficiency in Python OSS projects. PyGress assesses Python
source code against the Common European Framework of
Reference (CEFR) [4] proficiency levels, ranging from A1
(basic) to C2 (proficient). Our automated tool accepts a GitHub
repository URL and evaluates Python code from each commit,
and generates visualizations that support both project-wide and
contributor-specific insights.

II. BACKGROUND
A. The Common European Framework of Reference for Lan-
guages (CEFR)

CEFR [4] is a globally recognized standard for evaluating
language proficiency, which categorizes language skills using
a six-level scale ranging from A1 (breakthrough or beginner),
A2 (waystage or elementary), B1 (threshold or intermediate),
B2 (vantage or upper intermediate), C1 (effective operational
proficiency or advanced), and C2 (mastery or proficiency).
This system simplifies the assessment of language competence
for educators, students, and others involved in language edu-
cation and testing. In addition, the CEFR also facilitates the
comparison of qualifications with other national examinations,
benefiting employers and academic institutions.
B. pycefr: Python Proficiency Level through Code Analysis

pycefr [5] is an automated tool to assess proficiency in
Python projects. It analyzes a given Python project and clas-
sifies Python constructs into one of the six levels mirroring
the CEFR framework. For example, an if and nested list
statements are classified as A1 and A2 (basic), respectively.
break and list comprehension are classified as B1 and B2
(intermediate). Lastly, the generator function and metaclass
are classified as C1 and C2 (proficient), respectively. We
adopt pycefr as a key component in PyGress to analyze the
proficiency of OSS developers and projects over multiple
commits.

III. PYGRESS: EVOLUTION OF CODE PROFICIENCY
PyGress enables the analysis of Python code proficiency

evolution within open-source projects. This is achieved by
examining the complete commit history of a given GitHub
repository. For each commit, the tool extracts the Python
source files and analyzes them using pycefr to determine
proficiency levels aligned with the six CEFR levels.

The steps PyGress uses to extract and aggregate the contrib-
utors’ proficiency scores of any Python projects are described
in Algorithm 1. First, PyGress collects all the commits in each
project and groups them by the committers (lines 4–8). Then,
it iterates through each committer, retrieves the commits, and
extracts all the changed Python files in that commit (lines
9–11). Next, PyGress extracts the file before and after the
commit (lines 12–13). The complete Python files before and
after the commit are required because pycefr works at the file

Algorithm 1 Extracting and Aggregating Contributor’s Profi-
ciency Scores
Input: project
Output: proficiencies
Procedure: ExtractContributorProficiencies
1: prof iciencies ← {}
2: committers ← {}
3: commits ← extract_commits(project)
4: for 𝑐𝑖 ∈ commits do
5: committer ← get_committer(ci)6: add_commits(committer, 𝑐𝑖)7: committers ∪ committer
8: end for
9: for committer ∈ committers do

10: for 𝑐𝑖 ∈ get_all_commits(committer) do
11: for 𝑓𝑖 ∈ changed_f iles(ci) do
12: before ← get_version(fi, ci−1)13: af ter ← 𝑓𝑖14: 𝑝𝑓𝑖 ,before ← pycefr(before)
15: 𝑝𝑓𝑖 ,af ter ← pycefr(af ter)
16: prof iciencycommitter,𝑐𝑖 ← 𝑝𝑓𝑖 ,af ter − 𝑝𝑓𝑖 ,before17: prof iciencies ∪ prof iciencycommitter,𝑐𝑖18: end for
19: end for
20: end for

level. Then, pycefr is executed by giving the before and after
versions of the same Python file, and the proficiency of the
code introduced in the commit is collected by computing the
differences between the proficiency scores of the after and
before versions (lines 14–16). Lastly, the derived proficiency
scores are aggregated into the set of project proficiencies over
all the commits (line 17).

In Figure 2, we illustrate further the process of analyzing
the proficiency of the code introduced in the commit, i.e.,
added proficiency scores. After getting the Python code before
and after the commit, PyGress subtracts the frequency of code
proficiency before the commit from the score after the commit,
in each level. For example, if the proficiency score ({A1, A2,
B1, B2, C1, C2}) of a Python file before a commit is {46, 41,
25, 14, 12, 3} and after the commit is {57, 49, 31, 12, 13, 8}.
Then, this commit introduces 38 new code constructs classified
into the six-CEFR levels as {11, 8, 6, 7, 1, 5} accordingly.
We discarded negative scores caused by code deletion, i.e.,
replaced them with 0, as we focus only on the added code.
This score is added to the pool of proficiency scores for that
contributor.

