

An Experimental Comparison of Checklist-Based Reading and

Perspective-Based Reading for UML Design Document Inspection

Giedre Sabaliauskaite
Dept. of Informatics and Mathematical

Science, Graduate School of Engineering
Science, Osaka University

1-3 Machikaneyama, Toyonaka
Osaka 560-8531, Japan

E-mail: giedre@ics.es.osaka-u.ac.jp

Fumikazu Matsukawa
Dept. of Computer Science, Graduate School

of Information Science and Technology
Osaka University

1-3 Machikaneyama, Toyonaka
Osaka 560-8531, Japan

E-mail: matukawa@ist.osaka-u.ac.jp

Shinji Kusumoto
Dept. of Computer Science, Graduate School

of Information Science and Technology
Osaka University

1-3 Machikaneyama, Toyonaka
Osaka 560-8531, Japan

E-mail: kusumoto@ist.osaka-u.ac.jp

Katsuro Inoue

Dept. of Computer Science, Graduate School
of Information Science and Technology

Osaka University
1-3 Machikaneyama, Toyonaka

Osaka 560-8531, Japan
E-mail: inoue@ist.osaka-u.ac.jp

Abstract

This paper describes an experimental comparison of
two reading techniques, namely Checklist-based reading
(CBR) and Perspective-based reading (PBR) for
Object-Oriented (OO) design inspection. Software
inspection is an effective approach to detect defects in the
early stages of the software development process.
However, inspections are usually applied for defect
detection in software requirement documents or software
code modules, and there is a significant lack of
information how inspections should be applied to OO
design documents.

The comparison was performed in a controlled
experiment with 59 subject students. The results of
individual data analysis indicate that a) defect detection
effectiveness using both inspection techniques is similar
(PBR:69%, CBR:70%); b) reviewers who use PBR spend
less time on inspection than reviewers who use CBR; c)
cost per defect of reviewers who use CBR is smaller.
The results of 3-person virtual team analysis show that
CBR technique is more effective than PBR technique.

1. Introduction

For more than twenty-five years software inspections
have been considered an effective and efficient method

for defect detection. Inspections have been extensively
investigated through controlled experiments in university
environment and industry case studies. However, in
most cases software inspections have been used for
defect detection in documents of conventional structured
development process, such as functional requirement
documents or code modules [1,13,15,20]. There is a
significant lack of information about how inspections
should be applied to Object-Oriented (subsequently
denoted OO) artefacts, such as OO code and design
diagrams, because inspections were developed when the
structured development process was dominant. Since
over the past decade OO development methods have
replaced conventional structured methods, it is very
important to adapt the existing inspection techniques and
develop new ones for OO artefact inspection.

Different reading techniques, which provide
guidelines how to examine software artefacts and
identify defects, are used during inspection. The most
popular are Ad hoc and Checklist-based reading
(subsequently denoted CBR) [13] techniques. The Ad
hoc reading technique does not provide any instructions
for the inspector on how to proceed during defect
detection activity. CBR [6] provides the inspector with
a checklist, which consists of procedural guidelines and
“yes/no” questions. The inspector has to answer those
questions while reading the software document. One
more approach is the Scenario-based reading. It

provides inspector with a scenario, describing how to
proceed and what to look for during inspection [12,14].
Several variants of scenario-based reading have been
proposed: Defect-based reading [15], Reading technique
based on function points [5] and Perspective-based
reading (subsequently denoted PBR) [1,12,13,14]. The
Defect-based reading concentrates on specific defect
classes. The functional point based reading technique
focuses on specific function point elements. PBR
focuses on the perspectives (points of view) of the users
of software documents.

To the best of our knowledge, little work has been
done until now in the area of inspection of OO design
document, written in the notation of Unified Modelling
Language [4] (subsequently denoted UML). One of the
examples is a controlled experiment described in [12].
In this paper, the authors experimentally compared two
reading techniques, PBR and CBR. The comparison
was made in a controlled experiment with eighteen
subjects and two software systems. The results of that
experiment showed, that 3-person inspection teams,
which used PBR, had 41% effectiveness improvement
and 58% cost per defect improvement over CBR teams.
Other examples are described in [18,21], where the
authors propose a set of reading techniques, called
Traceability-Based reading (subsequently denoted TBR).
The main idea of TBR is tracing information between
design documents to ensure consistency (Horizontal
reading), and between design documents and
requirements to ensure correctness and completeness
(Vertical reading). In [18] the authors presented an
initial empirical study that was run to assess the
feasibility of these reading techniques. The authors of
those studies came to the conclusion that OO design
document inspections need to be further investigated.

