Systems and Computers in Japan, Vol. 32, No. 10, 2001

Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J82-D-I, No. 10, October 1999, pp. 1256~1264

A Slice Reduction Method Using Function Activation
Information

Akira Nishimatsu,' Minoru Jihira,? Shinji Kusumoto,' and Katsuro Inoue'

!Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531 Japan

2Department of Information Science, Nara Institute of Science and Technology, Ikoma, 630-0101 Japan

SUMMARY

During debugging or maintenance of large-scale soft-
ware, it is useful to be able to restrict the reference range to
a part of the program rather than reference the entire pro-
gram. Program slicing has been proposed as a method to
restrict the reference range. A static slice extracts the set of
statements that can affect the values of the variables being
watched. In many cases, however, the slices include parts
that are in fact unrelated, and so the reference range cannot
be sufficiently restricted. On the other hand, a dynamic slice
can sufficiently restrict the reference range by actually
executing the program and then using the dynamic infor-
mation thas obtained to extract the set of statements which,
when executed, may have an effect on the value of the
variables being watched. However, considerable time and
space are required in order to obtain the dynamic informa-
tion during program execution. In this paper the authors
propose a program slice extraction method which combines
the small amount of dynamic information obtained by
executing the program with static analysis. Slices extracted
using this method are referred to as Call-Mark slices. When
calculating a Call-Mark slice, first the data dependence
relationship and the control dependence relationship in the
program are analyzed in a static manner, then the proce-
dures and function call memory during program execution
- are stored. Then, by clarifying the dynamic dependence
relationship in the variables from the above information,
slices can be collected more efficiently than in conventional

59

approaches. In addition, the authors use the Call-Mark slice
in a slicing system that was previously developed, and then
evaluate its validity. © 2001 Scripta Technica, Syst Comp
Jpn, 32(10): 59-68, 2001

Key words: Static slice; dynamic slice; depend-
ence analysis; execution overhead.

1. Introduction

Debugging and maintenance of large-scale software
represents an important topic in research in software engi-
neering. One approach for debugging and maintaining
large-scale software efficiently is to limit the reference
range by extracting the parts which are directly or indirectly
related to the information to be known, and not reference
the entire program. A method using a program slice (here-
after, “slice”) has been proposed for this approach [8, 19].

The authors have already experimentally evaluated
the validity of slices for debugging and maintenance [14].
In that experiment, subjects were divided into two groups.
The subjects in the first group used only conventional
debugging tools, whereas those in the second group found
the locations of faults using conventional debugging tools
and slice tools. The time required for each group to find the
locations of the faults was then measured. A statistical
analysis of the required time revealed a meaningful differ-
ence between the working time for the two groups. The use

© 2001 Scripta Technica

of slices restricted the range which the program referenced.
Concentrating only on the restricted range improved effi-
" ciency. As a result, finding the location of faults could be
performed more efficiently.

Considerable research has already been done on
slices [7, 8]. A static slice is a slice for which a set of
statements that may affect the values of variables being
focused on is extracted. In general, a static slice is a tech-
nology for extracting a part of a program from the original
program. During source code analysis, the size of the ex-
tracted slice is often large because of consideration of all
input and flow control. A dynamic slice is a slice for which
a set of executed statements that may affect the values of
variables being focused on is extracted with respect to
program execution in which data are provided [1, 9].

Because a dynamic slice is based on execution with
respect to a particular input, a statement dependent only on
a statement which is not executed, and a statement which
is not executed are automatically excluded, and thus a
dynamic slice is generally smaller than a static slice. On the
other hand, dynamic slice calculations require more mem-
ory and execution overhead for analysis of dynamic de-

pendent relationships.
In this paper, the authors propose a new slice tech-

nology (the Call-Mark Slice) in order to resolve these
problems. This technology has the following charac-
teristics:

(1) Information resulting from a static analysis and
small amounts of dynamic information on function calls is
combined, and execution overhead is kept to a minimum

level.
(2) The portion extracted as a slice is positioned

between the static slice and the dynamic slice.

The authors installed their Call-Mark slice in a slice
system [15] which had already been developed. In order to
evaluate the validity of the Call-Mark slice, sample pro-
grams were executed on the system, and data were meas-
ured. The results showed that the Call-Mark slice could
considerably limit the reference range compared to a static
slice, as well as significantly reduce the load required to
collect dynamic information during execution as compared
to a dynamic slice.

