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Abstract—Computational notebooks have become the pre-
ferred tool of choice for data scientists and practitioners to
perform analyses and share results. Notebooks uniquely combine
scripts with documentation. With the emergence of generative AI
(GenAI) technologies, it is increasingly important, especially in
competitive settings, to distinguish the characteristics of human-
written versus GenAI. Our new idea is to explore the strengths
of both humans and GenAI through the coding and documenting
activities in notebooks. We first characterize differences between
25 code and documentation features in human-written, medal-
winning Kaggle notebooks. We find that gold medalists are pri-
marily distinguished by longer and more detailed documentation.
Second, we analyze the distinctions between human-written and
GenAI notebooks. Our results show that while GenAI notebooks
tend to achieve higher code quality (as measured by metrics
like code smells and technical debt), human-written notebooks
display greater structural diversity, complexity, and innovative
approaches to problem-solving. Based on these early results, we
highlight four agendas to further investigate how GenAI could be
utilized in notebooks that maximize the potential collaboration
between human and GenAI tech.

Index Terms—Empirical Study, Notebooks, GenAI Code

I. INTRODUCTION

Computational notebooks have rapidly become an important
tool for data scientists and researchers. According to Jupyter,
a notebook is a shareable document that combines code, text,
data, and rich visualizations, offering an interactive environ-
ment for prototyping, data exploration, and sharing ideas, so
that users can learn coding and documentation1. Platforms like
Kaggle have further accelerated the adoption of notebooks,
offering a space for machine learning competitions that attract
both industry practitioners and academic researchers [14]. As
Kaggle2 competitions become more popular and prestigious,
participants face increasingly tougher competition to create the
best, most insightful notebooks.

The landscape of coding has been transformed by the
emergence of generative AI (GenAI) technologies such as
ChatGPT3, Gemini4 Claude5 and open models from Meta
Ollama6 and Huggingface7. These tools have the potential to

1https://docs.jupyter.org/en/latest/
2https://www.kaggle.com/
3https://chatgpt.com/
4https://gemini.google.com/
5https://claude.ai/
6https://ollama.com/
7https://huggingface.co/

assist practitioners by generating code, writing explanations,
and even producing entire notebooks with minimal human
intervention. However, this technological shift raises important
questions: How can we distinguish between notebooks created
by humans and those generated by GenAI? More importantly,
what can we learn from each to advance the state of the art
in computational notebooks? While prior work has examined
code quality [5], reproducibility [15], and collaboration [21]
in notebooks, the specific contributions and limitations of
GenAI notebooks remain underexplored. Competitions provide
an ideal experimental setting, as participants are incentivized
to submit their highest-quality work for rigorous community
assessment and ranking.

To investigate this phenomena, in this paper, we perform
experiments on three case studies to compare human-written
notebooks and those generated by leading large language
models (LLMs). The case studies is across three major Kaggle
competitions (i.e., 1. Santander Customer Transaction Predic-
tion, 2. Home Credit Default Risk, and 3. IEEE-CIS Fraud
Detection). To differentiate between human-written notebooks,
we use the heuristic of gold medals (i.e., notebooks voted
as being high quality by the community) to identify quality
notebooks8. By extracting and analyzing 25 features related
to documentation and code quality from a curated dataset of
465 human-authored notebooks and 9 GenAI notebooks, we
answer two research questions:
RQ1: What are differences between documentation and code
for human-written notebook?
The motivation behind RQ1 is to characterize the fundamental
code and documentation patterns in human-written notebooks,
revealing essential programming behaviors, documentation
styles, and structural approaches that differentiate gold-medal
human notebooks from the rest, establishing a crucial baseline.
RQ2: What are the key differences between GenAI and
human-written data science notebooks?
The motivation behind RQ2 is to identify the distinguishing
factors that separate human and GenAI approaches in com-
petitive data science, focusing on the impact of code quality
metrics versus documentation on medal-worthy outcomes.

