
Web-based Process Management System

with Object-Centered Process Modeling

Makoto Matsushitay

matusita@ics.es.osaka-u.ac.jp

Hajimu Iidaz

iida@itc.aist-nara.ac.jp

Katsuro Inouey

inoue@ics.es.osaka-u.ac.jp

yGraduate School of Engineering Science

Osaka University

1-3 Machikaneyama, Toyonaka

Osaka 560-8531 JAPAN

zInformation Technology Center

Nara Institute of Science and Technology

8916-5 Takayama, Ikoma

Nara 630-0101 JAPAN

Abstract

Most of process-centered software engineering environ-
ments and those description languages tend to focus
on the way of producing the software product; they
describe mainly how software is developed. However,
recent software development such as distributed and
networked development tends to focus on the software
product itself; we are interested in software componen-
t, development tool, and so on. These are because
of emergence of various types of software development
approaches, e.g., object-oriented software developmen-
t, software re-use, and so on. To �ll up the gap between
the current process-centered software engineering envi-
ronments and the emerging software development, we
discuss a new process modeling method for describing
the emerging software developmentmethod, and design
a web-based software development environment based
on the model. Our model consists of a set of objects,
which represent the artifacts and the resources in the
real software development environment. We have de-
veloped a prototype system of the web-based environ-
ments, and we have enacted ISPW-6 software process
example with this system. Our system can illustrate
software development environment very naturally, and
provides an environment for software process execu-
tion, management, and improvement.

1. Introduction

Software process description and its enaction help
the software development to proceed e�ectively and to
produce high quality software[6, 7, 11]. However, most
of process-centered software engineering environments
tend to enforce speci�c types of development activities
to the developer. Also, they require proprietary and

exclusive systems/environments which are completely
di�erent from existing software development environ-
ment [2, 3, 4, 5, 12, 13, 14]. Therefore those systems
are not yet widely used in real software development.

Most of these software process languages[1] focus on
the description of \how to produce a product"; i.e., it
describes a process-orinted activity of software develop-
ment. However, recent software development methods
such as object-oriented programming, software reuse,
component-based programmingmainly focus on \what
should be made"; i.e., it does a product-oriented activ-
ity to artifacts in software development environment.
In process-centered software engineering environment,
these artifacts-centered idea of software development
should be supported, to make more e�ective support
for software development.

In this paper, we discuss a basic idea of object-
centered process description model. We also present
the design and the prototype implementation of web-
based process management system based on our model,
which contains essential features to represent and enac-
t ISPW-6 (International Software Process Workshop)
example problem[8]. The goal of the system is to illus-
trate software development environment as it is, and
provide a framework for software description, manage-
ment, and improvement.

Our model consists of a set of objects, which show
the artifacts and the resources in the software devel-
opment. An object consists of attributes and method-
s. An attribute represents characteristic of the object.
A method is a function applied to the objects. The
model provides object inheritance to share information
between objects. Messages to objects, which would ac-
tivate the methods or attribute accesses are recorded
automatically as the operation history of the object.
With these features, the status of the software devel-
opment environment is easily monitored, and thus the
process management system provides helpful informa-

tion to the project manager. Our prototype system
assumes that it runs under network-based software de-
velopment environment, and is also used by the devel-
opers to help their work.

This paper is organized as follows. In section 2, we
will describe the de�nitions and features of the model,
and we compare our model to other software process
description languages. In section 3, we will explain an
idea of our system, add-on type process management
system. Finally, we conclude our work in section 5.

2. Object-Centered Process Modeling

In this section, we introduce our basic idea of object-
centered process modeling technique. First of all, the
de�nition of the model is presented. Then we will show
how the software process is presented with this model.

2.1 De�nition

All artifacts and resources in the software develop-
ment environment are shown as Objects. Software de-
velopment environment is de�ned as a set of objects.
Object O is de�ned as (Ol;A;M), where Ol is an ob-
ject label, A is a set of attributes, and M is a set of
methods. Ol is the unique name of this object, used to
specify the object.

An attribute a 2 A is de�ned as (Al;Av), where Al
is an attribute label and Av is an attribute value. An
attribute label is the unique name for attribute and it
indicates what kind of information is needed to the ob-
ject. Information itself is represented by the attribute
value. The type of the attribute values is a number,
string, label, or list of these types.

A methodm 2M is de�ned as (Ml;Mv), whereMl

is a method label, and Mv is a method function. The
method label is the unique name for this method func-
tion, showing what operation is done with this method.
Actual operation is de�ned by the method function,
and de�ned as a unique mapping among sets of ob-
jects (i� the two method label is the same one, these
methods are actually the same one).

Figure 1 is an example object description of this
model. This description shows an object of a design
document.