Section 2 briefly describes static slices and dynamic
slices. Section 3 explains the Call-Mark slice. In Section 4,
the installation of the Call-Mark slice in the authors’ system
is described and examples of the execution of sample
programs are given. Section 5 offers a comparison with
other program slice extraction technologies. Section 6 pro-
vides a summary and suggests future topics.

60

2. Static Slices and Dynamic Slices

2.1. Static slices

Let us consider the statements s, and s, in a source
program p. When the following conditions are fully satis-
fied, a control dependence (CD) from statement s, to state-
ment s, is said to exist.

o Statement s, is a conditional statement.
¢ Whether or not statement s, is executed depends
on the results of statement s,.

This relationship is expressed as s; — 5.

When the following three conditions are all met, a
data dependence (DD) is said to exist for the variable v from
statement s, to statement s,.

o The variable v is defined for statement s,.
The variable v is referenced for statement s,.

o There is at least one path which can be executed
from statement s, to statement s,. In addition,
there is no statement which defines the variable v
between statement s; and statement s, for that
path.

This relationship is represented as s; —— s,.

The vertices on a program dependence graph (PDG)
represent various statements, including inserted statements
in the program, input and output statements, conditional
judgment statements, and procedure statements. The edges
represent the above two relationships among the state-
ments. The program dependence graph for the Pascal
source program in Fig. 1 is shown in Fig. 2.

The static slice [the pair (v, s) is referred to as the
slicing base and represents the calculations for the slice for
any statement] for the variable v in statement 5 in a program
is the set of control dependence edges from the vertices
corresponding to the slicing base and the statements corre-
sponding to the vertices which can reach the data depend-
ence edges by moving backwards.” For instance, when the
static slice is calculated using the variable d in statement 24
of the program in Fig. | as a slicing basis, all statements
except for the write statements (lines 12, 14, and 16) are
included, as shown in Fig. 3.

2.2. Dynamic slices

In dynamic slice calculations, the dependence rela-
tionship is calculated for the source code, then the slices are

*When following the data dependence edges, first the edge for v is
followed, then only the edge for the affected variable is followed using
estimates.

1 program Square_Cube(input,output);

2

© O N OO bW

11
12
13
14
15
16

17
18
19
20
21
22
23
24
25

var a,b,c,d : integer;
function Square(x : integer):integer;
begin
Square := x#x
end;
function Cube(x : integer):integer;
begin
Cube := xexex
end;
begin
vriteln("Squared Value 7");
readln(a);
vriteln("Cubed Value ?7");
readln(b);
vriteln("Select Feature! Square:0
ube: 1");
readln(c);
if(c = 0) then
d := Square(a)
else
d := Cube(b);
if (d < 0) then
d := -1 ¢ d;
vriteln(d)
end.

Fig. 1. Pascal source program.

Data Control

a4, ————y

Fig. 2. Program dependence graph (PDG).

extracted. In dynamic slice calculations, the object of the
calculations of the dependence relationship is an execution
sequence. An execution sequence is a sequence of state-
ments that is executed in practice when a particular input is
given and a program is executed. Also, the execution of the
p-th statement in an execution sequence is referred to as the
execution time p.

Let us consider the execution times r; and r, in the
execution sequence e. When the following conditions are
all satisfied, dynamic control dependence (DCD) is said to
exist from r; to r;. ’

¢ The execution time r, is a conditional statement.
e Whether or not r, is executed depends on the
results of r;.

When the following conditions are all satisfied, dy-
namic data dependence is said to exist for the variable v
from ry to r,.

e The variable v is defined for r,.

1 program Square_Cube(input,output);
2 var a,b,c,d : integer;
function Square(x : integer):integer;
begin
Square := xex
end;
function Cube(x : integer):integer;
begin
Cube := xexex
10 end;
11 begin
12
13 readln(a);
14
15 readla(b);
16
17 readln(c);
18 if(c = 0) then

0 O N W

19 d := Square(a)
20 else

21 - d := Cube(b);
22 if (d < 0) then
23 d := -1 ¢ d;
24 vriteln(d)

25 end.

Fig. 3. Static slicing results by d at line 24.

e The variable v is referenced for r3.
e There is no execution time which defines v be-

tween r, and r, for that path.