Our findings show that GenAI notebooks achieve higher
code quality, with significantly fewer code smells, technical

8https://www.kaggle.com/progression/
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Fig. 1: Overview of Data Collection

debt, and coding violations. However, human-written note-
books stand out for their more comprehensive and accessible
documentation. In particular, gold medal-winning notebooks
feature more than twice as much markdown content and
narrative explanation as the non-gold group. Moreover, while
GenAI documentation tends to require a higher reading level,
human-written explanations are generally clearer and more
approachable.

II. THREE CASE STUDIES OF NOTEBOOK COMPETITIONS

Three closed competitions were selected for this study:
Santander Customer Transaction Prediction9, Home Credit De-
fault Risk10, and IEEE-CIS Fraud Detection11. The Santander
Customer Transaction Prediction competition contributed 167
medal-winning notebooks to the dataset used in this analy-
sis. From the Home Credit Default Risk competition, 133
notebooks were analyzed. The IEEE-CIS Fraud Detection
competition provided the final 165 notebooks for the study.

To utilize the KGTorrent dataset effectively for GenAI
notebook generation, we conducted a comprehensive investi-
gation of the data structure. This analysis revealed that GenAI
models require well-defined problem contexts to generate
meaningful notebooks, necessitating the selection of specific
Kaggle competitions that provide clear problem statements and
structured datasets.

The selection of these three competitions was based on the
criterion that those with the highest number of participating
teams were prioritized to maximize the sample size and ensure
a robust statistical analysis.

III. STUDY DESIGN

Figure 1 presents the workflow of the data collection pro-
cess. We utilized the KGTorrent [17] tool to retrieve Jupyter
notebooks. KGTorrent constitutes a comprehensive dataset
encompassing computational notebooks (code kernels) and
their associated metadata sourced from the Kaggle platform.

To obtain an updated version of the KGTorrent dataset,
Kaggle metadata12 was downloaded on May 25th, 2025, and

9https://www.kaggle.com/competitions/santander-customer-transaction-pre
diction

10https://www.kaggle.com/competitions/home-credit-default-risk
11https://www.kaggle.com/competitions/ieee-fraud-detection
12https://www.kaggle.com/datasets/kaggle/meta-kaggle

TABLE I: Medal Distribution Across Competitions

Medal Type Home Credit Santander IEEE-CIS

Bronze 76 88 91
Silver 30 42 34
Gold 27 37 40

Total 133 167 165

Jupyter notebooks were subsequently retrieved through API
requests using the KGTorrent tool. This process yielded a total
of 205,269 notebooks. The data collection process consists of
four main stages: first, we identify target competitions for anal-
ysis; second, we apply data filtering criteria to select relevant
notebooks; third, we generate corresponding GenAI notebooks
using GenAI models; and finally, we extract features from both
human-written and GenAI notebooks for comparative analysis.

A. Data Collection and Filtering

The filtering process yielded a total of 465 notebooks,
with the distribution of medal achievements across the three
competitions presented in Table I. In this study, the notebook
medals (i.e., Bronze, Silver, Gold) serve as proxies for compu-
tational notebook quality, as medal progression and achieve-
ment represent community recognition and appreciation of the
work’s merit. Following competition selection, a systematic
filtering process was implemented to ensure dataset integrity
and completeness using the following criteria:

1) Both the notebook’s metadata and corresponding note-
book files must be present.

2) Contributor information for each notebook creator must
be available.

3) The notebook must have been submitted to one of the
three selected competitions.

4) The notebook must have received a medal recognition.

B. Generating notebook using GenAI

To facilitate comparison between human-written and GenAI
notebooks, three large language models (LLMs) were selected:
(1) GPT-4.1, (2) Llama 4 Maverick, and (3) Gemini 2.5 Pro
Review. These models were chosen from different companies
(OpenAI, Meta, and Google ) to minimize potential bias and
ensure diverse representation. A single, non-iterative prompt

https://www.kaggle.com/competitions/santander-customer-transaction-prediction
https://www.kaggle.com/competitions/santander-customer-transaction-prediction
https://www.kaggle.com/competitions/home-credit-default-risk
https://www.kaggle.com/competitions/ieee-fraud-detection
https://www.kaggle.com/datasets/kaggle/meta-kaggle