It is necessary to conduct software inspection
experiments in different environments, using different
people, languages, documents, etc. in order to understand
all the aspects of software inspections more completely.
We conducted a controlled experiment in Osaka
University to compare CBR and PBR techniques for the
UML diagram inspection. The subjects of the
experiment were 59 third-year Bachelor students, and the
language used during experiment was Japanese.
Individual results as well as team results were compared.
In the individual result comparison, we compared defect
detection effectiveness, time spent on inspection and cost
per defect of subjects who used CBR and PBR inspection
techniques. In the team result comparison, we
compared the defect detection effectiveness of CBR and
PBR 3-person virtual teams. Briefly, the results of the
experiment indicate that the subjects who used PBR have
spent less time on inspection compared to those who
used CBR, but they have greater cost per defect. The
individual defect detection effectiveness for both
inspection techniques is similar (PBR:69%, CBR:70%).

Comparing the team results, however, we learn that the
3-person virtual teams that used CBR have higher defect
detection effectiveness than the 3-person virtual teams
that use PBR inspection technique.

The structure of the paper is as follows. Section 2
gives an explanation of two reading techniques – CBR
and PBR. In section 3 the planning of the experiment is
described. Section 4 describes the experimental
subjects and objects. Threats to validity are described
in section 5, and the analysis of the data is presented in
section 6. In section 7 the results are discussed, and
conclusions are given in section 8.

2. Checklist-based reading and
Perspective-based reading

This section describes two reading techniques,
namely Checklist-based reading and Perspective-based
reading, which we used during our experiment.

2.1. Checklist-based reading

CBR has been a commonly used technique in
inspections since 1970’s. Checklists are based on a set
of specific questions that are intended to guide the
inspector during inspection.

In a survey of software inspection [13] the authors
discuss a list of weak points of CBR. First, the questions
are often general and not sufficiently tailored to a
particular development environment. Secondly,
concrete instructions how to use the checklist are often
missing, i.e. it is often unclear when and based on what
information an inspector is to answer a particular
checklist question. Finally, the questions of the
checklist are often limited to detection of defects that
belong to particular defect types (inspectors may not
focus on defect types not previously detected and,
therefore, may miss whole classes of defects).

We have developed the checklist for UML diagram
inspection by ourselves, based on the structure presented
by Chernak [6] taking into consideration the weak points
of CBR discussed in [13]. It consists of two
components: “Where to look” (a description where to
search for defects) and “How to detect” (a list of
questions that should help the inspector to detect defects).
The checklist contained 20 questions, and this is in line
with the recommendations of Gilb and Graham [9] that a
checklist should not be longer than a page
(approximately 25 items).

2.2. Perspective-based reading

The main idea of the PBR technique is that a software
product should be inspected from the perspective of

different stakeholders [1,2,3,12,13,14]. The
perspectives depend on the roles people have within the
software development and the maintenance process.
For examining a document from a particular perspective,
PBR technique provides guidance for the inspector in the
form of a PBR scenario on how to read and examine the
document.

The PBR scenario consists of three major sections
[12,14]: introduction (describes the quality requirements,
which are most relevant to this perspective); instructions
(describe what kind of documents to use, how to read,
how to extract the necessary information) and questions
(set of questions which inspector has to answer during
the inspection). The main objective of the use of
instructions for reading a document from different
perspectives is to gain a better defect detection coverage
of a software artifact.

Three scenarios were developed for experiment: User
scenario, Designer scenario and Implementer scenario.
Inspection consisted of several steps. Each of them
included the following information: diagrams to inspect,
tasks to carry out, and questions to answer.

3. Experiment planning

In this section, the planning of the inspection
experiment is described. It includes experimental
variables, hypotheses and design of the experiment.

3.1. Variables

Two types of variables are defined for the purpose of
the experiment: independent variables and dependent
variables.

The independent variables include reading techniques,
virtual team size and composition, duration of
experiment, experience of subjects, etc. In our
experiment, we let only reading techniques change, while
other independent variables were kept constant.
Reading techniques (CBR and PBR) were independent
variables in our experiment.

We measured two types of dependent variables –
dependent variables for individual subjects and
dependent variables for 3-person virtual teams, which are
described in Table 1.

Dependent variables for individual subjects were the
variables calculated for each subject, such as the number
of defects found, time spent on inspection, defect
detection effectiveness, cost per defect. In addition, we
measured average values of number of detected defects,
time spent on inspection and defect detection
effectiveness for subjects who used CBR and those who
used PBR inspection technique. Although students
have found more defects than it was seeded into UML
diagrams, we decided to evaluate only a number of

seeded defects found, because additional defects detected
by students were not actually defects.