The slicing basis (x, r, v) for a dynamic slice consists
of the input x, the execution time r, and the variable v. The
dynamic slice corresponding to the slicing basis (x, r, v) is
the set of statements which can be obtained by following in
reverse the dynamic control dependence and the dynamic
data dependence relationships from r.

Figure 4 shows the results of dynamic slicing calcu-
lations for the variable d, the execution time 13 (time at
which the statement in line 24 is executed), and the input
(a=2,bh=3,c=0)whichis the slicing basis for the program
in Fig. 1.

2.3. Features of dynamic slices and static slices

In the calculations for static slices, dependence analy-
sis for the source program is performed without executing

1 program Square_Cube(input,output);

2 var a,b,c,d : integer;
3 function Square(x : integer):integer;
4 begin
5 Square := x¢x
6 end;
7
8
9
10
11 begin
12
13 readln(a);
14
15
16
17 readln(c);
18 if(c = 0) then
19 d := Square(a)
20
21
22
23

24 vriteln(d)
25 end.

Fig. 4. Dynamic slicing result by d at line 24 with input
(@=2,b=3,c=0).

62

the program, and is implemented using the obtained PDG.
When creating a PDG, the control dependence relationship
can be readily found by checking the structure of the
program. In addition, the data dependence relationship can
be found by solving the data flow equation [3]. Although
the complexity of the static slice calculations varies with
the evaluation standards, in practice calculations can be
performed in a short time [15, 17]. However, because a
static slice considers all executable paths, in many in-
stances, the calculation results for a static slice include a
large portion of the original program, and so the reference
range cannot be kept small.

On the other hand, because a dynamic slice is calcu-
lated from the execution sequence obtained by executing
the program using particular input, parts unrelated to the
execution may be included in the slice. In other words, in
general the extracted size is smaller than a static slice. Let
us in addition consider finding the causes of failures in a
program when problems occur in a particular set of test
data. In a static slice, calculations are performed up to the
dependence relationship for the paths not executed for the
test data, and so parts wholly unrelated to the cause of the
fault may be included. However, because a dynamic slice
calculates from the middle of a part related to the execution
of the test data, parts unrelated to the fault will not be
included in the slice. Thus, this is highly efficient when
finding the location of faults in a particular set of test data.

Although analysis prior to program execution is not
necessary for dynamic slice calculations, information about
the dynamic dependence relationship and the dynamic con-
trol dependence relationship during execution must be
stored in main memory. As a result, dynamic slice calcula-
tions require more memory and computational time. In
addition, the execution sequence whose object is to extract
a dynamic slice may, depending on the data, become ex-
tremely large because it is proportional to the number of
statements the program executes. As aresult, aconsiderable
amount of extraction time may also be required.

3. The Call-Mark Slice

3.1. Outline

The Call-Mark slice proposed in this paper uses both
static information and dynamic information in order to
resolve the problems with static slices and dynamic slices.
The problems with dynamic slices described in the previous
section can be summarized as follows.

¢ Analysis of the execution sequence memory and
the dynamic dependence relationship

e Slice calculations for the dynamic dependence
relationship

Regarding the former problem, the authors decided to store
only information on whether or not the function or proce-
dural call statements are executed instead of precise infor-
mation. As for the latter problem, the authors resolve it by
analyzing the dynamic dependence relationship and not the
static dependence relationship.

A Call-Mark slice is composed of a set of statements
obtained by excluding statements for which the lack of
effects can be calculated using the following methods from
among those statements not affected by a static slice during
execution of a program with particular input data. Because
statements that are not affected are calculated, the authors’
method focuses on whether or not a feature in a part of a
program is executed, in other words, whether or not a
function call statement is executed can be determined.

3.2. Definitions (ED, CED)

In order to calculate a Call-Mark slice, a new state-
ment dependence relationship must be defined. An execu-
tion dependence (ED) is said to exist from statement s, to
statement s, when the following condition is satisfied:

o Statement s, will not be executed when statement
s, is not executed.

Although dynamic information is required in order to
check all of the execution dependence relationships in a
program, a subset can be found by using static analysis. In
other words, when s, and s, are in the same basic block of
the control flow graph (CFG) [3], that is, when there is no
path that goes out of or enters into the two statements, s,
and s, are in an execution dependence relationship. In
addition, when s, is a basic block which controls the s, basic
block, s, is execution dependent on s,. Control flow and
dominance relationships for the basic blocks can be readily
found through static analysis [3].