TABLE II: Statistical Comparisons of Gold and Non-Gold Human-Written Notebooks

Feature
Home-Credit Santander IEEE-CIS

p-value η2 p-value η2 p-value η2

#Markdown Char 0.0005*** 0.085 0.0004*** 0.070 – –

#Markdown Line 0.001** 0.074 0.0004*** 0.071 – –

#Sentences 0.001** 0.073 0.0004*** 0.071 – –

#Markdown Cell 0.001** 0.070 0.001*** 0.056 – –

Avg Sentence 0.013* 0.040 – – – –

Duplicated Lines 0.021* 0.033 0.020* 0.026 0.004** 0.046

Duplicated Blocks – – 0.009** 0.035 0.004** 0.045

#Code Char – – – – 0.011* 0.033

#Visual – – – – 0.019* 0.027

* p-value < 0.05; ** p-value < 0.01; and *** p-value < 0.001. The effect sizes with thresholds are highlighted in Negligible Small Medium Large .

TABLE III: Gold vs Non-Gold Feature Statistics Comparisons

Feature Medal Type Mean Median Std Min Max

#Markdown Char
Non-Gold 2688.10 934.0 6526.72 0 94377

Gold 5369.35 2261.0 8071.63 0 45281

#Markdown Line
Non-Gold 35.02 16.0 67.15 0 748

Gold 64.98 35.5 79.04 0 364

#Sentences
Non-Gold 27.39 12.0 44.14 0 308

Gold 56.46 26.5 75.81 0 364

#Markdown Cell
Non-Gold 11.71 6.0 18.57 0 184

Gold 21.12 12.0 27.64 0 160

was used to establish a controlled baseline for the models’
raw generative capabilities. This approach avoids introducing
prompt engineering as a variable, which could create bias
as different GenAI respond optimally to different prompting
strategies.

“generate .ipynb file in JSON format
for Kaggle competition the overview is
{comepetition overview}. {evaluation method}.
Using these csv files; {competition dataset}”

– Used prompt
After .ipynb files in JSON format were generated by the
GenAI models, the JSON format files were converted to stan-
dard Jupyter Notebook format and manually checked for file
integrity and structural validity to ensure proper formatting. As
part of a post-review validation to assess practical runnability,
a basic execution is performed to check on all nine GenAI
notebooks.

C. Extracting features

Individual features were extracted, resulting in a total of 25
features:

(1) Documentation-related attributes (#Markdown Char,
#Markdown Line, #Markdown Cell, #Sentence, Avg Sentence,
Gunning Fog, #Visual, and Comment Lines*).

(2) Code quality-related attributes (#Code Char, #Code
Line, #Code Cell, Cyclomatic Complexity*, Cognitive Com-
plexity*, Functions*, Statements*, Duplicated Blocks*, Du-
plicated Lines*, Bugs*, Violations*, Code Smells*, Technical
Debts*, Maintainability Rating*, Reliability Rating*, and Se-
curity Rating*)

This extraction process utilized the SonarQube13 tool, an
open-source static analysis platform designed for continuous
code quality monitoring that integrates analysis and reporting
throughout the software development process [2], [9], [13] and
is used to extract some features(*) through API.

IV. EMPIRICAL STUDY

We now discuss the analysis method and results of the study.

A. Answering RQ1

To address RQ1, we assessed data normality through the
Shapiro-Wilk test [19] and analyzed statistically significant
differences between notebook features and medal achievement
using the Kruskal-Wallis H test [8] with effect size calculations
using the human-written notebooks dataset illustrated in Figure
1.

Table II shows that gold medalists primarily differentiate
themselves through documentation practices rather than coding

13https://sonarcloud.io/explore/projects

https://sonarcloud.io/explore/projects


metrics. Documentation features demonstrated the strongest
discriminating power between gold and non-gold medalists,
with markdown characters, lines, and sentence counts showing
highly significant differences (p-value ≤ 0.001) and medium
effect sizes (0.056-0.085).

