
On Detection of Gapped Code Clones using Gap Locations

Yasushi Ueda�, Toshihiro Kamiya�, Shinji Kusumoto� and Katsuro Inoue�

�Graduate School of Information Science
and Technology, Osaka University,
Toyonaka, Osaka 560-8531, Japan

Phone:+81-6-6850-6571, Fax:+81-6-6850-6574
�y-ueda, kusumoto, inoue�@ist.osaka-u.ac.jp

�PRESTO, Japan Science and Technology Corp.
Current Address:

Graduate School of Information Science
and Technology, Osaka University,
Toyonaka, Osaka 560-8531, Japan

Phone:+81-6-6850-6571, Fax:+81-6-6850-6574
kamiya@ist.osaka-u.ac.jp

Abstract

It is generally said that code clone is one of the factors
to make software maintenance difficult. A code clone is a
code portion in source files that is identical or similar to
another. Clones are introduced because of various reasons
such as reusing code by ‘copy-and-paste’ and so on. Since
developers usually modify the copied-and-pasted code por-
tions, there are some gaps between the original code por-
tion and it. Here, we call such code portions include some
gaps Gapped code clone. Up to the present, several code
clone detection methods, which give consideration to such
gap, have been proposed. However, it needs a lot of cost
to detect all the gapped code clones. This paper proposes
a new method to visualize the gapped code clones just as if
they were actually detected, based on the detection results
of conventional code clone. Using the proposed method, the
developer can specify the target clones efficiently. More-
over, we implement the proposed method into the mainte-
nance support environment and conduct the experimental
evaluation.

Keywords: Software Maintenance, Gapped Code Clone,
Code Visualization

1 Introduction

Recently, as software system becomes larger and more
complex, the cost for debugging and maintaining a program
has been increasing. It is generally said that code clone is
one of the factors to make software maintenance difficult
[8].

A code clone is a code portion in source files that is iden-
tical or similar to another. Clones are introduced because of
various reasons such as reusing code by ‘copy-and-paste’,
mental macro, or intentionally repeating a code portion for
performance enhancement, etc [6].

If a code portion includes some faults, we have to correct
all the code clones corresponded to the code portion. Also,
in order to improve the maintainability of the program, it
is often required that a set of code clones is integrated to
one module. In these cases, it is necessary to develop a
systematic method to detect code clones automatically. Up
to the present, several code clone detection methods have
been proposed [1][2][3][6][7][11][13][14][17][15].

We have also proposed a clone detection technique,
which consists of transformation of input source text and
token-by-token comparison. Then, based on the proposed
code clone detection technique, we developed a tool named
CCFinder [12], which extracts code clones in C/C++, Java,
or COBOL source files. Since CCFinder chops input code
into a token sequence and transforms it based on transfor-
mation rules (ex. normalizing the user-defined identifiers),
it can detect clone code portions that have different in syn-
tax but might have similar meanings.

We have applied CCFinder to several commercial soft-
ware and encountered a practical problem. In the case of
‘copy-and-paste’ reuse, the developers usually do not reuse
the code portion as it was but partially modify and then
reuse it. Moreover, in the modification, they do not only
replace the user-defined identifiers in the code portion but
also modify them. For example, some additional statements
would be inserted into it. Then, some gaps are exist be-
tween the original code portion and the copied-and-pasted
code portion. Here, we call such code clone as “gapped
code clone”.

In such case, the developers can subjectively identify the
code clones even if they include some gaps among them.
On the other hand, CCFinder detects the clone as several
short code clones separately. Or, since the minimum length
of a code clone must be set in CCFinder beforehand, if the
code portion is too short, CCFinder does not identify it as

a code clone. Conversely, if we set a small value to the
minimum length, then a lot of code clones are detected and
the information is practically useless.

In this paper, we propose a new gapped clone detection
method using CCFinder. The proposed method does not de-
tect all the gapped code clones but just show all the candi-
dates of gapped code clones based on the conventional out-
put from CCFinder. Then, choosing the interesting gapped
code clone among them, the user can conduct the clone
analysis efficiently. Also, we have implemented the pro-
posed method into our maintenance support environment
Gemini [19]. Then, we have applied it to the data collected
from actual program development in Osaka University and
confirmed the usefulness of the proposed method.

Section 2 introduces the several types of code clone and
describes the needs of gapped code clone detection. Sec-
tion 3 proposes a new gapped code clone detection method
and implementation. Then, in Section 4, we apply the pro-
posed method to the program development and evaluate the
usefulness of it. Finally, Section 5 concludes the paper and
presents suggestions for future work.

2 Preliminaries

2.1 Classification of code clones

Here, we classify code clone corresponded to a code por-
tion � into three types:

Exact code clone � is a code portion that is the same as
� except for the difference about blank, new line and
comments.

Renamed code clone � is a code portion that is the same
as � except for the difference about the corresponded
names of user-defined identifier (name of variables,
constant, class, method and so on). Also, the reserved
words and the sentence structures are the same be-
tween � and �.

