
Automatic Categorization Tool for Open Software
Repositories

Shinji Kawaguchi† Pankaj K. Garg††

†Graduate School of Information Science and
Technology, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka
560-8531, Japan

{s-kawagt, matusita,
inoue}@ist.osaka-u.ac.jp

Makoto Matsushita† Katsuro Inoue†

††Zee Source
1684 Nightingale Avenue, Suite 201
Sunnyvale, California, 94807, USA

garg@zeesource.net

ABSTRACT
The world of Open Source software has demonstrated the remark-
able appeal ofcommunal software development.Large number of
software projects can leverage, reuse, and coordinate their work
through Internet and web-based technology. For example, Source-
Forge currently hosts about sixty thousand software systems. Sim-
ilar strategies have been suggested for corporate software develop-
ment, through notions like Corporate Source and Progressive Open
Source [6, 7]

When used in a corporate setting, infrastructures for project infor-
mation sharing present new opportunities. For example, one would
like to know all projects that have something in common, so that
the project groups can collaborate and share their work. With thou-
sands of projects, manually locating related projects can be diffi-
cult. Hence, we propose to use automatic software categorization
to find clusters of related software projects, using only the source
code from projects. Our experiments with a small set of C pro-
grams demonstrates potential for automatic categorization of soft-
ware systems without human aid.

1. INTRODUCTION
The rapid use of Internet and Web-based technology has given rise
to a novel, global software archiving service, pioneered in the Open
Source community through SourceForge [17]. More recently, sev-
eral large corporations are realizing the benefits of such services
for their own, proprietary software development. For example,
Hewlett-Packard Company, IBM, Motorola, Nokia, and Xerox, are
some of the corporations that are known to have deployed such
archival service for their own internal corporate network.

For large software archives, categorizing their contents for brows-
ing and searching is essential for effective utilization of the soft-
ware archive. Automatic categorization would be helpful in several

ways:

• Severalsimilar software can be grouped together in a cat-
egory for ease of browsing. For example, SourceForge [17]
categorizes software according to their function (editors, databases,
etc.), and also has the notion ofsoftware foundriesfor related
software.

• Developers working on a software system may be informed
about related software. Finding related software systems has
following advantages.

1. Developers can learn “best practices” and programming
idioms from existing software systems. From related
software systems, they can get strategies or hints for
software evolution. They can even evolve their soft-
ware systems based on related software systems, and
not have to create it from scratch.

2. Developers can leverage each other’s work and promote
more reuse. This becomes specially useful in situations
like Corporate Source [7], where global groups in com-
panies may not be aware of the relationship among their
work [9].

In the past, such relationships have been determined by hand. Man-
ual categorization generally requires deep understanding of not only
the target software system, but also other software systems and their
classification policy. With the increase in the number of software
systems, e.g., SourceForge now has over sixty thousand software
systems registered and continues to evolve, such manual identifica-
tion is not enough.

Automatic categorization of software systems is a novel and in-
triguing challenge on software archive evolution. Past work in soft-
ware engineering (e.g., see [4, 16]), has focused on determining
intra-component relationsof one given software system. We, how-
ever, propose findinginter-component relationsof many software
systems.

In this paper, we propose software automatic categorization system
based on Latent Semantic Analysis(LSA). LSA is a method for ex-
tracting and representing the contextual-usage meaning of words by
statistical computations applied to a large corpus of text [11]. LSA



has found a variety of uses ranging from understanding human cog-
nition [11] to data mining [5]. Also, it is used for clustering compo-
nents in a software system [14] and recovering document-to-source
links [15].

We apply LSA for determining categories of software systems. We
implemented the proposed method, and report on experimental re-
sults.

2. RELATED WORKS
Maarek et al. applied free-text indexing approach for software clas-
sification [13, 8]. They retrieved information from Unix man pages
and classified Unix tools.

While quality and granularity of Unix man pages are highly uni-
form, the amount and quality of documents differ with software
systems. Some software may have complete documentation, while
others may have no or few documentation for their implementa-
tions.

From the viewpoint of retrieving information from source code,
some existing clustering methods cluster one software into some
functional parts for program understanding. Such software cluster-
ing methods use Latent Semantic Analysis [14], Self-Organizing
Map [2], file structure and file names [1] or structure of program
like call graph [3, 12].

In our previous work [10], we have tried measurement methods of
software similarities. The hope was that we will relate “similar”
systems together, and determine orthogonal categories like “edi-
tors,” “databases,” and so forth. We applied LSA to software sys-
tems and found that software similarity values are reflected only
by most influential aspectsof software systems. For example, the
similarity value between database software with GTK interface and
editors using GTK is very high. Although this phenomenon is not
what we had hoped for, as be report in the rest of the paper, it is not
necessarily bad.