The distribution analyses in Table III confirm that gold
medalists consistently produce substantially longer documen-
tation than non-gold medalists. In contrast, code-related met-
rics showed weaker differentiation patterns. The IEEE-CIS
competition displayed significance only in specific elements
like duplicated lines and code character quantity, but with
small effect sizes (0.033-0.046), indicating limited practical
impact on distinguishing performance levels. These findings
indicate that documentation, rather than code quality, primarily
separates gold medalists from other competitors. Gold medal-
ists systematically generate notebooks with more extensive
markdown content.

RQ1 Summary

Higher quality human notebooks tend to have longer
documentation. Gold medal worthy notebooks are
distinguishable by having longer documentation (i.e.,
markdown characters, lines, and sentences).

B. Answering RQ2

To investigate distinguishing characteristics between GenAI
and human-written data science notebooks, we conducted
statistical analyses using the Kruskal-Wallis H test [8] across
the human-written notebooks dataset and the GenAI notebook
dataset, as illustrated in Figure 1, focusing on medium (≥0.06)
to large (≥0.14) effect sizes that indicate practically meaning-
ful differences.

Documentation Accessibility: Table V reveals that human-
written notebooks consistently produced more accessible doc-
umentation despite GenAI’s code quality advantages. The
statistical comparison shows GenAI explanatory text in the
IEEE-CIS competition consistently operated at senior-college-
level complexity (Gunning Fog score: 16.07), compared to
human documentation which operated at high-school-senior
level (Gunning Fog score: 10.32). Statistical analysis in Table
IV confirmed these readability differences across multiple
competitions, with medium effect sizes observed for both gold
and silver medal comparisons in IEEE-CIS (p-value ≤ 0.05,
η2 ≥ 0.088), while Santander showed similar patterns (p-value
= 0.017, η2 = 0.124). Furthermore, GenAI notebooks showed
significantly fewer comment lines compared to human-written
notebooks in the Home-Credit competition (p-value = 0.035,
η2 = 0.122, medium effect size), indicating reduced inline
documentation coverage alongside the increased complexity
of explanatory text.

Code Quality Features: Conversely, Table IV shows that
GenAI notebooks demonstrated superior performance in tech-
nical code quality measures. In the IEEE-CIS competition,
GenAI notebooks significantly outperformed human-written
notebooks across several code quality indicators with large

effect sizes (≥ 0.191): code smells (p-value = 0.004, η2

= 0.209), technical debt (p-value = 0.004, η2 = 0.209),
and violations (p-value = 0.006, η2 = 0.191). Similarly, the
Home-Credit competition showed GenAI notebooks exhibiting
reduced structural complexity compared to medal-winning
submissions, with large effect sizes observed for functions
(GenAI mean: 4.00 vs Human mean: 5.71, p-value = 0.011,
η2 = 0.197) and statements (GenAI mean: 144.33 vs Human
mean: 194.38, p-value = 0.025, η2 = 0.143).Additionally,
medium effect sizes were found for the number of code cells
(GenAI mean: 13.00 vs Human mean: 33.65, p-value = 0.049,
η2 = 0.103) and cyclomatic complexity (GenAI mean: 16.00 vs
Human mean: 18.53, p-value ≤ 0.050, η2 ≥ 0.102), indicating
GenAI generates more streamlined code organization with
lower algorithmic complexity.

Execution and Reproducibility: Of the nine notebooks ex-
ecuted, there were three that failed to complete the execution.
These execution outcomes confirm that static analysis alone is
insufficient, as it misses critical data-handling and logic errors
that limit the notebooks’ practical utility. The llama home-
credit and llama IEEE notebooks failed due to runtime er-
rors from passing non-numeric columns to the model. The
GPT IEEE notebook failed because column names were not
consistently unified, leading to key mismatches during data
processing.

The analysis demonstrates that GenAI and human notebooks
exhibit distinct but complementary strengths: GenAI excels in
producing clean, standardized code with superior adherence
to best practices, while humans demonstrate greater structural
innovation and complexity. Despite GenAI’s advantages in
code quality metrics, including lower technical debt, fewer
code smells, and reduced violations, medal-worthy perfor-
mance appears to depend more on human strengths such as
creative problem-solving, domain expertise, and algorithmic
innovation rather than code cleanliness alone.