Dependent variables for the 3-person virtual teams
were number of defects found by three members of the
virtual team, maximum time spent on inspection, average
number of unique defects detected by the team members
and average team defect detection effectiveness. The
time spent on inspection by the 3-person virtual teams
was calculated choosing the maximum time spent by the
inspectors of the team, because we wanted to compare
the maximum time necessary for inspection using PBR
and CBR. Method of combining subjects into virtual
teams and of grouping those teams into statistically
independent groups are described in Section 6.2.

Table 1. Dependent variables

Type Dependent variable
Number of defects found by a subject (DEF)
Time spent on inspection (TIME), in minutes
Defect detection effectiveness (EFF), in
percent, calculated using the formula:
EFF = (DEF / Total number of seeded defects)
* 100
Cost per defect (COST), in minutes, calculated
using the formula: COST = TIME / DEF
Average number of defects found by the
subjects
Average time spent on inspection

For
individual
subjects

Average defect detection effectiveness
(AV_EFF), in percent, calculated using the
following formula:
AV_EFF = (Average number of defects found
by subjects / Total number of seeded defects) *
100
Number of unique defects found by 3 members
of a virtual team
Maximum time spent on inspection in minutes,
calculated by choosing the maximum time
spent by inspectors of the 3-person team
Average number of unique defects found by the
team members (AV_TEAM_DEF)

For
3-person
virtual
teams Average team defect detection effectiveness

(AV_TEAM_EFF), in percent, calculated using
the following formula:
AV_TEAM_EFF = (AV_TEAM_DEF / Total
number of seeded defects) * 100

3.2. Hypotheses

We stated two types of hypotheses before the
experiment: the hypotheses for the individual inspectors
and a hypothesis for 3-person virtual teams.

3.2.1. Hypotheses for the individual inspectors. We
assumed (H01) that the subjects who used PBR technique
during inspection should spend less time on inspection
than those who used CBR, because a PBR scenario

 covers only the UML documents related to a
corresponding perspective and reviewer does not need to
examine UML documents not related to his perspective.
However, subjects who used CBR were supposed to
examine all UML documents, and they needed to spend
more time on the inspection. In addition, we assumed
(H02) that subjects who used PBR should have higher
cost per defect, because they need not only to answer the
questions, but also to perform various tasks before
answering the questions. We did not know how
different could the defect detection effectiveness of both
methods be, so we only assumed (H03) that PBR defect
detection effectiveness should be different from CBR
defect detection effectiveness.

PBR User Designer Implementer
CBR

Seminar
system 7 6 6 11

Hospital
system 7 6 6 10

Figure 1. Experimental design

4. Experimental subjects and objects

This section discusses the subjects and objects used in
the experiment. Subjects refer to the reviewers, and
objects refer to the software artefacts inspected. The
description of defects and experiment operation is given
as well.

Based on those assumptions, the following null
hypotheses were stated:

H01: Subjects spend more time on inspection using
PBR than using CBR; H02: Cost per defect of subjects who use PBR is lower
than the cost per defect of subjects who use CBR; 4.1. Experimental subjects

 H03: There is no difference in defect detection
effectiveness of subjects who use PBR inspection
technique as compared to subjects who use CBR.

Subjects were 59 participants in the 3rd year of the
Software Development course of Osaka University. They
have had previous classroom experience with the
programming languages, Object-Oriented development,
UML, software design activities and conventional
software review.

3.2.2. Hypothesis for the virtual teams. We assumed
(H04) that team defect detection effectiveness should be
different for PBR and CBR 3-person virtual teams. The
following null hypothesis was stated for PBR and CBR
inspector virtual teams:

The class was divided into two groups of 29 and 30
students, and each group included subjects with the same
mix of abilities (based on marks from Program Design
class). Each group then focused on inspection of one
software system. Inside each group, subjects were
divided into two subgroups, each of them focused on
only one inspection technique (PBR or CBR).

H04: There is no difference in defect detection
effectiveness of the 3-person virtual teams, which use
PBR inspection technique as compared to the 3-person
virtual teams, which use CBR inspection technique.
 After the experiment, we asked the students to fill in

a feedback questionnaire. The aim of this questionnaire
was to collect subjective information on the level of
difficulty (easy, medium, difficult) in understanding the
software systems and a checklist or a scenario which they
were using during the inspection; experience in software
inspections, opinion about usefulness of such
experiments in practice. Most of the subjects had no
previous experience in software inspections.