In this example, four attributes (owner, doctype,
input, and location) are de�ned, to show information
about this object. For example, an attribute owner

shows who is the responsible person of this document,
and is de�ned as the other object which represents the
person. There are three methods, modify for editing
this document, view for viewing this document, and

Object Design

Attribute owner matusita

Attribute doctype "Design Document"

Attribute input Specification,Schedule

Attribute location "/path/of/document"

Attribute filename "design.doc"

Method modify

var editor = geteditor;

var viewer = getviewer;

if (viewer)

exec(viewer, input);

if (editor) {

viewinput;

exec(editor, location, filename);

}

endMethod

Method view

var viewer = getviewer;

if (viewer)

exec(viewer, location, filename);

Method review

notify(owner, "Please review the design.");

endMethod

endObject

Figure 1. Object sample

review for notifying the owner to do the review activ-
ity.

2.2 Features

The model has various features to support project
management. In this section, we show these features
with some examples.

Operation History: An operation to an object such as
referring attributes is processed by sending a message
to the object and activating a method of the object.
In this model, any operation to all objects are record-
ed as a history1. Operation history is also stored in an
special attribute. The attribute history records a list of
labels of the object which operates the attribute, opera-
tion time, and the contents of referenced value/changed
value. The method history records a list of labels of the
object which executes the method, beginning and end-
ing time of the execution, and the results of execution.

These histories are automatically recorded, i.e.,
reading an attribute is really achieved after recording
to the history, and executing method is really achieved
after recording to the history.

1This is possible under our assumption of the granularity of

the model description. The descriptions are generally not so

in �ne granularity or they do not create and delete objects so

intensively as scienti�c calculation.

Mapping Between a Model and Project Environment:
We need mapping between described process model
and the project software development environment.
The mapping is achieved by our system; a software
development management environment based on the
model. User interface of the system is provided to
manage objects directly. With this interface, the de-
velopers can operate objects easily. Periodical search
mechanism to �les is used to synchronize automatically
between the model to the project environment. While
a method is executed, �les are modi�ed/referenced or
tools are invoked. The changes of the status in the
model inuence to the project environment.

Object creation: Object creation is achieved by inher-
iting attributes and methods from .OBJECT, a pre-
de�ned object template, or from any existing object.
Any object creation is based on this object inheritance,
therefore following explanation is focused on object in-
heritance.

Assume object X is already de�ned, and object Y in-
herits from X. First, Y is created as a copy of X but it
does not have any attributes/methods which are not
allowed to be inherited. Then, a modi�cation and ad-
dition to Y is processed. In this model, inheritance is
accomplished with a copy of existing object associat-
ed with newer de�nitions and additional de�nitions for
the new object.

Object inheritance is triggered by executing a pre-
de�ned fork method, which is already de�ned in tem-
plate object. This method gets parameters which are
used to modify self-copied object. Rede�ne the fork
method allows to de�ne object-speci�c initialization.

3. Web-based Process Management Sys-
tem

Figure 2 illustrates our process management system.
This system works on network-based environment, and
co-exists with existing environment. It uses an open
web technology, and it is designed for both software
developers and project managers. It is composed of
server system and client system.

The server system consists of the repository, reposi-
tory programs, the method engine, the method sender,
the HTML (HyperText Markup Language) translator,
and the web server. The server system manages the ob-
jects described with a model, executes a method, and
generate an user-interface system for the client system.
The client system consists of a web browser and the
method executor.

TCP/IP

Method
Sender

Method
Engine

Repository Program

HTML TranslatorWeb server

Server host

Web browser

Method Executor

Client host

Method evaluation

Generating HTML document

Repository

Communicates method executor

A typical web service daemon

Manages repository contents

User backend program

A common web client

Figure 2. System Overview

3.1 Server System

There are mainly three parts in the server system:
the repository part, the method execution part, and
user-interface part. All of the components are running
in a server host.

Repository Part: The repository is for a object stor-
age management. It handles the object descriptions,
and collects/stores the information in software devel-
opment environment such as the result of method exe-
cution and so on. Actually, the repository is �les and
directories of the �lesystem: objects are mapped to the
directories, and attributes/methods are mapped to the
�les.

The operation of the repository is achieved by the
repository programs. Each operation has a repository
program. There are seven types of repository program-
s: list the attribute, modify an attribute value, show
an attribute value, show the object location, list the
methods, show the method contents, and list the ob-
ject itself.

Method Execution Part: The method engine part is for
the interpreter of method description. It works as the
core part of process execution. It is also communicates
with other parts (repository and user-interface part),
and manages the behavior of the whole system.

The method sender is a sub-component of method
engine. It manages client-side execution by method ex-
ecutor; it sends a job to method executor, and waits
until the job is �nished, and the results is returned
to method executor. Operations to the attributes
(read/write a value), the contents evaluated method,

and the returned results frommethod executor are used
as the basic data for process management.