Gapped code clone �: � is a code portion that is partly
similar to �. That is, � includes some different code
portion (we call this portion as gap) from �. Assume
that a code portion � is copied and pasted. Then, each
of the following three kinds of codes is called gap: (1)
Newly added code: They are inserted to the pasted
code portion �, (2) Deleted code: They are deleted
from the pasted code portion �, (3) Modified code:
They are modified in the pasted code portion�. Later,
we call � simply “gapped-clone”.

Figure 1 shows the example of Exact code clone �, Re-
named code clone � and Gapped code clone �.

If (i > j)

{

// comment

j=0;

}

If (i > j)

{

// comment

i = i + 1;

j=0;

}

If (a > b) { b++; a=1;}

If (a > b)

{

// comment

b++;

a=1;

}

If (i > j)

{

// comment

i++;

j=0;

}

If (i > j)

{

i = i / 2;

// comment

i++;

j=0;

}

C

E R G(1) G(2) G(3)

inserted modifieddeleted

resued by ‘copy-andpaste’resued by ‘copy-and-paste’

renamed

gaps

Figure 1. ‘Copy-and-paste’ reuse

2.2 What type of code clones does CCFinder de-
tect?

CCFinder detects code clones from programs and out-
puts the locations of the clone pairs on the programs. The
process consists of four steps:

Step1: Lexical analysis: Each line of source files is divided
into tokens corresponding to a lexical rule of the pro-
gramming language. The tokens of all source files are
concatenated into a single token sequence, so that find-
ing clones in multiple files is performed in the same
way as single file analysis.

Step2: Transformation: The token sequence is trans-
formed, i.e., tokens are added, removed, or changed
based on the transformation rules that aim at regular-
ization of identifiers and identification of structures.
Then, each identifier related to types, variables, and
constants is replaced with a special token. This re-
placement makes code portions with different variable
names clone pairs.

Step3: Match Detection: From all the sub-strings on the
transformed token sequence, equivalent pairs are de-
tected as clone pairs. Here, the user can specify the
minimum length of code clone. So, code clones that
are shorter than the minimum length are omitted.

Step4: Formatting: Each location of clone pair is con-
verted into line numbers on the original source files.

As the result, CCfinder can detect exact code clone and
renamed code clone. Later, we call both exact code clone
and renamed code clone as NG-clone (Non-Gapped code
clone).

1. static void foo() throws RESyntaxException
2. {
3. String a[] = new String [] {"123,400", "abc"};

A1 4. org.apache.regexp.RE pat =
A1 5. new org.apache.regexp.RE("[0-9,]+");
A1 6. int sum = 0;

7. for (int i = 0; i < a.length; ++i)
B1 8. {
B1 9. if (pat.match(a[i])){
B1 10. sum += Sample.parseNumber(pat.getParen(0));}

11. }
C1 12. System.out.println("sum = " + sum);

13. }
14. static void goo(String [] a) throws RESyntaxException
15. {

A2 16. RE exp = new RE("[0-9,]+");
A2 17. int sum = 0;

18. int i = 0;
19. while (i < a.length)

B2 20. {
B2 21. if (exp.match(a[i]))
B2 22. sum += parseNumber(exp.getParen(0));

23. i++;
24. }

C2 25. System.out.println("sum = " + sum);
26. }

:
:

Figure 2. Example code clones detected by
CCFinder

In Figure 2, there are two methods written in Java and
the labels on the left side of the line number denote the NG-
clones. Here, the minimum length of the code clone is set
at five (tokens). In Figure 2, A1 (lines 4-6) and A2 (lines 16
and 17), B1 (lines 8-10) and B2 (lines 20-22), and C1 (line
12) and C2 (line 25) are NG-clones, respectively. Each of
the clone length is 7, 18, 6 tokens.

As you can see, there are several differences between the
clones A1 and A2 or B1 and B2 as follows.

Difference1: Name spaces
(e.g. “org.apache.regexp.RE” and “RE”).

Difference2: Variable names (e.g. “pat” and “exp”).

Difference3: Indentations or line feeds.

Difference4: Brace notations.

By the Transformation in CCFinder’s code clone detec-
tion process, the differences are omitted. It aims to identify
practically meaningless differences as the same code. How-
ever, the arguments or for and while statements in the
two methods are still identified as the different code por-
tions although they may be trivial differences.

2.3 Needs of gapped-clone detection

As described in Section 2.2, the two methods in Figure 2
are quite similar each other.

Generally, in the case that the minimum length of the
code clone is set as five tokens, too many code clones would

be detected although only three clone pairs are detected in
Section 2.2.

On the other hand, if the minimum length is set as 15 for
the code of Figure 2, only B1 and B2 is detected as code
clone and other clones are not detected. It is quite difficult
to identify that the two methods are similar based on only
the information of B. Moreover, if the minimum length is
set as 20, CCFinder cannot detect code clones from the two
methods.