3.3. Experimental design

An experiment consists of a series of treatments. To
get the most out of the experiment, it needs to be
carefully planned and designed [19]. When designing
an experiment, it is necessary to look at the hypotheses
and to see which statistical analysis it will be necessary
to perform to reject the null hypotheses. Since we
wanted to compare two inspection techniques CBR and
PBR against each other, we chose design type of “one
factor with two treatments” [19]. This is a simple
experiment design for comparing two treatment means.
Subjects are randomly assigned to each treatment, and
each subject uses only one treatment on one object.

4.2. Experimental objects

UML diagrams (paper-documents) of two software
systems (Seminar system and Hospital system) were used
as inspection objects. The Seminar system was dealing
with the activities such as arrangement of seminar
schedules, seminar hall reservation, lecturer designation,
audience subscription, report reception and grading, etc.
The Hospital system included activities such as oral
consultation, medical examination, treatment of the
patients, prescription of the medicines, etc. The number
of diagrams for each system is given in Table 2. The

The design our experiment is shown in Figure 1.
The reading techniques PBR and CBR are the treatments
in our experiment. Each student participated only in
one treatment (used either PBR or CBR reading
technique during experiment), and inspected one
software system (either Seminar or Hospital).

size of Seminar system documentation was 24 pages, and
the size of Hospital system documentation was 18 pages.

At the beginning of the project, we held a training
session in order to improve student’s understanding of
the software systems used. Students received
description of the requirements, Use-case diagram and a
part of the Class diagram, and were asked to create
Sequence and Component diagrams of those systems.

During the experiment, system requirements
description and Use-case diagram were assumed to be
defect-free. The rest of the diagrams might contain
defects. At least three defects were inserted into each
type of UML diagrams (Class, Activity, Sequence and
Component).

Students who were using CBR needed to inspect all
the diagrams of the corresponding system. However,
students who used PBR technique during inspection were
inspecting only documents relevant to a specific
perspective. The assignment of UML documents to
inspection perspectives is shown in Table 2 (“U”
corresponds to User’s perspective, “D” – to Designer’s
perspective, “I” – to Implementer’s perspective in Table
2). The assignment was based on a UML diagram
development process, which students were learning
during Software Design course. The main steps of this
process are: the first step – development of Use-case
diagrams; the second one – describing system activities
in Activity diagrams; the third step – defining static
structure of the system in Class diagrams; the fourth one
– modelling dynamic aspects of the system in Sequence
diagrams; the fifth step – detailed description of object
states in Statechart diagrams; the sixth step –
development of the Component diagrams. The User’s
perspective in our experiment covered the second, and
partially the third and the fourth steps of software
development process; the Designer’s perspective covered
the third and the fourth steps; and the Implementer’s
perspective covered the sixth step, and partially the third
and the fourth steps.

Table 2. Experimental objects

Number of diagrams PBR
scenarios UML

diagram Seminar
system

Hospital
system

CBR
U D I

Class 1 1
Activity 8 7

Sequence 12 7
Component 1 1

4.3. Defects

In [18,21] authors describe defect taxonomy for UML
design diagrams that previously had been proven
effective for requirement’s defects [2]. This taxonomy

classifies defects by identifying related sources of
information, which are relevant for the software system
being built. Authors defined five types of defect:
Omission (one or more design diagrams that should
contain some concept from the general requirements or
from the requirements document do not contain a
representation for that concept); Incorrect Fact (a design
diagram contains a misrepresentation of a concept
described in the general requirements or requirements
document); Inconsistency (a representation of a concept
in one design diagram disagrees with a representation of
the same concept in either the same or another design
diagram); Ambiguity (a representation of a concept in the
design is unclear, and could cause a user of the document
to misinterpret or misunderstand the meaning of the
concept) and Extraneous Information (the design
includes information that, while perhaps true, does not
apply to this domain and should not be included in the
design).

We summarized defect taxonomy proposed by
[18,21] authors into three types of defects: syntactic,
semantic and consistency defects. Syntactic defects
include Omission and Extraneous Information defects,
semantic defects include Incorrect Facts and Ambiguity
defects, and consistency defects correspond to
Inconsistency defects.

In total fifteen defects were inserted into the software
documents: 3 into the Class diagrams, 4 into the Activity
diagrams, 5 into the Sequence diagrams, and 3 into the
Component diagrams.

4.4. Experiment operation

Experiment was conducted in academic environment
during a Software Development course in December
2001. The language of experiment was Japanese. The
following timetable was used to arrange the experiment:

Week 1: Training session to improve student’s
understanding of the systems. The class was divided
into two groups of 29 and 30 students. One of the
groups received Requirement’s description, Use-case
diagram and part of Class diagram of a Seminar system.
The other group received the above-mentioned
documents of a Hospital system. Students were asked
to create Sequence and Component diagrams of each
system.