3. CATEGORIZATION METHOD
The result of our previous work cited above indicates that software
systems have multiple ’functional aspects’. Functional aspects are,
for example, “compiler”, “editor”, “database”, “runs on Windows”,
“supporting regular expression,” and so forth. Consider an editor
on Windows. This editor has not only “editor” functional aspect,
but also “runs on Windows” functional aspect.

The software systems can be categorized with functional aspects on
a nonexclusive basis. If a categorization is mutually exclusive, the
categorization may capture only a few functional aspects.

We focus on identifiers (variable name, function name and so on)
included in source code to retrieve a functional aspect. For ex-
ample, “gtk_window ” identifier represents some window, and
source codes near the identifier would contain GUI operation.

As stated above, identifiers may represent a part of functions im-
plemented in the program. If relationship between identifiers are
found, they would represent one functional aspect. To determine
relationships between identifiers, we use Latent Semantic Analy-
sis(LSA), an information retrieval method explained below.

3.1 Latent Semantic Analysis (LSA)

Latent Semantic Analysis, LSA, is a practical method for the char-
acterization of word meaning. LSA produces measures of word-
word, and passage-passage relations which are well correlated with
semantic similarity [11]. The method creates a vector description
of documents. This representation is used for comparing and in-
dexing documents, and various similarity measures can be defined.

Consider the six simple documents in Figure 1. In LSA, these doc-
uments are represented by a matrix shown in Table 1. Each column
means a document and each row represents a word which may ap-
pear in the documents. Cell entries show the occurrence of the word
in the document.

c1: Human machine interface for ABC computer applications
c2: A survey of user opinion of computer system response time
c3: Relation of user perceived response time to error measurement
m1: The generation of random, binary, ordered trees
m2: Graph minors IV: Widths of trees and well-quasi-ordering
m3: Graph minors: A survey

Figure 1: Example Input Documents

c1 c2 c3 m1 m2 m3
computer 1 1 0 0 0 0
user 0 1 1 0 0 0
response 0 1 1 0 0 0
time 0 1 1 0 0 0
survey 0 1 0 0 0 1
trees 0 0 0 1 1 0
graph 0 0 0 0 1 1
minors 0 0 0 0 1 1

Table 1: An Example of LSA Matrix

Each row vector of this matrix indicates the characteristics of the
word through the whole documents occurrences. This row vector
can be used to determine the similarity of two words. A simple
similarity definition used here iscosine of two vectors.

In LSA, single value decomposition (SVD) is applied to the matrix.
SVD is a form of factor analysis and acts as a method for reduc-
ing the dimensionality of the matrices. Why does LSA apply such
translation? This is because a simple term-by-document matrix
does not capture relationship among terms. Two documents show
high similarity only when the documents have some same words;
however, there are many synonyms. Thus similar documents do
not always share completely same words. They may contain many
synonyms. Using SVD, LSA can retrieve such undirectional rela-
tionship among documents. For more details, please refer [11].

3.2 Overview of Classification Method
Our method consists on 7 parts, explained in brief below:

1. Extract identifiers.

First, we extract all identifiers from source code of software
systems. We don’t use reserved words in programming lan-
guage and words in comments. Reserved words are mean-
ingless from the viewpoint of function. Comments are ab-
stract description, but amount and quality of comments in
each software systems vary widely. Thus we cut out reserved
words and comments.



2. Create identifier-by-software matrix.

We create an identifier-by-software matrix, similar to the word-
by-document matrix of Table 1.

3. Remove meaningless identifiers.

Before performing LSA, we remove identifiers that appear
in only one software system, or in more than half of soft-
ware systems. Identifiers appearing in only one software are
not meaningful in LSA. And, identifiers appearing in more
than half of software systems are probably a general term
and have no affect on categorization.

4. Perform LSA.

We perform LSA for the identifier-by-software matrix with-
out meaningless identifiers.

5. Computecosine of each identifiers and perform cluster anal-
ysis.

From the matrix of LSA result, we computecosine values of
each identifiers. Thereafter, we apply cluster analysis using
calculated similarities. Cluster analysis is statistical analysis
method that cluster individuals into clusters based on simi-
larity among individuals.

6. Make software clusters from identifier clusters.

From each identifier clusters, we retrieve software systems
that contain one or more identifiers in the cluster, and make
them a corresponding software cluster.