However, if we permit a code clone to include gaps that
are shorter than 10 tokens, the code portions labeled with
A, B and C are jointed and they are identified as a single
code clone. In that case, even supposing that the minimum
length is set as a little large number such as 15 or 20, it can
be detected because the length becomes longer. Clearly, it
is easier to check the similarity of the two methods based
on the large one than based on only the information of B.
Therefore, the detection of gapped-clones is meaningful in
investigating the similarity of program.

3 Focusing on gapped-clones using gap loca-
tions

When a list of NG-clones (Non-Gapped clones) exist,
you can solve the gapped-clones detection as a kind of
combination problem, to decide what combinations of NG-
clones can be considered as gapped-clones. If there are
many overlapping or overcrowded NG-clones, one NG-
clone may have many other NG-clones to be combined into
a gapped-clone. As a whole, identification of gapped-clones
from such entangled NG-clones makes a combination ex-
plosion, which needs long time for computation. Practi-
cally, in order to investigate similarity of methods or code
blocks as we have done in Section 2.2 (shown as Figure 2),
you can use each entanglement to find similar code portions,
instead of wasting time on untangling it into gapped-clones.

Our approach is to detect entanglements of NG-clones
as disjoint subsets of a set of all NG-clones, before com-
putation of NG-clones. These entanglements, which can
be computed in relatively shorter time, show the locations
where gapped-clones possibly exist. A tool enables the
users to see such entanglements in a scatter plot and to pick
up interactively one of them to find gapped-clones in it.

3.1 Focusing process

Figure 3 shows the entire process of our approach to sup-
port interactive focusing on gapped-clones. The process
consists of four steps:

Step1: NG-Clone detection.

Step2: Gap identification.

Step3: Visuallization.

Step4: Analysis of source code.

NG-clones

NG-clone detection

gaps

Gap identification

gap-and-clone scatter plot

Visualization

source files

Source code investigation

using gaps and NG-clones information

tuned parameters

correspondings between

gaps and NG-clones

algorithmic analysis

Figure 3. Gapped-clone focusing process

In Step1, we detect NG-clones from input source code.
Next in Step2, the information of gap locations is gener-
ated from NG-clones detected in Step1. Then in Step3, we
visualize the locations of gaps and NG-clones. Finally in
Step4, a user analyses the source code using the visualized
results.

As a sample input for explanation of the algorithm, we
use the following two sequences.

code sequence X: “ABCDCDEFBCDG”,

code sequence Y: “ABCEFBCDEBCD”

Here, symbols “A”,“B”,“C”,... are code portions in a
certain unit such as character, token, line, statement, func-
tion, etc. The algorithm explained in this section can be
adapted to any presupposed NG-clone detection algorithms
regardless of the unit that they use. An implemented tool
(used in the later experiment) uses token as the unit. Also,
though the sequences X and Y are different as a whole,
when X equals completely to Y, the algorithm is the same.
We consider the detection to be performed among multiple
files (programs) or within a single file (program).

Step1 (NG-clone detection)
Detect NG-clones from input source code. Next,
sort the NG-clones as the preparation to identify
gap locations efficiently.

Table 1 shows the sorted list of NG-clones in the sam-
ple. This table contains all NG-clones regardless of
their length, e.g., length of �c6� is 5, �c1, c2, c3,
c5, c7� are 3, �c4� is 2.

Even such small strings (Sequences X and Y: their
lengths are 12) have seven NG-clones. Easily guessed
from this sample, large-scale software will have
tremendous number of short NG-clones. Moreover, al-
most of them are short coincidental ones because of the
existence of simple statements such as substitution and
such information is practically useless. So, practical
clone detection tools often do not detect short clones
whose length is smaller than a threshold.

In the below explanation, we assume that a minimum
length of NG-clones (hereafter, threshold1) are speci-
fied. Threshold1 will also become a minimum length
of identical sub-sequences in gapped-clones, whose
locations are finally identified in this process. Con-
versely, it is needed for a user to specify threshold1
much smaller than the minimum size of the gapped-
clones that he/she expects to detect. The tool that we
have implemented has an option to specify threshold1.

The reason to sort the detected NG-clones in this step
is to identify gap locations effectively in Step2 that
uses a kind of divide-and-conquer strategy and an op-
timization. Each code portion of clones is enclosed
within an single file, that is, does not exist over two or
more files. Therefore, a set of all clone pairs can be
divided into subsets, in which all clone pairs have two
code portions found in the same pair of source files.
Sorting of clone pairs is done for each of such subset
of clone pairs.

Here, without loosing generality, suppose that all NG-
clone pairs in the sample are included in a single such
subset, that is, all code portions of NG-clone pairs in
the code sequence X exist in a source file X and all
code portions of NG-clone pairs in the code sequence
Y exist in a source file Y (file X �� file Y). Positions
of NG-clones in file X are the primal key of sorting
(a clone pair which appears previously within a file
appears previously also within a sorted list), and po-
sitions of NG-clones in file Y are the second key of
sorting. In the case that file X � file Y, one of two
code portions of a NG-clone pair which appears pre-
viously within the file is the primal key and the other
code portion is the second key. Table 1 shows a list of
clone pairs after the sorting.