RQ2 Summary

Human and GenAI notebooks have statistical differ-
ences. We identify and summarize key differences
below:

• Documentation features - GenAI notebooks are
harder to read (higher reading levels), while the
human written documentation is easier to read
(gunning fog)

• Code features - GenAI notebooks demonstrate
higher code quality with fewer code smells, lower
technical debt, and reduced violations. Mean-
while, human-written code is more complex, with
greater structural complexity and higher function
counts and statements.

V. DISCUSSION

In this section, we present a discussion of the implications
and the research agenda from the three case studies.



TABLE IV: Statistical Comparisons of GenAI and Each Medal Notebooks

Home-Credit Santander IEEE-CIS
Feature Medal p-value η2 p-value η2 p-value η2

Functions
Gold 0.011* 0.197 – – 0.041* 0.078
Silver 0.009** 0.191 – – – –
Bronze 0.023* 0.054 – – – –

Statements
Gold 0.025* 0.143 – – – –
Silver 0.018* 0.148 – – – –
Bronze – – – – – –

Comment Lines
Gold 0.035* 0.122 – – – –
Silver – – – – – –
Bronze – – – – – –

#Code Cell
Gold 0.049* 0.103 – – 0.025* 0.098
Silver – – – – – –
Bronze – – – – – –

Cyclomatic Complexity
Gold 0.050* 0.102 – – – –
Silver 0.028* 0.124 – – – –
Bronze – – – – 0.043* 0.034

Gunning Fog
Gold – – 0.017* 0.124 0.032* 0.088
Silver – – – – 0.030* 0.107
Bronze – – 0.024* 0.046 0.049* 0.031

Code Smells
Gold – – – – – –
Silver – – – – 0.004** 0.209
Bronze – – – – – –

Technical Debts
Gold – – – – – –
Silver – – – – 0.004** 0.209
Bronze – – – – – –

Violations
Gold – – – – – –
Silver – – – – 0.006** 0.191
Bronze – – – – – –

A. Implications

This study provides a comparative analysis of human-
written and the raw output of GenAI without human inter-
vention data science notebooks in competitive environments
for an understanding of the baseline capabilities and inherent
strengths and weaknesses of both approaches. Our findings
reveal distinct complementary strengths between Human and
GenAI approaches that suggest strategic applications in data
science practice. As a proof of concept, there are differences,
and we believe that a more comprehensive study will high-
light more differences between the Human and AI. Although
preliminary, the result from RQ2 demonstrates that GenAI
notebooks achieved significantly superior code quality metrics
features (code smells, technical debt, and violations). These
results indicate that GenAI tools could serve as valuable
automated code review and standardization tools.

The results from RQ2 also reveal a limitation: GenAI doc-
umentation operated at senior-college reading levels (Gunning
Fog: 16.07) compared to human high-school-senior levels

(10.32). Combined with our RQ1 findings showing that doc-
umentation features had the strongest discriminating power
between gold and non-gold medalists, this suggests that current
GenAI limitations in accessible documentation may undermine
competitive performance despite superior code quality. In this
study, we use the gold medal, but other heuristics of quality
could be employed in future studies. Hybrid approaches, where
GenAI assists in routine code generation and quality assurance
while humans focus on documentation and complex problem-
solving, may offer the best results. For immediate research
directions, we will need to experiment with a larger and more
diverse dataset that needs to be collected. In this study, we only
provided 3 competitions, so we need more competitions. We
would also need to interview developer and prototype different
tools that simulate the human to GenAI collaboration. Would a
competitor or the competition host be able to tell the difference
between a human and GenAI solution.