User-Interface Part: The user-interface part is for in-
teractions between the system and the users. It pro-
vides the feature to show the information of the objects,
to enact process with a method, to provide the informa-
tion of the result of past activity, and so on. This part
consists of the HTML translator, a web server/browser,
and the method executor. The HTML translator trans-
lates the repository information from/to the HTML
format, i.e., we employ a Web system for the system of
human-computer interaction. The web server is usually
used in any place. We employ the Apache http server
for the system, and modi�es to communicate the oth-
er components of the system each other. The method
executor receives the actual method contents from the
method sender, evaluates the method, and returns the
execution result.

3.2 Client System

A web browser is also commonly used in the world.
We assume that the most development environment
have already installed such browser. The method ex-
ecutor is for user-side execution. The execution con-
tents is passed from method sender, and the method
executor executes the contents (also invokes other pro-
grams if needed), and returns a result of the execution.
Each user runs a web browser and one method executor
for a client system.

3.3 Prototype Implementation

We implement this system on FreeBSD operating
system with PentiumPro-based Personal Computer.
We used the Perl language to construct this system
to establish a high portability of the system. However,
we do not hesitate to use C language for the mission-
critical components such as method execution. Our
system also employs the components commonly used
in many places. This is because these components are
robust enough, and cause low impact to existing devel-
opment environment.

4. Case Study: ISPW-6 Example Prob-
lem

In this section, we show a case study of our system,
an application to ISPW-6 Example Problem. First, we
describe what is the ISPW-6 example, then we show
the way of an application of the system to the problem.

4.1 ISPW-6 Process Modeling Example

As a software development process to model, we em-
ploy ISPW-6 Example Problem[8], which is proposed
by Kellner et el in the 6th International Software Pro-
cess Workshop. This example is commonly used to
provide the basis of comparison and evaluation of var-
ious software process modeling and the execution sys-
tem. There are also several extensions to the example,
however, we only uses the core example problem.

The core example problem speci�es a process of
modifying single module in a system. This process
is composed of eight sub-steps: there are speci�es
scheduling task, design task, review task, coding task,
test task, and monitoring task. Each sub-steps are de-
scribed as input and output artifacts, activity and its
requirements, engineers' role and organization. These
tasks, artifacts and its relationship are shown in �gure
3.

Notification
of successful
testing

Requirements change

: Hand carried
: Computer I / O

: E - mail
: Verbal

Project plans

Completion
notification

 Update
project plans

Feedback

Task / schedule
notification

 Outcome
notification

Approved
modified design

Software
design
document
file

Current
design

Current
source code

Modified source /
object code

Object code

Software
development
file

Feedback Current
source code

Feedback

: Modified design Modified test plans

Current
test plans

Test plans file
Test package file

: Current unit test package

Test
results

Modified test plans

Schedule and
Assign Tasks

Monitor
Progress

Review
Design

Modify
Design

Modify
Code

Modify Unit
Test Package Test Unit

Modify
Test Plans

: Modified unit test package

Figure 3. ISPW6 Process Modeling Example

4.2 Application of the System

In order to con�rm that our prototype system is
functionally valuable, we applied ISPW-6 process mod-
eling example to the system.
Analyze the Example: At �rst, we should decide the re-
al situation of software development environment with
ISPW-6, since the example only speci�es the role of
the engineers and the type of artifacts; nothing are de-
scribed about the number of engineers, document �le-
name, and so on.

In this application, we assume six engineers; one
project manager, two design engineers, two quality
assurance engineer, and one member of con�guration
control board. They are teamed up, and work on the
same network. For the simplicity, we assume that there
are only one �le for each type of artifacts.

Describe as Objects: We found that there are three
types of objects in the example; artifacts which are
used in the sub-steps, engineers, and the role of engi-
neers. As a result, we extracted from the example and
describe thirteen objects for artifacts, six objects for
engineers, and four objects for engineers' roles. Figure
1 shows the description of the design document.

The artifacts objects are used for describing the
type, location, applied activity, and so on. The en-
gineers objects are used for describing the name of en-
gineer, favorite tools and personality. The engineer's
roles object is used for describing the role-oriented ac-
tivity for the engineer.

Enact the System with Described Objects: Finally, we
import the objects to the system and enact the system.
Following is the sample case of system enaction.

When a developer execute a method, �rst, he/she
use his/her own web browser to see an object which
has a method to execute. Note that all objects and it-
s attributes/methods are mapped into URL (Uniform
Resource Locator), web server and HTML translator
translates from the URL to object contents in HTM-
L document. Then, the developer click the anchor of
the method with a mouse. This action is passed to the
web server, and the method engine are kicked for pro-
cessing this method. The method engine knows who
invokes the method, and evaluate the description of
the method contents. The method engine communi-
cates the method sender if some commands need to be
executed. The method sender sends a command to the
method executor, then the method executor invokes a
command within his/her development environment.