Next we define the dominance call statement set
CED(s) with respect to statement s as follows:

CED(s) = (it is a function or a procedure call, and s
depends on the execution of ¢}

The execution of statement s is subordinate to the call
statement included in CED(s). When none of the call state-
ments included in CED(s) are executed, it can be deter-
mined that s has not been executed. The following simple
program shows an example of CED.

sl: call A ;

82: if a=1 then begin
83: b:= ¢ ;

84: call B ;

63

Here, sl and s2 depend on each other for their execution.
53 and s4 also depend on each other for their execution.
Moreover, s3 depends on s1, and s4 on 52, for execution.
As aresult, CED(s2) = {s1} and CED(s3) = {51, s4} can be
obtained.

3.3. Input language

In order to compare static slices and dynamic slices
in this paper, the authors’ method was used in a slice system
previously developed [15]. As a result, the input language
used in this slice system was also used as the input language
for the Call-Mark slice. The input language is as follows.
This language has conditional statements (if statements),
substitution statements, repeat statements (while state-
ments), input statements (readln statements), output state-
ments (writeln statements), procedure call statements, and
compound statements (begin-end statements) as state-
ments. Only scalars will be considered as a variable type.
A program consists of global variable declarations, proce-
dure (function) definitions, and a main program, and does
not include a block structure. Only local variables and
virtual argument variables defined in a declaration within a
procedure, and global variables, can be referenced. Local
variables within other procedures cannot be referenced.
Procedures can be defined to be self-recursive or mutually
recursive, and their arguments are treated as being passed
by value.

Although the above language is used as an input
language in this paper, execution-dependent relationships
can be calculated even for languages which include non-
structural statements such as pointer variables and goto
statements. As a result, the Call-Mark slice can be applied
to this kind of language.

3.4. Definition of the Call-Mark slice

First, an intuitive definition of the Call-Mark slice
will be given. For the execution e with respect to the input
xinaprogram P, the set §; of statements for which the entire
dominant call statement set in the program is executed will
be considered. When the static slice with respect to the
slicing basis (s, v) for P is S,, S; N S, can be referred to as
“the Call-Mark slice for the slicing basis (x, s, v).” This
means that statements which are included in the Call-Mark
slice but not in the static slice are either not executed in e
or have an execution-dependent relationship with the state-
ments that are not executed.

The Call-Mark slice can be defined formally by using
Steps 1 through 3.

[Step 1] Analysis of dependency relationships prior
to execution

Inputs
PDG: Program Dependence Graph
C M : Set of executed call statements.
(se. v): Slicing bias, s, is a statement, v is a variable name.
Temporary
M, N: Set of nodes
m, n: Nodes
Output
M : The set of nodes obtained as the Call-Mark slice.
Algorithm Body
(1) M« s
(2) Ne—{n|n = > sl u{m|m———+>s.}
(3) While N $ ¢ The following is repeated.
(a) Oncof n € N is sclected
(b) Ne—N-=-n
(c¢) i CED(n)ZCM, return to (a)
(d) M—MuUn
(e) Ne—Nu{m|m¢g MA(m —"= nv

m— — -*n)}
Here, w is the name of each variable referenced
at statement n

Fig. 5. Algorithm of postexecution collection for
Call-Mark slicing.

1 program Square_Cube(input,output);

2 var a,b,c,d : integer;
3 function Square(x : integer):integer;
4 begin

5 Square := xex

6 end;

7

8

9

10

11 begin

12

13 readln(a);

14

16

16

17 readln(c);

18 if(c = 0) then
19 d := Square(a)
20
21

22 if (d < 0) then
23 d :=-1¢d;
24 vriteln(d)

25 end.

Fig. 6. Call-Mark slicing result by d at line 24 with
input(@a=2,b=3,c=0).

64

As with the calculations for the static slice, the data
dependence relationships and control dependence relation-
ships are analyzed, and the PDG is created.

[Step 2] Recording during execution

The program is executed, and for each function or
procedure call statement that is executed, “executed” is
recorded in the PDG node corresponding to the call state-
ment. The set of recorded call statements is referred to as
CM.