The implications from the study at this stage are threefold.
The first is that for hosts of the competitions, there are



TABLE V: Human vs GenAI Feature Statistics Comparison in IEEE-CIS Competition

Feature Source Mean Median Min Max

Functions
Human 3.16 2.0 0 46
AI 0.67 0.0 0 2

Statements
Human 121.49 91.5 10 586
AI 94.33 35.0 25 223

Comment Lines
Human 40.93 23.5 0 252
AI 32.67 18.0 13 67

#Code Cell
Human 31.36 22.0 2 205
AI 9.00 8.0 7 12

Cyclomatic Complexity
Human 14.30 9.5 0 126
AI 14.67 0.0 0 44

Gunning Fog
Human 10.32 9.91 0 64.61
AI 16.07 16.13 11.55 20.53

Code Smells
Human 29.25 0.0 0 3166
AI 3.00 3.0 3 3

Technical Debts
Human 44.39 0.0 0 3228
AI 15.00 15.0 15 15

Violations
Human 29.59 0.0 0 3167
AI 3.00 3.0 3 3

Color coding indicates superior performance: AI outperforms vs. Human outperforms.

distinguishable features of GenAI usage, thus could be used
to detect when GenAI could be used when not permitted. For
competitors, these results provide insights into how to best
use the GenAI-assistants in their toolbox. For researchers, the
results may imply what are the skills necessary and cannot be
amplified by use of GenAI.

This study provides a foundation for further exploration
of the intersections between GenAI-assisted development,
human creativity, and competitive data science performance.
RQ1 and RQ2 highlight the need to balance code quality with
documentation comprehensiveness in evaluating excellence.
To build on these insights, we develop the following agenda
as a roadmap:

• Agenda One. Explore notebooks as an IDE for
Human-GenAI documentation and code collaboration
Investigate whether computational notebooks are truly the
optimal environment for human–GenAI collaboration, or
if alternative development contexts might better support
creative and effective hybrid work.

• Agenda Two. Conduct a comprehensive study Expand
analysis to larger and more diverse datasets, encompass-
ing different competitions and platforms beyond Kaggle,
to validate whether findings such as the centrality of
documentation quality hold across domains.

• Agenda Three. Expand from Notebooks to Software
Projects Extend the study to traditional software artifacts,
including source code repositories and developer docu-
mentation, to determine whether the trade-offs between
code quality and documentation clarity persist in broader

software engineering settings. Additional questions that
could arise as secondary research topics could explore
how different AI documentation is from human documen-
tation in code comments, documentation artifacts and in
discussions with other team members.

• Agenda Four. Explore challenges and risks of using
GenAI Examine the ethical and procedural challenges
introduced by GenAI, particularly the risks of GenAI-
augmented cheating and violations of competition rules.
Future research should develop guidelines and detection
mechanisms to ensure fairness and maintain trust in both
competitive and collaborative environments.

VI. THREATS TO VALIDITY

This section examines potential threats to the validity and
measures implemented.

A. Internal Validity

Three primary threats to internal validity require consider-
ation.

• First, selection bias affects both RQ1 and RQ2 as our
dataset comprises only medal-winning notebooks from
three Kaggle competitions (Santander Customer Transac-
tion Prediction, Home Credit Default Risk, and IEEE-CIS
Fraud Detection), which may not represent broader data
science practices. This could bias our Kruskal-Wallis H
test results comparing gold vs non-gold medalists and our
human vs GenAI statistical comparisons. We address this
by analyzing 465 notebooks across multiple competition
domains.



• Second, the potential contamination of our human-written
dataset with AI-generated content in both RQ1 and RQ2,
as notebooks for older competitions may have been
created recently. While the purity of this dataset cannot
be guaranteed. However, this concern is mitigated by
the large, observed gap in code quality between the
human and GenAI groups, which suggests the comparison
remains meaningful.

• Three, confounding variables like participant experience
may simultaneously influence documentation practices
and competition success in RQ1, while in RQ2, human
notebooks represent experienced medal winners com-
pared against GenAI lacking domain expertise. This
could potentially confound our comparisons of code
quality metrics and readability measures like Gunning
Fog scores. The use of objective, quantifiable metrics
helps to mitigate this concern.

B. External Validity

Three threats to external validity merit discussion.
• Generalizability beyond Kaggle competitions may be

limited. Our RQ1 findings that documentation features are
the strongest discriminators between gold and non-gold
medalists and RQ2 results showing human superiority in
documentation accessibility versus GenAI superiority in
code quality may not apply to industry contexts where
performance metrics differ. However, these patterns likely
extend beyond competitions as they reflect fundamental
differences in how current GenAI systems generate code
versus explanatory text.