Step2 (Identification of gap location)
Generate gap locations from sorted NG-clones.

The detailed algorithm of this step is shown as a
pseudo code in Figure 4. The data saved to each gap

Table 1. Detected result of NG-clone

NG-clone code sequence matched
ID X Y string

c1 1 - 3 1 - 3 “ABC”
c2 2 - 4 6 - 8 “BCD”
c3 2 - 4 10 - 12 “BCD”
c4 5 - 6 11 - 12 “CD”
c5 5 - 7 7 - 9 “CDE”
c6 7 - 11 4 - 8 “EFBCD”
c7 9 - 11 10 - 12 “BCD”

Positions of code portions are shown by indexes of starting
and ending symbols. For example “6 - 8” means that the
portion starts at 6th symbol and ends at the 8th symbol.

are: location of the gap on source code and two NG-
clones at both ends of the gap. These data are used in
Step3.

Table 2 shows all the generated gap data in the sample.
If you illustrate these gaps (and NG-clones) in a scatter
plot, it will looks like Figure 5(a), in which gaps are
named g1, ..., g7.

The threshold2 shown in Figure 4 represents the
upper limit of the length of each gap that is permitted
to be included in gapped-clones.

The optimization in Figure 4 makes use of the
fact that NG-clones are stored as a sorted list
(sortedNgCloneDB). In the inner for loop, once a
clone pair with a distance of more than threshold2
from a clone ci is found, there is no chance to find
any other clone within a distance threshold2 in the
rest of the list. If we can suppose that threshold2
is enough smaller than length of input source code and
that there is no significant deviation in density of NG-
clones in scatter plot, then the number of NG-clones
within a certain distance from a NG-clone is consid-

Table 2. Gap data

code sequence
gap ID X Y length

g1 4 4 - 6 3
(g2) 4 4 - 10 7
g3 4 - 6 - 3

(g4) 4- 8 4 - 9 6
g5 - 9 - 10 2

(g6) 5 - 8 9 4
g7 8 - 1

// for each NG-clone
for (i = 0; i < ngCloneTotalCount; i++)
{

NgClone ci = sortedNgCloneDB.get(i);

// search connection targets
for (j = i; j < ngCloneTotalCount; j++)
{

NgClone cj = sortedNgCloneDB.get(j);

// if NG-clone ci and cj are near
dx = distance(ci.codeInX, cj.codeInX);
dy = distance(ci.codeInY, cj.codeInY);
if (((0 <= dx) && (dx < threshold2)) &&

((0 <= dy) && (dy < threshold2)))
{

// create new gap information
Gap newGap = new Gap(ci, cj);
gapDB.add(newGap);

}
else
{

// optimization
if (distance(c.codeInX, d.codeInY)

>= threshold2)
break; // goto next i’s loop

}
}

}

// Function "distance(x, y)" computes the
// difference from end position of code portion x
// to start position of code portion y.
// The result may be zero or minus when x and y
// are overlapping or when y appears ahead of x.

Figure 4. Gap identification algorithm

ered up to a certain constant. Therefore, the overall
time complexity of this algorithm is ���� (�: num-
ber of NG-clones) because each execution of the inner
loop takes a constant time.

We think that some discussions are needed about how
to decide value of threshold2. However, we use
a constant as threshold2 in our experiments of the
later section for the present. As another choice, we
could decide the value based on NG-clones around
each gap, since too large gap in comparison of NG-
clones may make a very “riddled” gapped-clone in-
cluding small NG-clones and large gaps.

In the example, assume that value of threshold2
is set to 3, which makes that g2, g4 and g6 are not
detected.

Step3 (Visualizing the location of gaps and NG-clones)

Step3-1 (gap-and-clone scatter plot)
Draw a scatter plot of gaps NG-clones

To visualize gapped-clones in a pseudo way, draw de-

1

2

3

4

5

6

7

8

9

10

11

12

A

B

C

D

C

D

E

F

B

C

D

G

A B C E F B C D E B C D

A,B,C, ... : character, token, line, statement or function, ... etc.

code sequence Y

co
d
e seq

u
en

ce
X

: NG-clone

with disregard to minimum length of matched string

: identified gap

1 2 3 4 5 6 7 8 9 10 11 12

g3
g6

g4

g1

c1

c6

c7

c5

c3c2

g7

: not-identified gap (threshold2 = 3)

g5

g2

c4

(a) before filtering

A

B

C

D

C

D

E

F

B

C

D

G

A B C E F B C D E B C D

code sequence Y

1 2 3 4 5 6 7 8 9 10 11 12

c1

c6

c7

c5

g1

g3

g7

: gc1

: gc2

1

2

3

4

5

6

7

8

9

10

11

12

c
o
d
e
 se

q
u
e
n
c
e

X

(b) after filtering

Figure 5. Gap-and-clone scatter plot

tected NG-clones and gaps into a scatter plot (here-
after, gap-and-clone scatter plot). Figure 5(a) shows
the gap-and-clone scatter plot of the sample.