The concept of PyGress can be applied to other program-
ming languages by switching the code proficiency level from
pycefr to others (e.g., jscefr [6] for JavaScript).

IV. TOOL IMPLEMENTATION
A. System Architecture Design

From Figure 3, a user of PyGress gives a GitHub repository
URL to the tool. Then, PyGress analysis starts by first cloning
the given OSS project and passing it on to PyDriller [7],
a Python library designed for exploring Git repositories and
examining commit histories, to collect code change data based
on each commit. PyDriller is configured to extract code
changes in all Python files (.py extension) and commits data



Fig. 2: Approach for analyzing code proficiency changes

Fig. 3: System architecture of PyGress

from those projects, recording them into the code changes
database. Next, the pycefr tool is activated to extract the
proficiency scores. Lastly, PyGress returns the visualizations
of the proficiency data back to the users.
B. Implementation

PyGress follows a modular architecture that separates data
processing, visualization, and user interaction. Our design of
the PyGress system consists of three main modules:

1) Back-end Module: The backend performs the core pro-
cessing by employing PyDriller and pycefr to perform commit
data extraction and Python proficiency analysis tasks.

2) Front-end Module: A Flask-based web application en-
ables users to submit GitHub repository links and explore anal-
ysis results through a web browser. This module dynamically
loads the generated visualizations and shows them to the users.

3) Visualization Module: The front-end includes a visu-
alization module, which processes the analysis results to
generate interactive charts using Plotly. Two primary visual
representations are provided. First, spider charts, which depict
the distribution of proficiency levels for all contributors and
each individual contributor. Second, slider graphs, which illus-
trate code proficiency changes throughout the project timeline.
C. Examples of PyGress Visualizations

We chose the django-silk project as an example for the
visualization of PyGress. From Figure 4, the first spider chart
at the top shows the proficiency level of all the contributors
in the project. We can observe that most of the Python code
contributed to this project is at A1 and A2 proficiency levels,
followed by B1, and some of B2, C1, and C2. Looking at
the bottom chart of Figure 4, the duration where most of the
development activities occurred was during May–September
2014, when the project started. Most of the code committed
during that period was at the A1, A2, and B1 levels.

Fig. 4: django-silk: Aggregated proficiencies–project level

When investigating specifically at one contributor,
fbead4672 The result is as shown in Figure 5. We can see
from the spider chart that this contributor mostly contributed
code at levels A1 and A2. However, he or she also committed
some B1 and, importantly, C2, as well. This contributor
committed the code in March 2022. Thus, the part of the C2
code that they committed may need to be carefully maintained
since it may not be easy to understand for other contributors.

V. PRACTICAL APPLICATIONS
We applied PyGress to analyze the Python proficiency

of three OSS projects, django-silk, pandas-profiling3, and
pytest-ansible4. The result is shown in Table I. We can see
that the Python code in the three projects is mostly at the
level A1 and A2. Looking only at the high proficiency code
(i.e., C1 and C2) levels, we can observe that the django-silk
contributors mostly committed high proficiency code more at
the beginning of the project (2014–2017), potentially building
the core logic of the project. In contrast, the contributors of
pandas-profiling committed high proficiency code during the
later years of the project (2020–2023). For pytest-ansible,
there are not many high proficiency code constructs, and they
are committed evenly across all the years.

We further analyzed the contributors to find the one that
contributed the most proficient code (C1 and C2) to each of the
three projects, i.e., the most proficient contributor. The result is

2An automatically generated anonymized ID for preserving privacy. The
tool can be configured to show the actual contributor’s name or account name.

3https://github.com/pandas-profiling/pandas-profiling
4https://github.com/ansible/pytest-ansible



TABLE I: Python proficiency of 3 OSS projects
django-silk pandas-profiling pytest-ansible

Year A1 A2 B1 B2 C1 C2 A1 A2 B1 B2 C1 C2 A1 A2 B1 B2 C1 C2
2014 5,495 6,453 640 51 137 131
2015 773 962 81 10 14 31 83 120 5 37 1 1
2016 1,136 1,474 142 10 16 19 2,484 3,791 253 0 84 3 440 692 89 102 4 4
2017 1,081 1,406 128 14 40 38 1,719 2,375 183 0 46 0 28 57 8 6 2 3
2018 151 200 11 0 2 1 1,183 1,706 131 0 25 3 201 378 28 22 3 2
2019 495 634 49 6 14 13 1,041 1,459 133 48 23 7 72 141 20 1 1 2
2020 136 213 19 2 7 4 6,111 7,277 800 246 163 66 28 36 1 0 0 0
2021 1,853 2,899 197 18 73 35 4,898 5,964 721 111 203 37 243 422 46 13 3 5
2022 154 300 28 2 3 6 1,604 2,040 183 69 70 38
2023 81 126 5 0 1 2 1,410 1,957 150 25 42 43 326 511 64 20 6 2
2024 10 22 1 0 0 0 31 19 2 4 0 0 0 2 0 0 0 0
Total 11,365 14,689 1,301 113 307 280 20,481 26,588 2,556 503 656 197 1,421 2,359 261 201 20 19

