
Moraine: An Accumulative Software Development Environment for

Software Evolution

Tetsuo Yamamotoy Makoto Matsushitay Katsuro Inouey z

y Graduate School of Engineering Science,

Osaka University

1-3 Machikaneyama, Toyonaka,

Osaka 560-8531, Japan

z Graduate School of Information Science,

Nara Institute of Science and Technology

8916-5, Takayama, Ikoma,

Nara 630-0101, Japan

ft-yamamt, matusita, inoueg@ics.es.osaka-u.ac.jp

Abstract

Recently software is large-scale and complex, and is
being developed in more distributed way, with lots
of developers. To solve these circumstances, enabling
the software evolution is now becoming the hot topic
of software engineering; we think it is also important
to evolve not only software itself but also software
development environment. In this paper, we propose
Moraine, an accumulative software development en-
vironment for software evolution. Moraine records
all the changes of �les as an evolution history, and
trace a history by speci�ed date or query from users'
request. We also implement a prototype of Moraine,
and show the performance of �le recording.

1 Introduction

Recently software is large-scale and complex, and is
being developed in more distributed way, with lots of
developers. In this circumstance, software develop-
ment and maintenance are very diÆcult. Researches
on improving the quality and maintainability of soft-
ware have been emerged. However, when a present
software is executed with the new environment, you
must follow it in the change in the environment. The
cost of the maintenance work of the software for this
is very expensive. The ultimate solution is that the
software is evolutionable; however, we think that not

only software itself but also the software development
environment is evolutionable. Since the future soft-
ware development environments is the successful ex-
tension of the past and the present time of them,
one of major issues in the support e�orts of software
evolution is management of con�gurations and ver-
sions. The software con�gulation management solves
the diÆculties to identify, organize, manage software
products. Managing products is required in each
phase of software development. For example, ele-
ments of software component should be clearly iden-
ti�ed and de�ned in a design phase. However, consis-
tent software con�gulation management is not easy
work. In many software development organizations,
they employ speci�c persons who only manage con-
�gurations and versions of on-going project.

In many cases, existing con�guration management
tools such as RCS[7] and CVS[1] have been used.
However, these version management tools need spe-
cial care to use properly. For that reason education
and training are essential for beginners. These tools
also rely on speci�c proprietary con�guration models.
Therefore, it is diÆcult to change the models.

In this paper, we have devised a novel approach
for supporting software evolution. We proposed here
Moraine, which is an accumulative software devel-
opment environment. Using Moraine, all the �les
automatically are recorded and users can retrieved
speci�ed �le. The background concepts of Moraine
is:

1

� Disc and CPU are becoming very cheap.

� We can record all results what we have done.

� We want to decrease management cost as low as
possible.

� We do not want speci�c models for con�guration
and versioning.

Moraine is composed of two features, accumulation
and reference. All activities to �les are recorded auto-
matically by Moraine as an evolution history. Accu-
mulated histories are analysed, and used to improve
the software development.
This paper is organized as follows. In Section2, we

describe about concepts of Moraine. In Section3, we
show an experimental implementation of a versioning
�le system, which is a basic technology needed for
Moraine. Finally, we conclude this work and present
further works in Section4.

2 Concept of Moraine

In this section, we explain about two major features
of Moraine.

2.1 Accumulation

Moraine records all the �les we have created as an
evolution history. We do not need to care the �le
preservation; you can delete it from the current envi-
ronment if it is not needed at all. It is easy to create
a next version; you can simply edit or create �le, and
old versions will be simply discarded. Thus, we do
not need special preparation for creating a new re-
vision. Engineers are not requested to earn how to
use it at �rst. The typical operations should be au-
tomatically achieved by Moraine. Operations to a
�le (read and write) are automatically mapped into
activities of version management; engineers do not
consider what should be done to manage the prod-
uct versions. Consequently, there are no di�erence
between the operations to usual �le system and this
�le system from a viewpoint of users' processes.

2.2 Reference

Moraine retrieves the history by speci�ed time or con-
�guration mark given by the user. Users can tag a

meaningful name to a �le, because a �le automati-
cally recorded. More than one �le be retrieved at the
same time by tagging the same name to �les. Users
can also show a delta between versions and branch-
ing is easily established. We can go back to a speci�c
version, and resume our work from that point.

Metrics for the evolution is easily obtained by
Moraine. The derived metrics is used for the project
management, and it is very important for the success
of further project.

3 Prototype of Moraine

In this section, we show an experimental implementa-
tion of a versioning �le system, which is an accumu-
lative part and basic technology needed for Moraine.

3.1 Overview

Moraine consists of two parts which are �les recorded
part and �les referred part. �les recorded part is that
all the �les are recorded. �les referred part is that the
recorded �les are viewed in any way. �les recorded
part is the core system, which is described in the
pages that follow. the system is named the version
control �le system(VCFS).

