302

IEICE TRANS. INF. & SYST., VOL. E76-D, NO.2 FEBRUARY 1993

[LETTER

Experience of Solving Example Problem for Software

Process Modeling

Hajimu IIDAT, Yoshihiro OKADAT, Nonmembers, Katsuro INOUET

SUMMARY Marc Kellner proposed an example problem
intending to compare modeling and describing techniques of
software process.® In this paper, we will describe our approach
to understanding and describing the problem, from a process/
product relation view, and synchronization/concurrent view.
Also, we will show that a description of the problem is translated
for execution and its correctness is validated.

key words: software process modeling, process and product
relation, timing chart, petri net, PDL

1. Introduction

Marc Kellner proposed “Software Modeling
Example Problem” as a common basis for discussion
and comparison of modeling/describing software
development.®® This problem defines various works
caused by a requirement change with more than 10
pages long of English text, and it describes various
aspects in the software development, such as processes,
products, human resource, and management. Solving
this problem is that we read and understand the text,
and write those works with our modeling and describ-
ing techniques.

The problem is organized with two parts, core
problem and extensions. The core problem defines
activities of an overall process step, named Develop
Change and Test Unit. This step is composed of 8
process steps (we may simply say steps), namely
Schedule and Assign Tasks, Modify Design, Review
Design, Modify Code, Modify Test Plans, Modify
Unit Test Package, Test Unit, and Monitor Progress.
Each process step is defined with inputs, outputs,
responsibility, and constraints. The extensions of the
problem define various optional activities, such as
scheduling and resource constraints, or process change.

This problem has been used as the target problem
in the International Software Process Workshop®
and Japanese Software Process Workshop,® and some
researchers undertake to solve this problem in their
ways.DEa0aD - Tn this paper, we will describe our
approach of understanding and solving the core part of

Manuscript received March 5, 1992.
T The authors are with the Faculty of Engineering Sci-
ence, Osaka University, Toyonaka-shi, 560 Japan.
* Presently, with Advanced Institute of Science and
Technology, Nara.

and Koji TORII*, Members

this problem.

Our approach is basically to capture the process of
the problem and to represent the process in simple and
clear manner. We will study at first a process and
product relation for easy understanding overall struc-
ture of the problem. Synchronization and concurrency
views of the process will be further analyzed with the
timing chart and Petri Net models. The correctness of
the Petri Net description is validated by translating
into an executable program.

2. Process/Product Relation View

Figure 1 depicts the relation of the 8 process steps
and their input/output products..

At Schedule and Assign Tasks step, a schedule
for the work is created, and individual works are
assigned to specific staff members. Modify Design step
involves the modification of the design for the code
unit affected by the requirement change. At Review
Design step, modified design is formally reviewed.
Modify Code step is the implementation of the design
changes into code, and also an compilation of the
modified source code into object code. At Modify
Test Plans step, test plans are modified according to
the requirement change. Modify Unit Test Package
step involves the modification of the actual unit test
package for the affected code unit.

Figure 1 is obtained from the description of the
inputs and outputs of each process step, and also from
the overview description. Modeling process with input
and output product relation as this figure gives an
intuitive understanding of the problem through the
process/product relation view, even to inexperienced
developer of this kind of works.

3. Synchronization and Concurrent View

As a next stage of the problem solving, we further
analyzed the process step of the problem. We investi-
gate the synchronization and concurrency of the steps
which are essentially performed concurrently; how-
ever, they were not expressed explicitly in the process/
product relation view as Fig. 1.

We capture the overview by making a timing chart

LETTER

O:
8:

Requirements change

B

Schedule and —>|

B

303

[E-mail
@ : Verbal

Hand carried
Computer I/O

—> Monitor
Progress

Project plans /
iz 4 s 7
ask / schedule Completion Update
notification notification roject pl.
Gudore PSP | pg
notification @ Notification
- Feedback of successful
Aggfg"sdd 0 Review Modify M°d'ﬁ°d source / | |'°S1n8
modified design Design Code \:bjut code
.
Software Feedback Current Object code
design ‘r 1 Ifje e source codc 8
document . Current ——
file Y source code@ T T
oftware
(i) / development
0 Modify B Modify Unit file Test Unit
Current Desi ™| Test Package| <mmm
design & g eodback)
s Test
B : Modified design Modified test plans] [) ‘§\ /. 8 results
Modified test plansD ‘i
Modify E Test package file Test history file
Test Plans D Test plans file

test
Fig. 1
Schedule and
Assign Tasks —
B Re-degign
Modify Design — I
Review Design : ;
Re-codjng

Modify Code

Modify Test Plans

Modify Unit
Test Package

Test Unit

Monitor Progress

-

Time

Fig.2 Synchronization and concurrency view with timing
chart.

as shown in Fig. 2. This figure simply shows the active
period of each step with solid lines and uncertain
period with dotted lines. This timing chart shows
characteristics of initiation and termination of each
step more clearly, compared with Fig. 1, but it remains
some difficulties as follows.