In a gap-and-clone scatter plot, both axes are index of
symbols and a NG-clone or a gap is represented as a
line segment. In the figure, the vertical axis holds in-
dexes of tokens in file X and the horizontal axis holds
indexes of tokens in file Y. Each NG-clone is a black
line segment which is penetrating black squares that
are identical tokens within the clone’s two code por-
tions on file X and Y. Each gap is a gray line with cir-
cles at both ends, at which it is touching code clones.

By picking up NG-clones and their neighbor gaps by
turns, you can make a gapped-clone. Table 3 shows
such paths (i.e. gapped-clones) of NG-clones and gaps
in the example. Gaps g2, g4 and g6 are not detected
in this example by threshold2, so that gapped-
clones including them are not detected.

Step3-2 (Filtering)
Remove NG-clones and gaps that do not contribute
to make a gapped-clone.

Although this step is an optional, but it improves
sharply visibility of gap-and-clone scatter plots.

Figure 5(a) shows all possible NG-clones (c1, ..., c7)
and gaps (g1, ..., g7) detected from code sequence
X and Y, when the thresholds for size are not used.
When you analyze a large-scale source code, such gap-
and-clone scatter plot has too many small gaps and
clones to be understood. You can specify appropri-
ate threshold1 and threshold2 to control the
number of NG-clones and gaps, but these thresholds
are not to distinguish long gapped-clones from short
ones. For example, if you specify threshold1 to be
3, then all NG-clones and gaps except c4 , g2 and g5
will appear. If you specify a little larger value, say, 5,
then only one NG-clone c6 and no gaps remain.

To select gapped-clones indirectly by the possible size
of them, another parameter is introduced, which is the
minimum size of each entanglement of NG-clones and

Table 3. Gapped-clone path list

ID path code sequence X code sequence Y

gc1 c1 g1 c5 g7 c7 “ABC-CDE-BCD” “ABC---CDEBCD”
gc2 c1 g3 c6 “ABC---EFBCD” “ABCEFBCD”
gc3 c2 g5 c4 “BCDCD” “BCD--CD”

A gap is shown as one or more hyphens. The number of
them represent the size of the gap, that is, distance of the
NG-clones of both ends of the gap.

gaps. This size means the upper limit of gapped-clone
included by the entanglement.

The calculation of the size of entanglement is: First,
divide set of NG-clones and gaps into subsets, in which
a NG-clone and a gap are touched directly or indirectly
in a recursive way. Second, for each subset s of NG-
clones and gaps, let us sStartX be the position of
code portion of the NG-clone that appears at the fore-
most of X and sStartY be one of Y. Let us sEndX
be the position of code portion of the NG-clone that
appears at the rearmost of X and sEndY be one of Y.
Then define sSize, which is the size of s:

sSize� ���� sSizeX 	 sSizeY �,

sSizeX� sEndX � sStartX,

sSizeY� sEndY � sStartY

The third parameter threshold3 is used to select
the entanglements of NG-clones and gaps by size
sSize, that is, the possible size of the largest gapped-
clone size in the entanglement. In the example, if
you specify threshold3 to be 8, the remaining NG-
clones and gaps are like in Figure 5(b).

Step4 (Analysis of source code)
Investigate source files with gap-and-clone scatter
plot, changing parameters.

A GUI tool of gap-and-clone scatter plot provides lo-
cation information of NG-clones and gaps specified by
a user. The user can refer to a gap-and-clone scatter
plot and locations of NG-clones, pick up the range in-
cluding gapped-clones that he/she gets interested, and
investigate the corresponding source files.

The user also modify parameters to change how short
NG-clones or gaps to be considered as candidate of
gapped-clones and how long gapped-clones should be.
The following parameters are used in the above inter-
active investigation:

Threshold1 Minimum size of NG-clone in NG-clone
detection

Threshold2 Maximum size of gap in identification of
gap location

Thershold3 Minimum size of entanglement of NG-
clones and gaps

These thresholds decide trade-off between computa-
tion complexity and rate of gapped-clone overlooked,
and effect of each threshold depends on the thresh-
olds above it. For example, the smaller threshold1
makes the long time to detect NG-clones. But if
you want to find gapped-clones that have code por-
tions containing many modifications and each unmod-
ified part is short one, then you have to set small

value to threshold1. On the other hand, when you
want to find gapped-clones with a few gaps, which
may be easily merged into a single routine, you can
specify not-so-small value to threshold1. Any-
way, either threshold1 or threshold2 greatly
affects computation time. Small threshold1 or
large threshold2 makes the computation time a
square order because small threshold1 makes
��
�� clone pairs detected from size-
 source code and
large threshold2 makes ����� gaps detected from
� clone pairs.