VCFS manages the versions of regular �les (sym-
bolic link, special �le, socket, and named-pipe are
out of our scope). A new version is created i� a �le is
created or an existing �le is changed. Checking out
the latest version is done with simply reading the �le.
VCFS also supports a �le locking mechanism. Before
checkin is completed, other process can only checking
out the �le.

VCFS employs \checkin/checkout model"[2] which
was proposed by RCS, and VCFS itself does not
have its own version management mechanism (sub-
system); engineers can import a favorite version man-
agement sub-system which is adaptable to the model,
i.e., VCFS can use RCS commands.

Current prototype of VCFS runs on FreeBSD 3.0-
RELEASE[3], a BSD UNIX[4, 5] variants. VCFS is
written in C and about 5000 lines total; VFS in kernel
for 4500 lines, VCD for 340 lines, and 300 lines for
others.

2

DISK

UNIX File System
 (UFS)

VFS

Kernel User

VCD

RCS VCS

Control Commands

 show
a delta

retrive
previous
versions

User
User
Process

Version Management
 Sub-System

VCFS

Figure 1: System overview of VCFS

3.2 System Design

VCFS is composed of �le system (VFS), version
control daemon (VCD), version management sub-
system, and VFS control commands. Fig. 1 shows
the structure of the VFS components.

The advantage of the separation of version manage-
ment facility from the kernel is that switching check-
in/check-out operations can be easily done. In addi-
tion, installing VCFS to a software development or-
ganization can be easily performed if RCS is already
employed at the organization. VCFS also allows to
work with yet another check-in/check-out style ver-
sion management system.

3.2.1 File System

Since VCFS is implemented as a stackable �le sys-
tem, all �les handled by VCFS are stored to a raw
�le system. Each �le via VCFS is consists of two ac-
tual �les; one for the latest version, and another for
version repository (Fig. 2).
Usually VCFS shows the latest version of the �le

via �le system. For example, we assume that /ver-
siondb is mounted to /proj by VCFS and create a �le
/proj/foo. VCFS creates \/versiondb/foo,a" for the
latest version of �le foo (/proj/foo itself) and \/ver-
siondb/foo,v", for the version repository. Note that
/versiondb/foo,v is invisible via VCFS; it is only for
version management and not for the ordinal opera-
tion.

VCFS always keeps the latest version of every �le
(/versiondb/foo,a in the previous example) for fast
�le read/write to the latest version which is modi�ed
in the most cases of software development. When a
UNIX process opens a �le in read-only mode, VCFS
behaves as the same as NULL �le system[6]. When a

foo

foo,a

proj

versiondb

/

foo is foo,a

foo,v

User

Latest

Figure 2: Mapping �les between VCFS and actual
�le system

process opens a �le in write-only or read-write mode,
VCFS hooks close() system call and performs a check-
in operation to a �le. The check-in operation runs by
the version control daemon and the daemon calls the
version management sub-system which is outside of
the kernel.

3.2.2 Version Control Daemon

VCD is a daemon process which acts as a bridge be-
tween the kernel and the version management sub-
system. VCD dispatches the request from the kernel
to the version management sub-system.

3.2.3 Version Management Sub-System

The version management sub-system is the actual
version management part of VCFS. In general, ver-
sion management sub-system consists of a set of tools.
VCFS employs external version management systems
as the sub-systems, and we can change the sub-
systems to use. Current prototype of VCFS has two
kinds of version management sub-systems, RCS and
VCS.
RCS keeps only a delta of each version and the

latest version. RCS allows version derivation (a tree
structure of version sequence), and a derived version
is called as a branch. RCS sub-system uses RCS tools
to record versions.
VCS is a simple version management system as the

one of VMS �le system. VCS saves all versions as-
is, and does not calculate the delta between versions.

3

No version derivation is allowed, however, registering
a new version is faster than the RCS sub-system.

3.2.4 VFS Control Commands

VFS control commands help to control VFS behav-
ior. Following commands are already available. We
are now working on Web-based VCFS tools which
overrides VFS control commands, to support graphi-
cal and understandable representation of version his-
tory.

� Retrieve previous versions
Users can retrieve any one previous version (not
the latest version) by specifying a version num-
ber and/or its created date.

� Make a branch
Branching is done with control commands if the
version management sub-system has branching
feature.

� Show a delta between versions
Users can check the di�erence between versions.

3.3 Evaluation

This section discusses the prototype of VCFS from
viewpoints of the system performance and storage
size. We take up UFS (actually FFS, standard �le
system for BSD UNIX) and NULLFS (loop-back �le
system, implemented as a stackable �le system) to
compare with our VCFS. All tests are made at our
Moraine development testbsd; 166MHz Pentium PC
having 48MB RAM and FreeBSD 3.0-RELEASE.

3.3.1 Performance

At �rst, we measured an elapsed time for a UNIX
process to read distinct new �les of 1M bytes size
repeatedly. \An elapsed time" means time between
process initiation and process termination; be aware
that an elapsed time includes an overhead of typical
UNIX processes (process initialization, etc).