Week 2: Explanations of the experiment activities and
conduction of the inspection experiment. Two rooms
were used, one for each inspection technique – PBR and
CBR. Students were divided into two groups: 38 (for
PBR technique) and 21 (for CBR technique). Before
the experiment students listened to the explanations,
which lasted approximately 20 minutes. After the
explanations were given, experiment was conducted.
Experiment consisted of 120-minute (excluding
explanations) individual inspection task. Students were

inspecting the same software system they had analyzed
during the training session.

Week 3: Feedback questionnaire to collect additional
information from students. The results from the
questionnaire showed that inspectors who used CBR and
those who used PBR had similar level of difficulty to
understand checklist and scenarios, however inspectors
who used PBR had better understanding of software
systems they inspected. Most of the students had no
previous experience in software inspection experiments,
and most of them stated that such experiments could be
useful in practice.

5. Threats to validity

There are four groups of threats to the validity of the
experiment results: internal validity, external validity,
conclusion validity and construct validity [19].

Threats to internal validity are treats that can affect
the independent variable with respect to causality,
without the researcher’s knowledge. In our experiment
there are no threats to history, maturation or mortality,
because subjects participated only in one treatment and it
lasted no longer than 2.5 hours. There might have been
some threat to selection, because experiment was a
mandatory part of the course. To minimize it, we have
randomly assigned the subjects into groups which used
only one of the reading techniques. In addition, we
checked the groups to be similar in aspect of the level of
student’s knowledge. The objects (UML diagrams),
which we used, could also have influence to the internal
validity – threat of instrumentation. We made sure for
both software systems to be similar in size and
complexity. There was no risk for subjects to lack
motivation, because students were told that the grading
of the course would depend on their performance during
inspection.

External validity concerns the ability to generalize the
experiment results to industry practice. The biggest
threat to the external validity is that students were used
during the experiment as subjects. However, students
were in the end of their third year of studies in software
engineering, close to their start working in the industry.
There are more experiments reported in the literature,
where students were successfully used as subjects
[10,17,18]. The design documents were similar to those
which are used in practice, but the size of systems in
industry is usually larger. However we think, that the
amount of documents which subject were required to
inspect was appropriate.

Threats to conclusion validity are concerned with the
issues that affect the ability to draw the correct
conclusion about the relationship between dependent and
independent variables. Threats with respect to the
subjects are limited, since we used third year students

who have had similar knowledge and background,
therefore there was no threat to random heterogeneity of
subjects.

Construct validity concerns the ability to generalize
from the experiment results to the concept or theory
behind the experiment. The subjects did not know what
hypotheses were stated, and they did not know the
expected result of the experiment, so those threats to
validity are considered small.

It can be concluded that there were threats to internal
and external validity, but they were not considered large
in this experiment. To increase the reliability of the
results, replications of this experiment should be done.

6. Data analysis

This section describes the data collected during
experiment and the statistical tests, which were used
during data analysis. The section consists of 2
subsections: individual and team data analysis. In
individual data analysis subsection, we analyze data of
the individual inspectors. In team data analysis
subsection, we combine the inspectors into virtual teams
and analyze team results.

6.1. Individual data analysis

Two types of data were collected during the
experiment, time data and defect data. Time data
showed how much time each subject spent during the
inspection. The added defect data showed the number
of defects, which were detected by the subject. We
calculated cost per defect (average time spent to detect
one defect) and defect detection effectiveness
(percentage of seeded defects which were detected) for
every subject using formulas described in Table 1.

We compared time spent on inspection, cost per
defect and defect detection effectiveness of subjects who
used CBR and those who used PBR technique during
inspection. The box-plots of those variables are shown
in Figure 2, Figure 3 and Figure 4, and the statistics are
given in Table 3. In the Figures 2-4, the box-plots
graphically show the central location and
scatter/dispersion of the data. The line on the left shows
parametric statistics: the diamond shows the mean and
the confidence interval around the mean, the notched line
shows the requested percentile range. The notched box
shows non-parametric statistics: the median, lower and
upper quartiles, and confidence interval around the
median.