3.2 Advantage

The advantage of the method proposed in this paper is
that it supports its user to find gapped-clones in interac-
tive and visual way with a gap-and-clone scatter plot which
needs ��� log �� computation time, without computation
of exact locations of gapped-clones that takes ����� time.

3.3 Implementation

We have implemented the proposed algorithm by extend-
ing a GUI maintenance support tool Gemini [19], which has
multiple views to display a scatter plot of code clones, met-
rics of clone classes, and source files including the code
clones specified by a user. Gemini uses the tool CCFinder
internally to detect NG-clones. Figure 6 shows snapshots of
Gemini.

On the view of gap-and-clone scatter plot (Figure 6(a))
implemented in Gemini, a user can execute zooming, se-
lection of a NG-clones within a mouse-dragged rectangle,
and its corresponding entanglement of NG-clones and gaps
(Figure 6(b)).

4 Application to the programming exercise

4.1 Overview

We have applied our approach to source programs devel-
oped in a certain programming exercise of Osaka Univer-
sity.

In the exercise, each student writes a compiler in C lan-
guage, which translates a program written in the subset of
Pascal language into a certain assembly language.

The exercise consists of three steps (sub-exercises):

Step1(Ex.1): Making a syntax checker(�����).

Step2(Ex.2): Making a semantic checker(�������).

Step3(Ex.3): Making a compiler(���).

In addition, it was required that ������� and ���

are developed by reusing the code of the previous pro-
gram. That is, ������� is developed by reusing �����
and ��� is developed by reusing �������. So, each
student would have frequently conducted ‘copy-and-paste’

(a) gap-and-clone scatter plot

(b) corresponding code

Figure 6. Snapshots of Gemini

programming and then slightly modified the pasted code
portions. Thus, a lot of gapped code clones would be con-
tained in the programs.

We collected the programs (�����, ������� and
���) from 69 students. Totally, the size of all the pro-
grams is about 360,000 lines.

4.2 Analysis

In order to evaluate the usefulness of the proposed ap-
proach, we analyze the following items:

(1) Usefulness of gap-and-clone scatter plot: In order
to confirm the usefulness of the gap-and-clone scat-
ter plot, we repeatedly change the values of minimum
size of code clone and entanglement of NG-clones and
gaps in the filtering. Then, we checked the how many
gapped-code clones are detected which include several
short NG-clones.

(2) Type of gapped-clone found in gap-and-clone scatter
plot: We examine the actual code portions that are
appeared as gapped-clones through the gap-and-clone
scatter plot. Also, we confirm whether the gapped code
clones such as one in Figure 1 exist or not.

We analyzed the programs collected from 69 students.
Among them, we show the distinctive results for the pro-
grams collected from a student � who conducted program
reuse skillfully in the experiment [19].

4.2.1 Usefulness of gap-and-clone scatter plot

Figure 7 shows three scatter plots of a student �’s three
programs ����� (2267 tokens), ������� (4394 tokens),
��� (5738 tokens); each scatter plot contains clones de-
tected from three programs. Scatter plot (a) contains NG-
clones with 10 or more tokens (hereafter, such scatter plot
with NG-clones and without gaps is called NG-clone scatter
plot). The enormous black dots in this plot mean that there
are so enormous short NG-clones that a ‘fine-grained’ anal-
ysis may be possible, if you were to endure investigating all
the clones. Then, if you decided to observe only big NG-
clones, say, with 30 or more tokens, you will get Scatter plot
(b), where you can do rapid analysis by concentrating on
small number of long clones but may miss many instances
of copy-paste-modify cloning.

The gap-and-clone scatter plot can provide fine-grained
and rapid analysis, with less computation complexity
than gapped-clone detection. Figure 7 (c) is a gap-
and-clone scatter plot of �’s three programs with pa-
rameters threshold1 � 10, threshold2 � 10, and
threshold3� 30, that is, the NG-clones with 10 or more
tokens and the gaps less than 10 tokens that possibly consti-
tutes gapped-clones with 30 or more tokens.

The trade-off in NG-clone scatter plot and trade-up by
gap-and-clone scatter plot can be explained quantitatively.
Figure 8 shows histograms of NG-clones in NG-clone scat-
ter plot and in gap-and-clone one. The left histogram means
that most NG-clones in Figure 7(a) have length from 10
to 30 tokens and the small number of NG-clones with 30
or more tokens also appears in Figure 7(b). The right his-
togram means that about two thousand of such NG-clones
with length from 10 to 30 tokens may contribute to make
gapped-clones with 30 or more tokens.

The above observations are not accidental ones, all pro-
grams other than �’s produce the similar results.