Fig. 3 shows the results of the reading test of
VCFS, UFS, and NULLFS. \VCFS(RCS)" means
VCFS using RCS as the version management sub-
system. The vertical axis shows an elapsed time, and
the horizontal axis shows the number of �le reading.

�
�
�
�
�
�
�
�
�
�

��

� � � � � � � � � ��

¥ÌÄ¹¼ÉwÆ½wÉ¼¸»ÀÅ¾

«
ÀÄ
¼
�ª
¼
º
��

��ª�©�ª�

¥¬££�ª

¬�ª

Figure 3: Read (1M bytes �les)

�

�

��

��

��

��

��

��

� � � � � � � � � ��

¥ÌÄ¹¼ÉwÆ½wÎÉÀËÀÅ¾

«
ÀÄ
¼
�ª
¼
º
��

��ª��ª��

��ª��ª�

��ª�©�ª��

��ª�©�ª�

¥¬££�ª

¬�ª

Figure 4: Write (1M bytes �les)

The time for VCFS(RCS) is almost the same as one
of NULLFS. With regard to �le reading, it is under-
stood that it takes almost no extra time as for the ver-
sion control functions in the �le system. VCFS(RCS)
and NULLFS are slower than UFS, since there is an
implementation overhead of a stackable �le system.
We also measured an elapsed time to write �les,

similar to �le reading test described before. Fig.
4 shows the results of writing test. \VCFS(VCS)"
means VCFS using VCS as a version management
sub-system. \VCFS(VCS+)" and \VCFS(RCS+)"
includes a time of synchronization between VCD and
sub-system. In general, VCD should not wait the
termination of sub-system as usual; however we mea-
sured these for comparison purpose.
NULLFS is about 10% slower than UFS, and it

is the same of reading test. Writing a �le in VCFS

4

Table 1: A sample data

All lines of codes The number of �les The number of versions Compilation success number of times

data1 9339 45 311 222

data2 4067 20 147 92

data3 2543 18 247 110

Table 2: Total �le size (K bytes)
UFS VCFS(RCS) VCFS(VCS)

data1 225 1388 3149
data2 117 546 1377
data3 73 604 1501

requires a new version registration which is not re-
quired by the reading, so VCFS consumes 30% or
more time compared with UFS. Actual time for a
new version registration is twice as of UFS, compar-
ing VCFS(RCS+)/VCFS(VCS+) with UFS. Actu-
ally, VCD and sub-system work asynchronously so
VCFS is only 30% slower than UFS, and we assume
that it is reasonable.

3.3.2 File Size

We applied a sample data taken from a programming
seminar of Osaka University (Table 1), and measures
the total �le size saved into a �lesystem. The test
creates/updates �les, and then compile them. Table
2 shows the result of �le size test.
The result of UFS shows an actual size of �nal ver-

sion of products. The result of VCFS shows there are
more disk spaces to save the whole data; VCFS(RCS)
requires several times, and VCFS(VCS) requires ten
times as much as of UFS. However, the result of
VCFS(VCS) shows that there are only ten times as
much as the �nal version, if we have saved all version
of �les; we think it is reasonable size for supporting
software evolution. Note that the total �le size may
vary; it depends on what sub-system is used with
VCFS.

4 Conclusion

In this paper, we proposed \Moraine", an accumula-
tive software development environment for software
evolution; Moraine records all the �les we have cre-
ated, and shows the history of them. We also imple-

mented and evaluated VCFS which is a basic tech-
nology for Moraine.
As a further work, user interface in which users

can retrieve �les easily should be implemented. Also,
supporting distributed software development envi-
ronment and more usability evaluation are required.

References

[1] Berliner, B.: CVS II: Parallelizing Software De-
velopment, Proceedings of 1990 Winter USENIX

Conference, Washington, D.C. (1990).

[2] Feiler, P. H.: Con�guration Management Models
in Commercial Environments, Technical Report
CMU/SEI-91-TR-7, Software Engineering Insti-
tute, Carnegie-Mellon University, Pittsburgh,
Pennsylvania 15213 (1991).

[3] Hubbard, J. K.: RELEASE NOTES FreeBSD
Release 3.0-RELEASE. This document is
available on the World-Wide Web at the URL
\http://www.freebsd.org/releases/3.0R/notes.html".

[4] Le�er, S., McKusick, M., karels, M. and Quar-
terman, J.: The Design and Implementation of

the 4.3BSD UNIX Operating System, Addison-
Wesley (1989).

[5] McKusick, M., Bostic, K., karels, M. and Quar-
terman, J.: The Design and Implementation of

the 4.4BSD UNIX Operating System, Addison-
Wesley (1996).

[6] Pendry, J.-S. and McKusick, M.: Union Mounts
in 4.4BSD-Lite, Proceedings of the USENIX 1995

Technical Conference, New Orleans, LA, USA,
pp. 25{33 (1995).

[7] Tichy, W. F.: RCS { A System for Version Con-
trol, Software{Practice and Experience, Vol. 15,
No. 7, pp. 637{654 (1985).

5