As we can see from Table 3 and Figures 2-4,
inspectors who used PBR inspection technique spent on
the average 18% (11 min) less time on inspection than
inspectors who used CBR. Cost per defect of inspectors

Table 3. Statistics of time spent on inspection, cost per defect and effectiveness

Variables Reading
technique

Number of
subjects Mean SD SE 95% CI of

Mean Median IQR 95% CI of
Median

CBR 21 62.9 11.7 2.5 57.6 to 68.2 61.5 15.7 54.3 to 70.0Time spent
on inspection PBR 38 51.3 15.1 2.5 46.3 to 56.3 50.0 17.1 44.2 to 59.2

CBR 21 6.2 1.6 0.4 5.4 to 6.9 6.1 2.7 4.9 to 7.6 Cost per
defect PBR 38 10.2 3.5 0.6 9.0 to 11.4 9.9 4.1 8.5 to 11.6

CBR 21 70.2 11.5 2.5 64.9 to 75.4 73.3 20.0 60.0 to 80.0Effectiveness PBR 38 69.1 15.3 2.5 64.0 to 74.1 69.1 22.0 66.7 to 77.8

 who used CBR is 39% lower (4 min/defect) than of
inspectors who used PBR. Inspectors who used PBR
and those who used CBR exhibited similar defect
detection effectiveness (about 70%).

40

50

60

70

80

90

100

110

CBR PBR

20

30

40

50

60

70

80

90

CBR PBR

Figure 4. Defect detection effectiveness (%)

Parametric (Independent samples t-test) and
non-parametric (Mann-Whitney) tests [11,19] were used
to test the hypotheses for the individual inspectors.

Figure 2. Time spent on inspection (minutes) The statistical results of testing hypotheses H01, H02
and H03 are shown in Table 4 (“TIME” corresponds to
time spent on inspection; “COST” corresponds to cost
per defect; “EFF” corresponds to defect detection
effectiveness in Table 4). The results of the statistical
tests show that the hypotheses H01 and H02 can be
rejected, but hypothesis H03 cannot be rejected.

2

4

6

8

10

12

14

16

18

20

CBR PBR

Table 4. Statistics for t-test and Mann-Whitney

test

Statistics TIME
(H01)

COST
(H02)

EFF
(H03)

t-test P value 0.0036 <0.0001 0.7769
t-test t value 3.04 4.97 0.28

Mann-Whitney
test P value 0.0043 <0.0001 0.7145

Mann-Whitney
test U value 212 102 376

 Figure 3. Cost per defect (minutes)
In other words, it is statistically significant that

subjects spend more time on inspection using CBR
inspection technique than using PBR inspection
technique. In addition, it is statistically significant that
cost per defect of subject who used PBR inspection
technique is higher than the cost per defect of those who
use CBR. However, there is no statistical significant
difference in defect detection effectiveness of individual
reviewers between CBR and PBR inspection techniques.

05588352000
!6

!6!6
!3

673538311 =
××

×
×× PCCC (1)

The number of CBR and PBR 3-person virtual team

comparisons for Hospital system was calculated using
the following formula (2):

01016064000
!6

!6!6
!3

673437310 =
××

×
×× PCCC (2)

6.2. Team data analysis
 An example of comparison between PBR and CBR

3-person virtual team groups is shown in Figure 5 (“C”
corresponds to subjects who used CBR technique during
inspection; “U”, “D” and “I” correspond to subjects who
used PBR User’s, Designer’s or Implementer’s
perspectives of respectively).

Beside individual data analysis, team data analysis
was performed. In this section, we describe the way to
combine subjects into 3-person virtual teams and
compare CBR and PBR team results.

6.2.1. Subject assignment to virtual teams. Beside
individual result analysis, it is also important to evaluate
team results for different reading techniques. Real team
meetings [7,12,15,18] as well as virtual teams [1,3,20]
are reported in literature. We decided to use virtual
teams because we were more concerned with the range of
team’s defect coverage than with issues of interaction
between members. We simulated team results by taking
the union of the defects detected by the reviewers of the
team.

C9C8C7

C6C5C4

C3C2C1

C9C8C7

C6C5C4

C3C2C1

CBR team group 1 I6D6U6

……… I2D2U2

I1D1U1

I6D6U6

……… I2D2U2

I1D1U1

PBR team group 1

I5D6U6

……… I1D2U2

I6D1U1

I5D6U6

……… I1D2U2

I6D1U1

PBR team group 2…

CBR PBR

Comparisons

…

CBR team
PBR team

C10C8C7

C6C5C4

C3C2C1

C10C8C7

C6C5C4

C3C2C1

CBR team group 2…

The data of one reviewer using each of the three
perspectives was included into PBR 3-person virtual
teams, and any three reviewers were included into CBR
3-person virtual teams. The number of students who
used CBR technique in Seminar system and Hospital
system was different, therefore the number of unique
teams for each system was also different: Hospital
system (10 subjects) – 120 unique teams, Seminar system
(11 subjects) – 165 unique teams formed. Both Seminar
and Hospital systems were inspected using the same
number of PBR inspectors, and the number of unique
PBR teams was 252 for each system. Figure 5. Comparison between CBR and PBR

3-person virtual team groups
 6.2.2. Grouping virtual teams into statistically

independent groups. In the previous section, we
described the way to combine subjects into teams. To
avoid statistical dependence of the teams, we grouped
them into statistically independent groups so that in each
group the data of each subject was included only once.