+ The steps whose initiations are not defined strictly
are not expressed explicitly. For example, Modify
Code step can be started any time after Schedule
and Assign Tasks step, but it is not shown well
on the timing chart.

» Two steps, any of which can terminate first, but

Current

@ : Current unit test package
plans
a : Modified unit test package

Process/product relation view.

both of which have to terminate before the follow-
ing steps, would not be described clearly. Modify
Code step and Modify Unit Test Package are
such examples.

The steps whose terminations are dominated by
the terminations of other steps are not described
explicitly. For example, approval by Review
Design step is essential for the termination of
Modify Code step; however, it is not shown
explicitly.

The selection of the next steps among possible
candidate steps are not expressed clearly. For
example, if Test Unit terminates unsuccessfully,
then we may proceed either Modify Code, Modify
Unit Test Package, or both of these.

4. Precise View with Petri Net

To overcome these difficulties, we employed a
Petri Net for describing more precisely the synchroni-
zation and concurrency of the steps. Figure 3 shows
the Petri Net model. In this figure, transitions (rep-
resented by vertical bars) mean initiation and termina-
tion of the steps. Places (represented by circles) mean
the task bodies for steps (they are numbered and
named on the figure), or preconditions and postcondi-
tions for initiation and termination (no names are

304

TIEICE TRANS. INF. & SYST., VOL. E76-D, NO. 2 FEBRUARY 1993

Xs means initiation of step X.
Xe means termination of step X.

4s

2s

7s Te ™)
. 4s | J
6s I ~\

1s le . ‘ 7. Test Unit
2. Modify Design 3. Review Design .
6s
. 5s Se 65 »)
1. Schedule_and . . . Ge
Assign Tasks 6. Modify Unit Test Package
5. Modify Test Plans
J/
8s 8e
O—y - - .
| / o w
8. Monitor Progress
Fig. 3 Synchronization and concurrency view with petri net.
given). 1 Place P transition1
By using this model, we can clarify the following. 2 transition2
« There happen two cases after Modify Design and
Review Design steps terminate. One case is to
approve the changed design, and another is to m transition n

repeat Modify Design again.

« Modify Unit Test Package step starts after
Modify Test Plans.

+ Modify Code, Modify Test Plans, and Modify
Unit Test Package steps can be initiated even
without the approval by Review Design; how-
ever, Modify Code, Modify Unit Test Package
steps cannot terminate without the approval and
termination of Review Design.

« When Test Unit terminates successfully, Monitor
Progress step can terminate so that the overall
process can terminate.

5. Validating Petri Net Modeling

This Petri Net model has been translated into
PDL (Process Description Language) description sys-
tematically, and the obtained PDL program is executed
by PDL system we have developed.®* PDL is a
functional language, designed to describe various soft-
ware processes with formal semantic definition and to
enact the described processes.

The execution of this PDL program works as the
simulation of the Petri Net model, and this would be
also a simulation of the original example problem,
from the view of the synchronization and concurrency
of the steps.

Figures 4 and 5 shows the overview of the transla-

P(S) == menubranch({ ["task1", transitionl({exec_p(S))],
["task2", transition2(exec_p(S))],

["task'n"': transition(exec_p(S))1}, S) ;

Fig.4 Translation of place.

Transition T
1 placel

place2

T(S) == if conditionl & condition2

& ... & conditionm

then placel(exec_t(S)) @ place2(exec_t(S))
@ ... @ placen(exec_t(S))

else S;

Fig. 5 Translation of transition.

tion methods for each place and transition. As shown
in Fig. 4, a place is translated into a PDL menu-branch
function, which displays a user selectable menu list.
The strings in the menu-branch function appears on
the display, and if the user select one item with a string,
the following place function is executed. The parame-
ter S is a state value containing system status. In the
case of more than one output arcs, this user selection

LETTER

operation corresponds to a branch to a possible next
step. Since the conditions for selecting the branches
are not described on the Petri Net model, we used
simple menu fnuctions; however, we may write the
conditions for the next steps and embed those condi-
tions into the PDL program, so that some of the
selections could be eliminated.

Figure 5 shows the translation of a transition into
a PDL function. Each condition represents the termi-
nation of the previous steps. If all of those conditions
are satisfied, that is, all previous steps terminate, the
following steps are initiated. Operator ‘@’ means that
the following process steps Place 1 to Place n are
executed concurrently.

The overall program of PDL contains 96 function
definitions including auxiliary ones. This program is
considered to be a description of the Software Process
Modeling Example Problem, from the view of the
synchronization and concurrency of the steps. Execu-
tion of this program provides menus on the screen, and
opens and closes windows according to the proceed of
the steps. We have actually executed this PDL pro-
gram using our PDL system. We have given this
execution program various test cases, by which the
interesting interrelation properties among process
steps, such as listed in Sect. 4, were validated with
respect to the original problem description. This is
eventually a validation of the Petri Net model also.