7. Make titles of software clusters.

We obtain software clusters by previous steps, however, each
software cluster needs description that explains what soft-
ware systems are included. As titles, we use the ten highest
score identifiers in the clusters.

4. EXPERIMENTS
As an implementation of our method, we created a prototype sys-
tem. We experimented categorization of software systems using
the prototype. The overall goals of our experiment were: Does our
prototype categorize proper by target systems compared with ex-
isting manual categorization? Can our prototype categorize by the
libraries use in the system?

4.1 Experiment Process
We collect sample data from SourceForge. We selected 41 C pro-
grams in five categories from SourceForge. The list of categories
and software systems are in Table 2. Then we ran our categoriza-
tion tool on the 41 programs.

4.2 Result
Table 3 shows a part of the categorization result by our method.
Each row represents one cluster.

We got 40 clusters in total. The target systems in 18 clusters fall in
the same categorization as SourceForge categorization. There are
8 clusters in which all software systems depend on same library or
have same architecture. In top 20 clusters, 17 clusters fall in the
same categorization in SourceForge or same library.

For example, cluster 3, 8 or 9 are clustered since the software sys-
tems in those clusters use the same library. Cluster 3 contains
software systems using YACC(Yet Another Compiler-Compiler).

Cluster 8 and 9 contains software systems using GTK. In the same
manner, we can get the following clusters.

Cluster 22 Software systems using regular expression pattern match-
ing library.

Cluster 25 Software systems implementing JNI(Java Native Inter-
face).

Cluster 30 Software systems using getopt, a function which parses
a command line argument.

Cluster 32 Software systems implementing Python/C.

Cluster 35 Software systems using YACC(Yet Another Compiler-
Compiler).

On the other hand, there are 12 software systems that are not clas-
sified into any categories.

4.3 Discussion
Comparing with existing categorization, many clusters of our result
follow existing categorization however, our result does not cover
whole existing categorization. This is because our result has soft-
ware systems that are not classified any categories. Our method cat-
egorizes based on appearance frequency of identifiers. This makes
software systems that have few tokens tend to be not classified any
categories.

We verify that our method can retrieve new categorization that are
not considered by existing categorization. Such categorizations are:
(1) by libraries (GTK, yacc, etc.), and (2) by depending architec-
ture (JNI, Python/C, etc.). Our method does not need any human
knowledge. Thus, if a new library appears, our method can follow
such change automatically.

About cluster titles, there are some unidentifiable titles like cluster
1; however, cluster 4 and 6 have clear-cut titles “AVI” and “board,
ply”. The clusters with software systems using same library tend to
have clear-cut titles.

5. CONCLUSION
In this paper, we have proposed automatic categorization method
for many software systems. Our method finds categorization clus-
ters and classifies software systems based on the clusters. We have
shown this method can classify without any knowledge about target
software systems.

For future work, we will seek how to determine parameters and
retrieving intuitive cluster titles. Furthermore, we will add large-
scale experimentation. To do this, we need to improve system per-
formance and scalability.

6. REFERENCES
[1] N. Anquetil and T. Lethbridge. Extracting concepts from file

names; a new file clustering criterion. InInternational
Conference on Software Engineering,(ICSE’98), pages
84–93, Apr 1998.

[2] A. Chan and T. Spracklen. Discoverying common features in
software code using self-organising maps. InInternational
Symposium on Computational Intelligence (ISCI’2000),
Kosice, Slovakia, August 2000.



Category Software

boardgame Sjeng-10.0, bingo-cards, btechmux-1.4.3, cinag-1.1.4, faile1 4 4, gbatnav-1.0.4, gchch-1.2.1, ics-
Drone, libgmonopd-0.3.0, netships-1.3.1, nettoe-1.1.0, nngs-1.1.14, ttt-0.10.0

compilers clisp-2.30, csl-4.3.0, freewrapsrc53, gbdk, gprolog-1.2.3, gsoap2, jcom223, nasm-0.98.35, pfe-0.32.56,
sdcc

database centrallix, emdros-1.1.4, firebird-1.0.0.796, gtmV43001A, leap-1.2.6, mysql-3.23.49, postgresql-7.2.1
editor gedit-1.120.0, gmas-1.1.0, gnotepad+-1.3.3, molasses-1.1.0, peacock-0.4

videoconversion dv2jpg-1.1, libcu30-1.0, mjpgTools, mpegsplit-1.1.1
xterm R6.3, R6.4

Table 2: The list of sample software systems

[3] K. Chen and V. Rajlich. Case study of feature location using
dependency graph. In8th International Workshop on
Program Comprehension (IWPC’00), pages 231–239,
Limerick, Ireland, June 2000.