• Temporal validity affects our GenAI methodology. The
models used in RQ2 represent current capabilities but
could be outdated in the future. We mitigate this by fo-
cusing on fundamental trade-offs between code standard-
ization and human-readable explanation revealed across
all three competitions.

• We acknowledge that the sample size of 9 GenAI-
generated notebooks constitutes a limitation of this study.
This number was determined by the exploratory nature of
the research and the computational resources required for
generation and analysis. While the findings provide initial
insights, a larger and more diverse sample of GenAI
notebooks is necessary to ensure the generalizability of
the results. Future work should aim to expand this dataset
significantly.

C. Construct Validity

One threat to construct validity requires acknowledgment.
• Medal-worthy performance definition: Our first construct,

notebook quality, is proxied by Kaggle’s medal system
(i.e., Bronze, Silver, Gold). This is a potential threat, as
competition rankings may not capture all dimensions of
exceptional data science work, such as long-term main-
tainability, real-world business impact, or deployment
efficiency outside the competition environment. However,
we mitigate this by using the established Kaggle medal

criteria, which represent community-validated standards
for excellence in competitive data science. This provides
a reliable and holistic benchmark for notebook quality
within the competitive data science context.

• Practical Usability of Code Quality Metrics: Our initial
analysis defined code quality using static metrics like
code smells and technical debt, which was a valid con-
cern regarding construct validity as it does not capture
runnability. To address this and clearly bound our claims,
we conducted a post-review execution validation. As
reported in Section IV-B, this check confirmed that three
of GenAI notebooks failed to run, despite their high static
quality. This finding reinforces the limitation and shows
that our ’code quality’ construct does not fully map to
’practical usability’.

VII. RELATED WORK

A. Studies on Computational Notebooks

Prior research has established computational notebooks as a
principal paradigm for data scientists, valued for their support
of two distinct roles: private exploration and public explanation
[18]. As literate programming environments, they are designed
to integrate executable code, narrative documentation, and
visualizations within a single document [3], [7]. However,
achieving narrative coherence is not an automatic outcome.
Kery et al. [7] underscore the significant human effort in-
volved, observing that data scientists find it a non-trivial task to
clean up and curate their messy, exploratory code into coherent
“stories” for presentation or sharing .

In collaborative settings, a well-constructed narrative is
indispensable for communicating results and knowledge dis-
semination. This dynamic is particularly evident in competitive
platforms like Kaggle. Wang et al. [22] demonstrated that
community-defined quality (i.e., highly-voted notebooks) cor-
relates more strongly with extensive documentation and high
readability than with the notebook’s objective performance
score on the leaderboard . Their analysis of these well-
documented notebooks revealed nine distinct categories of
documentation, including process descriptions, headlines for
navigation, and explanations for analytical reasoning . This
finding underscores the role of notebooks as vital communi-
cation artifacts, not merely as code containers.

Yet, this ideal of a clean, well-documented notebook is
often at odds with the reality of data science workflows.
The transition from exploration to explanation is fraught with
pain points. Chattopadhyay et al. [3] cataloged numerous
challenges that disrupt data scientists, including difficulties in
setting up environments, managing dependencies, versioning
exploratory code, and deploying notebooks to production.
This difficulty contributes to the well-documented notebook-
to-production gap [16].

A critical aspect of this gap is the widespread lack of repro-
ducibility. A large-scale study of notebooks from biomedical
publications by Samuel et al. found that the ”large majority” of
notebooks could not be automatically executed. The primary
cause was ”issues with the documentation of dependencies” ,



with most notebooks failing due to ModuleNotFoundError
or ImportError . That same study noted a key correlation:
notebooks with a low ratio of markdown-to-code cells were
more likely to have exceptions, directly linking a lack of
documentation to poor reproducibility . This challenge is
precisely what Quaranta et al. [16] identified as the key
blocker: deficiencies in code quality, structure, and maintain-
ability prevent notebooks from being reliably integrated into
production workflows.