4.2.2 What type of gapped-clone was found？

Figure 9 contains three versions of a function
“void sentence()” in �����, �������, and
��� of �, and a gap-and-clone scatter plot of these source
texts, in which threshold1 � 10, threshold2 � 10,

Parser Checker SPC

P
a
r
s
e
r
 C

h
e
c
k

e
r
 S

P
C

(a) NG-clone scatter plot (threshold1 = 10 to-
ken)

Parser Checker SPC

P
a
r
s
e
r
 C

h
e
c
k

e
r
 S

P
C

(b) NG-clone scatter plot (threshold1 = 30 to-
ken)

Parser Checker SPC

P
a
r
s
e
r
 C

h
e
c
k

e
r
 S

P
C

(c) Gap-and-clone scatter plot (threshold3 = 30
token)

Figure 7. Comparison between gap-and-clone
scatter plot and NG-clone scatter plot

0 10 20 30 40 50
(tokens)

500

1000

1500

0

(
f
r
e
q
u
e
n
c
y
)

0 10 20 30 40 50
(tokens)

500

1000

1500

(
f
r
e
q
u
e
n
c
y
)

show up as gapped-clone

whose length is over 30 tokens

0

NG-clones in Fig. 7(a) and (b) NG-clones in Fig. 7(c)

Figure 8. Histogram of NG-clone size

threshold3 � 20. Each mark (�, �, �, etc) shows
correspondings between a line segment on the plot and
code portions with gray backgrounds.

Mark � on the plot contains three NG-clones ��,
��, and �� and gaps among them. These gaps corre-
spond to the added code portions between two versions,
������� and ���, which expands functionalities of func-
tion sentence(). That is precisely what we have ex-
pected to observe, a gapped-clone created by modification.
This gapped-clone � does not appear in a NG-clone scatter
plot of NG-clones with 20 or more tokens, since each of the
three NG-clones in � has length less than 20 tokens.

In this experiment, a NG-clone detection tool CCFinder
does not report a code portion which begins at the middle
of a function and ends at another function as a clone, but it
divides such a portion by the function boundary and reports
two smaller code portions. These code portions are desired
to remain isolated, but currently they look as if a gapped-
clone on gap-and-clone scatter plot. This problem will be
resolved by modifying CCFinder to report such boundaries
and adding a rule to Gemini; a gap does not bridge across
any boundary.

5 Conclusions

In this paper, we have proposed the method to show the
gapped-clone based on the information of the gap location
identified by using the detection results of NG-clone. Then,
we have implemented the method into our maintenance
support environment Gemini. Finally, in order to evaluate
whether the proposed method can detect the gapped clone
effectively, we have applied it to the data collected from
the programs developed in the series of three exercises. As
the results, we have successfully found the gapped-clones,
which are composed of several short clones each of which
is too short to appear individually. The gapped clones are
surely ones that we wanted to identify as described in sub-

section 2.3.

However, we have just shown the gapped code clones on
the gap-and-clone scatter plot. Currently, we have no mech-
anisms to evaluate the characteristic of each of the gapped
code clones quantitatively. It is necessary to examine the
method to extract efficiently the each gapped code clone
based on the location information of gap and NG-clone.

Several studies also have proposed gapped-clones detec-
tion methods. However, there are some differences among
the definitions of clones. So, we are going to examine the
difference and compare other methods to our approach.

void sentence()

{

if ((tok_name == SIDENTIFIER) ||

(tok_name == SREADLN) ||

(tok_name == SWRITELN) ||

(tok_name == SBEGIN))

basic_sen();

else if (tok_name == SIF)

{

scan();

expression();

if (tok_name != STHEN) NG();

scan();

multi_sentence();

if (tok_name == SELSE)

{

scan();

multi_sentence();

}

}

else if (tok_name == SWHILE)

{

scan();

expression();

if (tok_name != SDO) NG();

scan();

sentence();

}

else NG();

}

void sentence()

{

if ((tok_name == SIDENTIFIER)||

(tok_name == SREADLN) ||

(tok_name == SWRITELN) ||

(tok_name == SBEGIN))

basic_sen();

else if (tok_name == SIF)

{

scan();

if (expression() != TBOOLEAN) error(4);

if (tok_name != STHEN) syntax_error();

scan();

multi_sentence();

if (tok_name == SELSE)

{

scan();

multi_sentence();

}

}

else if (tok_name == SWHILE)

{

scan();

if (expression() != TBOOLEAN) error(4);

if (tok_name != SDO) syntax_error();

scan();

sentence();

}

else syntax_error();

}

void sentence()

{

int llt,llf,lp,lpf;

llt=lt; llf=lf; lp=p; lpf=pf;

if ((tok_name == SIDENTIFIER) ||

(tok_name == SREADLN) ||

(tok_name == SWRITELN) ||

(tok_name == SBEGIN))

basic_sen();

else if (tok_name == SIF)

{

scan();

if (expression() != TBOOLEAN) error(4);

fprintf(outfile,"¥tPOP¥tGR2¥t;%d¥n",tok_line);

fprintf(outfile,"¥tCPA¥tGR2,TRUE¥n",sub);

fprintf(outfile,"¥tJNZ¥tLF%d¥n¥n",llf);

lf++;lt++;

if (tok_name != STHEN) syntax_error();

scan();

multi_sentence();

fprintf(outfile,"¥tJMP¥tLT%d¥n",llt);

fprintf(outfile,"LF%d¥n¥n",llf);

if (tok_name == SELSE)