Figure 4 is a screen-shot of the system. This is a typ-
ical UNIX-based development environment, and web
browser shows the contents of object. Method invoca-
tion can be done with the click of the mouse; in this
screen-shot, \coding" method of source code object is
clicked and the editor comes up with source �le.

With this test-drive of the prototype, we have con-
�rmed that the process description is enacted and the
resulting environment established a proper behavior of
the ISPW-6 example. We also found that the proto-
type system provides the feature of software process
management; current status of each objects, the result
of past activities, and so on.

Figure 4. Screen-shot of Prototype System

5. Conclusion

In this paper, we discuss a basic idea of object-
centered process description model and its web-based
implementation to support software development man-
agement.

Our model consists of a set of Objects, to represen-
t all artifacts in software development environment.
With this model, software development environment
itself is illustrated as it is; that is powerful capability
of the process management.

Our system is a web-based software development en-
vironment. The system can be used with existing de-
velopment environment, and it provides product man-
agement and reactive activity execution support. A
prototype has been implemented and ISPW-6 example
has been described and executed on the prototype.

For a further research, more sophisticated process
model to describe the \situation" of ongoing software
development is desired. We have already designed
MonoProcess process modeling approach[9] based on
the model described in this paper, and design the en-
hanced system especially for process management[10];
however, the idea of object-oriented architecture such
as object reection model should be employed. We
have already tried a full implementation of the system.
Validation of our model and more support for process
enaction are also planned.

Acknowledgement

We are grateful to Tetsuo Yamamoto and Yutaka
Fujiwara for their contribution of the development of
this prototype.

References

[1] P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzen-
ti. Software Process Representation Language: Survey
and Assessment. In Proceedings of the 4th Conference
of Software Engineering and Knowledge Engineering,
pages 455{462, 1992.

[2] S. Bandinalli, E. Nitto, and A. Fuggetta. Support-
ing Cooperation in the SPADE-1 Enviornment. IEEE
Transaction on Software Engineering, 22(12):841{865,
1996.

[3] S. Bandinelli, A. Fuggetta, and C. Ghezzi. Soft-
ware Process Model Evolution in the SPADE Envi-
ronment. IEEE Transactions on Software Engineer-
ing, 19(12):1128{1144, 1993.

[4] S. Bandinelli, A. Fuggetta, and S. Grigolli. Process
Modeling in-the-large with SLANG. In Proceedings of
the Second International Conference on the Software
Process, pages 75{83, 1993.

[5] I. Ben-shaul and G. Kaiser. A Paradigm for Decen-
tralized Process Modeling and its Realization in the
Oz Environment. In Proceedings of 16th International
Conference on Software Engineering, pages 179{188,
1994.

[6] K. Inoue. Current Research Activities on Software
Process. Japan Society for Software Science and Tech-
nology Technical Re port, 95(SP-2-1):1{10, 1995.

[7] T. Katayama. Software Processes and Their Research
Topics. In 11th Conference Proceedings Japan Society
for Software Science and Technology, pages 433{436,
1994.

[8] M. Kellner, P. Feiler, A. Finkelstein, T. Katayama,
L. Osterweil, M. Penedo, and H. Rombach. Software
Process Modeling Example Problem. In Proceedings
of the 6th International Software Process Workshop,
pages 19{29, 1991.

[9] M. Matsushita, M. Oshita, H. Iida, and K. Inoue.
MonoProcess: Software Process Description Language
with Object Model. Information Processing Sciety of
Japan Technical Report, PRO-14:97{102, 1997.

[10] M. Matsushita, M. Oshita, H. Iida, and K. Inoue. Dis-
tributed process management system based on object-
centered process modeling. In Proceedings of 2nd In-
ternational Conference on Worldwide Computing and
Its Applications '98, pages 108{119, 1998.

[11] K. Ochimizu. Survey of Research Activities on Soft-
ware Process. Journal of Information Processing So-
ciety of Japan, 36(5):379{391, 1995.

[12] S. Sutton Jr., D. Heimbigner, and L. Osterweil. AP-
PL/A: A Language for Software Process Program-
ming. ACM Transactions on Software Engineering
and Methodology, 4(3):221{286, 1995.

[13] P. Tarr and L. Clarke. PLEIADES: An Object Man-
agement System for Software Engineering. In Pro-
ceedings of the First ACM SIGSOFT Symposium on
the Foundations of Software Engineering, volume 18,
pages 56{70, 1993.

[14] R. Taylor, F. Belz, L. Clarke, L. Osterweil, R. Sel-
by, J. Wileden, A. Wolf, and M. Young. Foundations
for the Arcadia Environment Architecture. In Proceed-
ings of 3rd ACM SIGSOFT/SIGPLAN Symposium on
Practical Software Development Environments, pages
1{13, 1988.