B. Human and GenAI Complementarity

This emphasis on human-driven documentation, narrative,
and high-level strategy aligns with findings on human-GenAI
complementarity. Research indicates that humans demonstrate
superior performance in areas requiring deep domain expertise,
complex logical reasoning, and creative solutions. For exam-
ple, Licorish et al. [10] found that humans performed better on
tasks requiring in-depth domain knowledge, such as quantum
optimization algorithms or debugging complex logic. GenAI,
in contrast, specializes in the rapid generation of structured
content and the management of repetitive, boilerplate code [1].
How this complementary relationship manifests specifically
within computational notebooks remains underexplored.

The introduction of GenAI is prompting a re-
conceptualization of the developer’s role. Rather than
authoring code line-by-line, the human is repositioned as a
“curator” [4] or as a “system orchestrator” responsible for
providing high-level intent [6], [11], [20]. In this paradigm,
the human directs the overall strategy and validates the AI’s
output, while the AI manages the low-level implementation.
Consequently, human validation emerges as a critical function.

Our research builds upon this concept by quantitatively
comparing how this role differentiation manifests in a compet-
itive environment. We examine the balance between documen-
tation (a human strength) and technical code quality (a GenAI
strength). Our work is supported by findings from Molison et
al. [12], which found that code generated by LLMs generally
contains fewer bugs and requires less remediation effort. They
also observed that fine-tuning, while effective at reducing high-
severity blocker and critical bugs by shifting them to lower-
severity categories, simultaneously degraded the model’s over-
all performance. Moreover, for complex, competition-level
tasks, LLMs were found to introduce structural problems not
present in human-authored code. Similarly, Licorish et al. [10]
found that GPT-4 passed a higher percentage of functional test
cases than human-written code. Cotroneo et al. [4] add to this,
noting that AI code is generally simpler and more repetitive.

VIII. CONCLUSION

This study conducted a comparative analysis of human-
written and GenAI-generated notebooks within the high-stakes
context of competitive data science. Our goal was to ex-
plore the distinct, and often complementary, strengths and
weaknesses inherent in both human and AI approaches. The
findings reveal a clear dichotomy: GenAI excels at producing
code with high static technical quality, consistently featuring

significantly fewer code smells and less technical debt than
human-written counterparts. This suggests a strong capability
for adhering to programming standards and generating clean,
standardized code.

However, this technical superiority comes with a critical
caveat. Our execution checks revealed that high static quality
does not translate to practical runnability, as several GenAI
notebooks failed during execution due to fundamental data-
handling and logic errors. In contrast, human-written note-
books, particularly the medal-winning entries, were distin-
guished by their comprehensive, accessible, and insightful
documentation. This aligns with our RQ1 findings, confirming
that narrative communication and clear explanations are a
hallmark of high-quality human work in this domain.

The results strongly suggest that while GenAI can achieve
superior code cleanliness, top-tier performance in these com-
petitions currently depends more on human-centric strengths.
These include creative problem-solving, domain-specific algo-
rithmic innovation, and the ability to craft insightful documen-
tation that communicates a clear analytical narrative—skills
that code quality metrics alone fail to capture.

The implications of these findings are threefold and signif-
icant for the data science community:

• For competition hosts: The identifiable features of
GenAI-generated code (e.g., high static quality but low
readability scores) may allow for the development of new
heuristics to detect GenAI usage, which is crucial for
upholding competition integrity and rules.

• For competitors: These results provide a strategic guide
for using GenAI assistants. Competitors can leverage
these tools to handle routine tasks like code standard-
ization and boilerplate generation, freeing up their own
time to focus on high-impact, human-centric tasks such
as feature engineering, model innovation, and narrative-
building.

• For researchers and educators: Our findings help iden-
tify which critical data science skills, such as narrative
reasoning, complex problem decomposition, and practi-
cal validation, are not easily amplified or replicated by
current AI tools, guiding future research and curriculum
development.

Ultimately, this work provides a foundation for exploring
the intersections of GenAI development and human creativity.
It points toward a future of hybrid approaches where GenAI
handles routine code generation and quality assurance, while
humans drive the innovative problem-solving and narrative
communication that define exceptional data science.
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