[Step 3] Extraction of the Call-Mark slice

The Call-Mark slice is extracted from the algorithm
in Fig. 5.

Figure 3 shows the static slice for the slicing basis
(line 24, d) in the program in Fig. 1. Let us now consider
the execution of this program using the input (a =2, b =3,
¢ =0). In this case, CM = {19}, and Fig. 6 represents the
Call-Mark slice for a slicing basis similar to the static slice.

4. Using the Call-Mark Slice

4.1. Outline of the slice system

In order to evaluate the Call-Mark slice, the authors
added the Call-Mark slice function to the slice system [15]
using a Pascal program developed by the authors’ group
(Fig. 7). In this system, the source program is analyzed into

L
jc
Deperidénce -
Gra ® O
Trace“F%fo. Cal? Mark|
hin 4 Flags_
et
Executor
Debugger
* Dynamic
Programmer / § Slicer
M .
® call-mMark
Interactive Slicer
Viewer/Editor ¥ Static
- _Slicer,
Static i
Dependence

Analyzer g i *

Fig. 7. Architecture of slicing system.

an abstracted source program and then recorded. The user
can interactively reference or alter the source program via
a visual editor. The source program is converted to a PDG
analyzed via user input. The static slice is calculated in the
PDG using the designated slicing standard. The source
program and the static slice can be executed via the inter-
preter (executor). The debugger has functions to set tracing
and break points. The dependence relationships for dy-
namic variables can be recorded during execution and then
used to calculate the dynamic slice. The overall size of the
system is roughly 19,000 lines in C language, including the
portions related to the Call-Mark slice. The Call-Mark slice
was put in using the method described in the previous
section.

4.2. Program execution

Using this system the authors executed several pro-
grams. Table 1 shows the measured data for three programs
(P1: calendar output; P2: bar problem [20], P3: expanded
bar problem). Although these values differed depending on
the slicing basis and input data, in the current experiment
canonical debugging conditions were conceived, and so
these were selected (in many instances, the slicing basis is
an output variable that comes after a program is finished).

Table 2 shows the analysis time required before exe-
cution. This represents the time necessary for PDG struc-
turing for the static slice and the time to calculate the CED
and the PDG structure for the Call-Mark slice. No analysis
was necessary for a dynamic slice at this stage.

Table 3 shows the time needed to execute the pro-
gram. Although not necessary to calculate the static slice,
this was recorded for purposes of comparison with the time
required to execute the original program. When executing
the dynamic slice, this time is also included because the
analysis of dynamic dependence relationships between

Table 1. Size of various slicing results (lines of code)

rogram static | dynamic | Call-Mark
P1 (88 lines) 27 14 22
P2 (387 lines) 175 139 156
P3 (941 lines) | 324 50 166

Table 2. Preexecution analysis time (ms)

(Pentium-I1 300 MHz with 256-MB Memory)

_program | static | dynamic | Call-Mark
P1 22 N/A 23
P2 1,275 N/A 1,362
P3 5,652 N/A 8,670

65

Table 3. Execution time (ms)

(Pentium-11 300 MHz with 256-MB Memory)

_program | static | dynamic | Call-Mark
P1 38 87 47
P2 48 903 53

_P3 4,046 | 31,635 4,104

Table 4. Slice collection time (ms)

(Pentium-11 300 MHz with 256-MB Memory)

program | static | dynamic | Call-Mark
P1 1 199 1
P2 5 2,863 8
P3 93 1,182 80

variables is performed at the same time. In the Call-Mark
slice, the time required to record the function call state-
ments is included in the execution time.

Table 4 shows the time required to collect the slices.
For a static slice, this is the time required to calculate the
dependence relationships in the program dependence
graph. For a dynamic slice, this is the time required to
calculate the dynamic dependence relationships. For the
Call-Mark slice, this is the time required in Step 3.

5. Discussion

5.1. Program execution time

e Extracted slice size

As shown in Table 1, the size of the Call-Mark slice
isa value between the size of the static slice and the dynamic
slice.

The Call-Mark slice extracts statements that fulfill
the following conditions from the static slice.

(Condition 1) Statements that can be determined not
to have been executed based on CM and CED

(Condition 2) Only statements that are determined
not to have been executed and statements that have a
dependence relationship

Consequently, the Call-Mark slice is a subset of the
static slice with respect to the same slicing basis.