{

scan();

multi_sentence();

}

fprintf(outfile,"LT%d¥n",llt);

}

else if (tok_name == SWHILE)

{

scan();

fprintf(outfile,"LOOP%d¥n",lp);

p++;

if (expression() != TBOOLEAN) error(4);

fprintf(outfile,"¥tPOP¥tGR2¥t;%d¥n",tok_line);

fprintf(outfile,"¥tCPA¥tGR2,TRUE¥n",sub);

fprintf(outfile,"¥tJNZ¥tLOOF%d¥n¥n",lpf);

pf++;

if (tok_name != SDO) syntax_error();

scan();

sentence();

fprintf(outfile,"¥tJMP¥tLOOP%d¥n",lp);

fprintf(outfile,"LOOF%d¥n¥n",lpf);

}

else syntax_error();

}

ng-clones

with Parser

ng-clones

with SPC

inParser in Checker in SPC

in
 P
a
r
s
e
r in
 C
h
e
c
k
e
r in
 S
P
C

40

45

27

50

18

14

12

14

in Parser in Checker in SPC

A

B

C

D

E

A

B

C

D

E
1

E
2

E
3

E
4

D

E
1

E
2

E
3

E
4

Figure 9. Gapped-clones in source code his-
tory of �’s “void sentence()"

References

[1] B.S. Baker, “A Program for Identifying Duplicated Code”, Computing
Science and Statistics, 1992, 24:49-57.

[2] B.S. Baker, “On Finding Duplication and Near-Duplication in Large
Software Systems”, Proceedings the 2nd Working Conference on Re-
verse Engineering, 1995, 86-95.

[3] B.S. Baker, “Parameterized Duplication in Strings: Algorithms and an
Application to Software Maintenance”, SIAM Journal on Computing,
1997, 26(5):1343-1362.

[4] M. Balazinska , E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogian-
nis, “Advanced Clone-Analysis to Support Object-Oriented System
Refactoring”, Proceedings the 7th Working Conference on Reverse
Engineering, 2000, 98-107.

[5] M. Balazinska , E. Merlo, M. Dagenais, B. Lagüe, and K. Kon-
togiannis, “Measuring Clone Based Reengineering Opportunities”,
Proceedings 6th IEEE International Symposium on Software Metrics,
1999, 292-303.

[6] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
Detection Using Abstract Syntax Trees”, Proceedings IEEE Interna-
tional Conference on Software Maintenance-1998, 1998, 368-377.

[7] S. Ducasse , M. Rieger, and S. Demeyer. “A Language Independent
Approach for Detecting Duplicated Code”, Proceedings IEEE Inter-
national Conference on Software Maintenance-1999, 1999, 109-118.

[8] M. Fowler, Refactoring: improving the design of existing code,
Addison-Wesley, 1999.

[9] D. Gusfield, Algorithms on Strings, Trees, And Sequences, Cambridge
University Press, 1997.

[10] J. Helfman, “Dotplot Patterns: a Literal Look at Pattern Languages”,
TAPOS, 1995, 2(1):31-41.

[11] J.H. Johnson, “Identifying Redundancy in Source Code using Fin-
gerprints”, Proceedings CASCON’93, 1993, 171-183.

[12] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilin-
guistic token-based code clone detection system for large scale source
code”, IEEE Transactions on Software Engineering, 2002, 28(7):654-
670.

[13] R. Komondoor, and S. Horwitz, “Using slicing to identify duplica-
tion in source code”, Proceedings 8th International Symposium on
Static Analysis, 2001.

[14] J. Krinke, “Identifying Similar Code with Program Dependence
Graphs”, Proceedings 8th Working Conference on Reverse Engineer-
ing, 2001, 562-584.

[15] J. Mayland, C. Leblanc, and E. Merlo, “Experiment on the Au-
tomatic Detection of Function Clones in a Software System Using
Metrics”, Proceedings IEEE International Conference on Software
Maintenance-1996, 1996, 244-253.

[16] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, “Soft-
ware Quality Analysis by Code Clones in Industrial Legacy Software”,
Proceedings 8th IEEE International Symposium on Software Metrics,
2002, 87-94.

[17] M. Rieger, and S. Ducasse, “Visual Detection of Duplicated
Code”, Proceedings ECOOP’98 Workshop on Experiences in Object-
Oriented Re-Engineering, 1998, 75-76.

[18] T.M. Pigoski, “Maintenance”, Encyclopedia of Software Engineer-
ing, 1994, 1:619-636.

[19] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue, “Gemini: Mainte-
nance Support Environment Based on Code Clone Analysis”, Pro-
ceedings 8th IEEE International Symposium on Software Metrics,
2002, 67-76.

[20] S.W.L. Yip, and T. Lam, “A Software Maintenance Survey”, Proc-
ceedings 1st Asia-Pacific Software Engineering Conference, 1994, 70-
79.