6. Conclusion

We have shown our approach to the solutions of
Kellner’s Software Process Modeling Example Prob-
lem. We have at first modeled the process and product
relation using a process/product relation graph, by
which the overall structure of the problem can be easily
understood. We have next focused on the process steps
and shown a timing chart from the view point of
synchronization and concurrency. We have further
extend the analysis of the synchronization and concur-
rency with the Petri Net model, and validated our
modeling by translation and execution of the PDL
program.

The approach taken here is considered to be an
essential one to model and describe software processes.
Describing the target problem directly with low-level
process languages would be difficult; therefore depict-
ing figures of various models to grasp the overall
structure of the problem is very important. After the
model description is fixed, the concrete and detailed
program in the low-level language is systematically
obtained. Many other aspects on this example problem
such as resource managements, or other target software
processes will be modeled and described in the same
way.

The approach shown in Ref. (7) is based on an
extended data-flow diagram and a state transition

305

diagram. It mainly concerns on the estimation of the
schedule time duration. Our approach focuses on the
concurrency and synchronization of each process step.
In Ref. (8), all the problem description is written with
algebraic expressions, by which the expressive power of
the algebraic language is shown. The example prob-
lem is described using a protocol description language
LOTOS in Ref. (10) where the description is executed
for simulations, while our approach intends to estab-
lish real software development environment under the
framework of PDL. For modeling dynamism of soft-
ware processes, meta operations are introduced in Ref.
(11), which are powerful but might degrade the clarity
and simplicity of the language.

The PDL program obtained here would be a
skeleton of the development support environment for
such project as defined in the problem, by adding say,
definitions of tools to be used for each step. In this
paper, we have presented only limited views of the
problem; however, it is necessary to employ many
other views to complete the overall description of the
problem.

Acknowledgment

We are grateful to Yasuaki Matsunaga of Osaka
University for his help of developing models. We are
also grateful to Mr. Wataru Nagaoka, Hajimu
Umemoto, and Mutuo Sakai of Hitachi Ltd. for help-
ful discussions.

References

(1) Proc. of International Software Process Workshop,
IEEE Press, Hakodate, Japan, Oct. 1990.

(2) Proc. of International Software Process Workshop,
Yountville, CA., Oct. 1991, to be published by IEEE
Press.

(3) Inoue, K., Ogihara, T., Kikuno, T. and Torii, K., “A
Formal Adaptation Method for Process Descriptions,”
Proc. of 1lth International Conference on Software
Engineering, Pittsburgh, PA, pp. 145-153, May 1989.

(4) Inoue, K., Ogihara, K., Iida, H., Nitta, M., and Torii, K.,
“A Functional Language for Enacting Software Proces-
ses,” 15th Computer Software and Applications Confer-
ence '91, pp. 487-492, Tokyo, 219-224, Sep. 1991.

(5) Proc. of Japanese Software Process Workshop, spon-
sored by Japan Society for Software Science and Technol-
ogy, Information Processing Society of Japan, and Soft-
ware Engineers Association, Ito, Japan, Feb. 1991.

(6) XKellner, M., “Software Process Modeling Example Prob-
lem”, Private note on Aug. 9, 1990, also, Proc. of Ist
International Conference on the Software Process, pp.
176-186, IEEE Press, Redondo Beach, CA, Oct. 1991.

(7) Kellner, M., “Software Process Modeling Support for
Management Planning and Control,” Proc. of Ist Inter-
national Conference on the Software Process, pp. 8-28,
IEEE Press, Redondo Beach, CA, Oct. 1991.

(8) Nakagawa, A. and Futatsugi, K., “An Experimental
Solution in OBJ for the ISPW-6 Example Problem,” Proc.
of Japanese Software Process Workshop, Ito, Japan,

306

(10)

Feb. 1991.

Okada, Y., Matsunaga, Y., lida, H., Inoue, K., Torii, K.,
Nagaoka, W., Umemoto, H. and Sakai, M., A Descrip-
tion of Kellner’s Software Process Problem,” Proc. of
43th Convention of Information Processing Society of
Japan, 7J-1, p. 5/365-366, Sep. 1991.

Saeki, M., Kaneko, T., and Sakamoto, M., “A Method for
Software Process Modeling and Description Using

IEICE TRANS. INF. & SYST., VOL. E76-D, NO. 2 FEBRUARY 1993

(1D

LOTOS,” Proc. of Ist International Conference on the
Software Process, pp.90-104, IEEE Press, Redondo
Beach, CA, Oct. 1991.

Suzuki, M., and Katayama, T., “Meta-Operations in the
Process Model HFSP for the Dynamics and Flexibility of
Software Processes”, Proc. of Ist International Confer-
ence on the Software Process, pp.202-217, IEEE Press,
Redondo Beach, CA, Oct. 1991.