The dynamic slice does not include statements which
satisfy the above two conditions. In addition, although the
Call-Mark slice is not actually executed, even if CED and
CM are used, there will be statements that cannot be ex-
cluded. For instance, if a particular statement § is present

in a block whose execution is subordinate to a particular
conditional statement, and if there is no function or proce-
dure call statement in that block or the upper-level block
over it, then because CED(S) = ¢, it cannot be determined
whether or not that block is executed, and that block ends
up being included in the Call-Mark slice. Therefore, the
dynamic slice is a subset of the Call-Mark slice.

o Preexecution analysis time

As shown in Table 2, a little extra time is required for
the Call-Mark slice compared to the static slice. This is
because analysis of the execution dependence relationships
is necessary in addition to the PDG structure analysis.

e Execution time

As shown in Table 3, there is considerable overhead
in the dynamic slice. In the execution of P3, 90 MB of real
memory is used. If the execution of this program were
longer, this overhead would increase that much more. On
the other hand, in the Call-Mark slice, there is little rise in
the overhead compared to the execution (execution of the
original program) in the calculation of the static slice. This
indicates that the time required to record the call statements
is extremely brief.

e Slice collection time

As shown in Table 4, a long time is needed to collect
the dynamic slices. The Call-Mark slice time is roughly the
same as the static slice time. This is also smaller than the
time required for the dynamic slice in program P3. This is
because the PDG range is smaller than the static slice so as
to exclude the parts from the PDG that are unrelated to
execution.

5.2. Related research

The Call-Mark slice is an efficient, practical method
to limit the reference range for a programmer. The preex-
ecution analysis time, the execution time, and the time
required for slice collection are all roughly the same as for
a static slice, and the validity of the slice is greater than that
for a static slice; thus, this method can be thought of as a
good balance between effectiveness and validity. Recently
research other than the Call-Mark slice has also been per-
formed on combining static information and dynamic in-
formation [4, 6].

In Ref. 1, a method for finding a slice from a static
dependence graph is described as an approach to collecting
slices using dynamic information. However, the method
described in this paper requires information regarding

66

whether or not each statement is executed, and so execution
overhead and a larger storage region are required in order
to store the information compared to the Call-Mark slice.
In addition, although the information for each statement
must be stored during execution for the slices calculated
using this approach, the result is that extra statements are
included in the slice compared to a dynamic slice [12].

A hybrid slice [12] improves a static slice by using
breakpoints and function calling history information. The
former is given by the programmer, and is then used to
estimate the executed control flow. The latter is used to
calculate the dynamic slice between function calls and the
return point. Because this method uses more dynamic in-
formation than the authors’ method, it is closer to being a
dynamic slice than the authors’ method, but breakpoints
must be set at appropriate locations in order to improve the
slicing results. On the other hand, the authors’ method can
provide input data and perform calculations automatically
except for designating the slicing basis. In addition, a
hybrid slice requires a very large storage region in order to
store the calling history. The size required depends on the
length of the execution sequence. In the authors’ method,
however, the only region necessary is for storing the execu-
tion of call statements, which is proportional to the size of
the program. When the program execution is long, the
difference in the necessary storage region becomes evident.

A constrained slice [4] is a generalization of a static
slice and a dynamic slice. It uses a method to execute the
coding of a program. Constraint conditions are given as
input. Using this input constraint, a program is rewritten,
and then the dependence relationships are analyzed. This
method includes a generalization of static slices and dy-
namic slices, a partial evaluation, and a simplification of the
program. Though interesting, it is not known if this gener-
alized method can be used efficiently or effectively.

6. Conclusions

Restricting the range to be considered by a program-
mer is extremely important for improving efficiency in
debugging and maintenance. Conventional program slicing
methods have problems with efficiency and effectiveness.
Thus, the authors proposed a Call-Mark slice as an efficient
and effective program slicing technology. This technology
can analyze and execute dependence relationships in
roughly the same time as for a static slice. In addition, the
size of the slice obtained is smaller than a static slice and
larger than a dynamic slice. The authors created a slice
collection algorithm, then evaluated their technology.

In the present system, static dependence analysis
(PDG creation) was performed prior to executing the pro-
gram. In the future the authors will study static dependence
analysis after program execution (after obtaining Call-

Mark information). This should allow for the elimination
of dependence relationship calculations for parts unrelated
to execution and thereby further reduce the dependence
analysis time.