6.2.3. Comparison of CBR and PBR virtual team
results. PBR and CBR 3-person virtual team groups
were compared with respect to defect detection
effectiveness. The number of comparisons when either
CBR or PBR was more effective, or both techniques
were equally effective is shown in Table 5. To compare CBR and PBR 3-person virtual teams, six

3-person teams of inspectors who used PBR technique
were combined into one PBR group, and three 3-person
teams of inspectors who used CBR techniques were
combined into one CBR group (Figure 5).

Table 5. Comparison of CBR and PBR 3-person

virtual team groups

The number of CBR and PBR 3-person virtual team
comparisons for Seminar system was calculated using the
following formula (1):

Team defects detection effectiveness Software
system CBR>PBR PBR>CBR CBR=PBR
Seminar 54753326688 585743712 544449600
Hospital 10160482176 8064 149760

As we can see from Table 5, CBR teams have
exhibited higher defect detection effectiveness that PBR
teams for both Seminar and Hospital systems.

We used t-test with significance level of 2.5% to
evaluate in which of comparisons either CBR or PBR
inspection technique had significant difference with
respect to team defect detection effectiveness. Out of
comparisons, which exhibited significant difference in
t-test, we counted the number of comparisons in which
either CBR or PBR was more effective; or both
inspection techniques were equally effective. We made
two types of comparisons: including all types of defects
and omitting syntactic defects. The results of
comparisons are given in Table 6. As we can see from
Table 6, in all comparisons between CBR and PBR
3-person virtual team groups, which showed significant
difference in the t-test, CBR team groups exhibit higher
defect detection effectiveness than PBR teams.

Table 6. Comparison of CBR and PBR 3-person

virtual team groups after statistical tests

Defect detection effectivenessComparison
type

Software
system CBR >

PBR
PBR >
CBR

CBR =
PBR

Seminar 7631557968 0 0 All defects
included Hospital 7233873848 0 0

Seminar 6968160000 0 0 Syntactic
defect omitted Hospital 85122000 0 0

7. Discussion

In this section, an interpretation of the results is given.
The following hypotheses show significant results:

H01 – Subjects spend more time on inspection using
PBR than using CBR. (t-test P = 0.0036; Mann-Whitney
test P = 0.0043)

H02 – Cost per defect of subjects who use PBR is
lower than cost per defect of subjects who use CBR.
(t-test P < 0.0001; Mann-Whitney test P < 0.0001)

H04: There is no difference in defect detection
effectiveness of 3-person virtual teams, which use PBR
inspection technique, as compared to 3-person teams,
which use CBR inspection technique (all CBR teams,
which were significantly different from PBR teams using
t-test with significance level of 2.5%, exhibited higher
defect detection effectiveness than PBR teams).

The below hypothesis did not show significant
results:

H03 – There is no difference in defect detection
effectiveness of subjects who use PBR inspection
technique as compared to subjects who use CBR. (t-test P
= 0.7769; Mann-Whitney test P = 0.7145)

In other words, the results of the individual data
analysis show that although subjects who use PBR
technique spent 18% less time on inspection than

subjects who use CBR technique, the cost per defect of
PBR subjects was 39% higher. Although the individual
data analysis did not show reasonable difference in defect
detection effectiveness between PBR and CBR
inspection techniques, virtual team data analysis showed
that CBR teams were more effective than PBR teams.

The results of our experiment are in line with the
results of several experiments of requirement and code
inspections. In [20] authors collected data from the
software inspection experiments reported in literature.
In total, 21 data sets from the requirements phase and 10
data sets from code inspections were collected. The
comparison of the effectiveness in inspection using
different reading techniques (Ad hoc, CBR, PBR)
showed that CBR was more effective than other reading
techniques. In [7] authors reported on experiment of
OO code inspection. The results of this experiment
showed, that CBR emerged as the most effective
approach.

8. Conclusion

The experiment presented in this paper is focused on
comparison of two reading techniques, CBR and PBR for
UML design document inspection. Experiment was run
with 59 third year Bachelor students at the department of
Informatics and Mathematical Science of Osaka
University in December 2001. The language used
during experiment was Japanese.

The results of the experiment indicate that time spent
on inspection of subjects who use PBR is lower than of
subjects who use CBR. However, the cost per defect of
PBR subjects is higher as compared to CBR subjects.
Defect detection effectiveness of 3-person virtual teams
using CBR is greater than of those using PBR in our
experiment.