Fig. 5: django-silk: Individual contributor’s proficiency

TABLE II: Contributions of the most proficient contributor of
each project

Project Contributor Year C1 C2
django-silk e721d399 2014 133 127

2015 12 29

pandas-profiling edf72917
2019 20 7
2020 92 42
2021 77 19

pytest-ansible 5ac7cd15
2016 4 4
2017 2 3
2018 3 2

shown in Table II. For django-silk, the most proficient contrib-
utor (e721d399) committed most proficient code during 2014–
2015 (highlighted in bold text). For pandas-profiling, the
most proficient contributor (edf72917) contributed the most
proficient code during 2019–2021. Lastly, for pytest-ansible,
the most proficient contributor (5ac7cd15) contributed the

most proficient code during 2016–2018. These contributors
can potentially be considered as a bus factor of the project
due to their highly proficient code that may be difficult to
understand by others.

VI. CONCLUSION
We present an automated tool, PyGress, for evaluating

Python code proficiency and its progression in OSS projects.
The tool analyzes project commit history and visualizes the
proficiencies for ease of understanding. The tool should be
useful for the Python OSS project maintainers for getting
insights into their codebase and managing the contributors
accordingly for the sustainability of the project. For future
work, we plan to improve the processing speed of the PyGress
tool by modifying pycefr to analyze the diff data. We also
plan to add more visualizations, e.g., heatmaps, to show the
code proficiency in each project’s modules. Lastly, we plan to
validate the tool with OSS project maintainers.

VII. ACKNOWLEDGEMENT
This research is partially supported by JSPS Kakenhi (A)

JP24H00692 and the Faculty of ICT, Mahidol University.
REFERENCES

[1] GitHub, “Octoverse,” 2024. [Online]. Available: https://github.blog/
news-insights/octoverse/octoverse-2024

[2] E. Jabrayilzade, M. Evtikhiev, E. Tüzün, and V. Kovalenko, “Bus factor
in practice,” 2022, volume 32, Number 4, Pages 97–106. [Online].
Available: https://doi.org/10.1145/3510457.3513082

[3] E. Dias, P. Meirelles, F. Castor, I. Steinmacher, I. Wiese, and G. Pinto,
“What makes a great maintainer of open source projects?” in ICSE ’21,
2021, pp. 982–994.

[4] C. of Europe, “Common European Framework of Reference for
Languages (CEFR),” 2025. [Online]. Available: https://www.coe.int/en/
web/common-european-framework-reference-languages

[5] G. Robles, R. G. Kula, C. Ragkhitwetsagul, T. Sakulniwat, K. Matsumoto,
and J. M. Gonzalez-Barahona, “pycefr: Python competency level through
code analysis,” in ICPC ’22, 2022, p. 173–177.

[6] C. Ragkhitwetsagul, K. Kongwongsupak, T. Maneesawas, N. Puttiwaro-
dom, R. Rojpaisarnkit, M. Choetkiertikul, R. G. Kula, and T. Sunetnanta,
“ jscefr: A Framework to Evaluate the Code Proficiency for JavaScript ,”
in ICSME’24, 2024, pp. 863–867.

[7] M. S. C. Shepard, “Pydriller: Python library for mining software
repositories,” 2018. [Online]. Available: https://github.com/ishepard/
pydriller

https://github.blog/news-insights/octoverse/octoverse-2024
https://github.blog/news-insights/octoverse/octoverse-2024
https://doi.org/10.1145/3510457.3513082
https://www.coe.int/en/web/common-european-framework-reference-languages
https://www.coe.int/en/web/common-european-framework-reference-languages
https://github.com/ishepard/pydriller
https://github.com/ishepard/pydriller

	Introduction
	Background
	The Common European Framework of Reference for Languages (CEFR)
	pycefr: Python Proficiency Level through Code Analysis

	PyGress: Evolution of Code Proficiency
	Tool Implementation
	System Architecture Design
	Implementation
	Back-end Module
	Front-end Module
	Visualization Module

	Examples of PyGress Visualizations

	Practical Applications
	Conclusion
	Acknowledgement
	References