REFERENCES

1. Agrawal H, Horgan J. Dynamic program slicing.
SIGPLAN Notices 1990;25:246-256.

2. Agrawal H, Demillo RA, Spafford EH. Debugging
with dynamic slicing and backtracking. Software
Practice and Experience 1993;23:589-616.

3. Aho AY, Sethi R, Ullman JD. Compilers: Principles,
techniques, and tools. Addison-Wesley; 1986.

4. Field J, Ramalingam G. Parametric program slicing.
Proc 22nd ACM Symposium on Principles of Pro-
gramming Languages, p 379-392, San Francisco,
1995.

5. Atkinson DC, Griswold WG. The design of whole-
program analysis tools. Proc 18th Int Conference on
Software Engineering, p 1627, Berlin, 1996.

6. GuptaR, Soffa ML.. Hybrid slicing: An approach for
refining static slices using dynamic information. Proc
3rd Int Symposium on the Foundation of Software
Engineering, p 29-40, 1995.

7. Harrold MJ, Ci N. Reuse-driven interprocedural slic-
ing. Proc 20th Int Conference on Software Engineer-
ing, p 74-83, 1998.

8. Horwitz S, Reps T. The use of program dependence
graphs in software engineering. Proc 14th Int Con-
ference on Software Engineering, p 392-411, 1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Korel B, Laski J. Dynamic program slicing. Inf Proc-
ess Lett 1988;29:155-163.

Korel B, Laski J. Dynamic slicing of computer pro-
grams. J Syst Software 1990;13:187-195.

Murphy GC, Notkin D. Lightweight lexical source
model extraction. ACM Trans Software Eng Metho-
dol 1996;5:262-292.

Naoi K, Takahashi N. Program slicing using a path
dependence flow graph. Trans IEICE 1995:J78-D-
1:607-621.

Ning JQ, Engberts A, Kozaczynski WV. Automated
support for legacy code understanding. Commun
ACM 1994;37:50-57.

Nishimatsu K, Kusumoto S, Inoue K. Experimental
evaluation of a program slice in a fault location finder.
Tech Rep IEICE 1998;SS98-3.

Sato S, lida H, Inoue K. Test of a debugging support
system based on program dependence relationship
analysis. Trans Inf Process Soc 1996;37:536-545.
Shimomura T. Program slicing technology and appli-
cations. Kyoritsu Publishing; 1995.

Ueda R, Lin L, Inoue K, Shimai H. A method for
calculating slices in a program which includes recur-
sion. Trans IEICE 1995;J78-D-1:11-22.

Vengatesh GA, Fischer CN. SPARE: A development
environment for program analysis algorithms. IEEE
Trans Software Eng 1992;18:304-315.

Weiser M. Program slicing. Proc 5th Int Conference
on Software Engineering, p 439-449, 1981.
Yamazaki T. An explanation of a program design
method using common problems. Inf Proc
1984,25:934.

AUTHORS (from left to right)

Akira Nishimatsu graduated from the Department of Informatics of Osaka University in 1997 and completed the M.E.
- program in 1999. Currently he is affiliated with NTT Data COE System Headquarters. He is pursuing research on program

slicing.

~ Minoru Jihira graduated from the Department of Informatics of Osaka University in 1998. Currently he is in the M.E.
program at Nara Institute of Science and Technology. He is pursuing research related to program slicing and user interfaces.

67

AUTHORS (continued) (from left to right)

Shinji Kusumoto (member) graduated from the Department of Informatics of Osaka University in 1988. While in the
doctoral program, he became a lecturer in the Department of Informatics in 1991, and has been an instructor since 1996. He
holds a D.Eng. degree. He is pursuing research related to project management and quantitative evaluations of manufacturing
and quality for software. He is a member of the Information Processing Council and IEEE.

Katsuro Inoue (member) graduated from the Department of Informatics of Osaka University in 1979 and completed the
doctoral program in 1984. From 1984 to 1986 he was an assistant professor at the University of Hawaii at Manoa. In 1989 he
became an instructor in the Department of Informatics of the School of Engineering Science, Osaka University, an associate
professor in 1991, and a professor in 1995. He holds a D.Eng. degree. He is pursuing research related to software engineering.

68