Future research will be directed to further
investigation of OO design document inspection.

9. References

[1] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull,
S. Sorumgard, M.V. Zelkowitz, “The Empirical Investigation of
Perspective-Based Reading”, Empirical Software Engineering:
An International Journal, vol.1 , no. 2, 1996, pp. 133-164.
[2] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull,
S. Sorumgard, M.V. Zelkowitz, “Lab Package for the Empirical
Investigation of Perspective-Based Reading”, Internet address:
http:// www.cs.umd.edu/projects/SoftEng/ESEG/.
[3] S. Biffl, M. Halling, “Investigating the Influence of
Inspector Capability Factors with Four Inspection Techniques
on Inspection Performance”, Proc. of the Eighth IEEE
Symposium on Software Metrics, 2002, pp. 107-117.
[4] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling
Language User Guide, Addison Wesley Longman, Inc., 1999.
[5] B. Cheng, R. Jeffery, “Comparing inspection strategies for

software requirements specifications”, Proc. of the 1996
Australian Software Engineering Conference, 1996, pp.
203-211.
[6] Y. Chernak, “A Statistical Approach to the Inspection
Checklist Formal Synthesis and Improvement”, IEEE
Transactions on Software Engineering, vol. 22, no. 12, 1996, pp.
866-874.
[7] A. Dunsmore, M. Roper, M. Wood, “Further Investigations
into the Development and Evaluation of Reading Techniques
for Object-Oriented Code Inspection”, Proc. of the Int. Conf. on
Software Engineering, 2002, pp. 47-57.
[8] M. Fagan, “Design and code inspections to reduce errors in
program development”, IBM Systems Journal, vol. 15, no. 3,
1976, pp. 182-211.
[9] T. Gilb, D. Graham, Software inspection, Addison-Wesley,
1993.
[10] M. Höst, B. Regnell, C. Wohlin, “Using Students as
Subjects - A Comparative Study of Students and Professionals
in Lead-Time Impact Assessment”, Empirical Software
Engineering: An International Journal, vol. 5, 2000, pp.
201-214.
[11] N. Juristo, A.M. Moreno, Basics of Software Engineering
Experimentation, Kluwer Academic Publishers, 2001.
[12] O. Laitenberger, C. Atkinson, M. Schlich, K. El Emam,
“An experimental comparison of reading techniques for defect
detection in UML design documents”, The Journal of Systems
and Software, vol. 53, 2000, pp. 183-204.
[13] O. Laitenberger, J.M. DeBaud, “An encompassing life
cycle centric survey of software inspection”, The Journal of
Systems and Software, vol. 50, no. 1, 2000, pp. 5-31.
[14] O. Laitenberger, C. Atkinson, “Generalizing
Perspective-based Inspection to handle Object-Oriented
Development Artifacts”, Proc. of the 21st Int. Conf. on Software
Engineering, 1999, pp. 494-503.
[15] A. Porter, L.G. Votta, V. Basili, “Comparing Detection
Methods for Software Requirements Inspections: A Replicated
Experiment”, IEEE Transactions on Software Engineering, vol.
21, no. 6, 1995, pp. 563-575.
[16] B. Regnell, P. Runeson, T. Thelin, “Are the Perspectives
Really Different? Further Experimentation on Scenario-Based
Reading of Requirements”, Empirical Software Engineering:
An International Journal, vol. 5, no. 4, 2000, pp. 331-356.
[17] W. Tichy, “Hints for Reviewing Empirical Work in
Software Engineering”, Empirical Software Engineering: An
International Journal, vol. 5., no. 4, 2000, pp. 309-312.
[18] G. Travassos, F. Shull, M. Fredericks, V. Basili, “Detecting
Defects in Object Oriented Designs: Using Reading
Techniques to Increase Software Quality”, Proc. of the 1999
ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages & Applications, 1999, pp. 47-56.
[19] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B.
Regnell, A. Wesslen, Experimentation in software engineering:
an introduction, Kluwer Academic Publishers, 2000.
[20] C. Wohlin, A. Aurum, H. Petersson, F. Shull, M.
Ciolkowski, “Software Inspection Benchmarking – A
Qualitative and Quantitative Comparative Opportunity”, Proc.
of the Eighth IEEE Symposium on Software Metrics, 2002, pp.
118-127.
[21] “Procedural Techniques for Perspective-Based Reading of
Requirements and Object-Oriented Designs. Lab package of
The Experimental Software Engineering Group (ESEG) of the
University of Maryland”, Internet address:

http://www.cs.umd.edu /projects/SoftEng/ESEG.