[4] S. C. Choi and W. Scacchi. Extracting and restructuring the
design of large systems.IEEE Software, 7(1):66–71, Jan
1990.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. Indexing by latent semantic
analysis.Journal of the American Society of Information
Science, 41(6):391–407, 1990.

[6] J. Dinkelacker and P. Garg. Corporate Source: Applying
Open Source concepts to a corporate environment (Position
Paper). InProceedings of the 1st ICSE workshop on Open
Source software engineering, Toronto, Canada, 2001.

[7] J. Dinkelacker, P. Garg, D. Nelson, and R. Miller. Progressive
Open Source. InProceedings of the International Conference
on Software Engineering, Orlando, Florida, 2002.

[8] W. B. Frakes and T. Pole. An empirical study of
representation methods for reusable software components.
IEEE Transactions on Software Engineering, 20(8):617–630,
1994.

[9] J. Herbsleb and A. Mockus. An Empirical Study of Speed
and Communication in Globally-Distributed Software
Development.IEEE Transactions. Software Engineering,
2003.

[10] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue.
Automatic categorization algorithm for evolvable software
archive. In2003 International Workshop on Principles of
Software Evolution(IWPSE 2003), Sep 2003.

[11] T. K. Landauer and S. T. Dumais. Latent Semantic Analysis
and the Measurement of Knowledge. InEducational Testing
Service Conference on Natural Language Processing
Techniques and Technology in Assessment and Education,
princeton, 1994.

[12] G. A. D. Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and
U. D. Carlini. Comprehending web applications by a
clustering based approach. InProc. of 10th International
Workshop on Program Comprehension(IWPC’02), pages
261–270, Paris, France, June 2002.

[13] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An information
retrieval approach for automatically constructing software
libraries.IEEE Transactions of Software Engineering,
17(8):800–813, 1991.

[14] J. I. Maletic and A. Marcus. Using latent semantic analysis
to identify similarities in source code to support program
understanding. In12th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI’00), pages 46–53,
November 2000.

[15] A. Marcus and J. I. Maletic. Recovering
documentation-to-source-code traceability links using latent
semantic indexing. InProceedings of the 25th International
Conference on Software Engineering(ICSE2003), pages
125–135, Portland, OR, May 2003.

[16] R. Schwanke. An intelligent tool for re-engineering software
modularity. InProc. of 13th International Conference on
Software Engineering, pages 83–92, Austin, Texas, USA,
May 1991.

[17] SOURCEFORGE.net.http://sourceforge.net .



No. Title of cluster Software The number of tokens

1 AOP, emitcode, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT, pic14emitcode,
iCode, etype

compilers/gbdk, compilers/sdcc 8597

2 CASE IGNORE, CASEGROUND STATE, screen, CASEPRINT,
CASE BYP STATE, Widget, TScreen, CASEIGNORE STATE,
CASE PLT VEC, CASEPT POINT

xterm/R6.3, xterm/R6.4 2160

3 YY BREAK, yyvsp, yyval, DATA, yycurrentbuffer, tuple, yycurrentstate,
yy c buf p, yy cp, uint32

compilers/gbdk, database/mysql-3.23.49,
database/postgresql-7.2.1

223

4 AVI, cinfo, OUTLONG, avi t, AVI errno, hdrldata, OUT4CC, nhb, ERREXIT,
str2ulong

videoconversion/dv2jpg-1.1, videoconversion/libcu30-1.0,
videoconversion/mjpgTools

177

5 domainname, msgid1, binding, msgid2, domainbinding, pexp,builtin expect,
transmemlist, codeset, codesetp

boardgame/gbatnav-1.0.4, boardgame/gchch-1.2.1 165

6 board, nummoves, ply, pawnfile, npiece, pawns, moves, whiteto move, moves,
promoted

boardgame/Sjeng-10.0, boardgame/cinag-1.1.4,
boardgame/faile1 4 4

154

7 xdrs, blob, DB, UCHAR, XDR, mutex, keylength, logp, pageno, bdb database/firebird-1.0.0.796, database/mysql-3.23.49 118
8 domainname, N, binding, gchar, GtkWidget, PARAMS, codeset, gpointer,

loadedl10nfile, argz
boardgame/gbatnav-1.0.4, boardgame/gchch-1.2.1,
editor/gnotepad+-1.3.3, editor/peacock-0.4

118

9 GtkWidget, gchar, gpointer, gint, widget, gtkwidget show, N, g free, dialog,
g return if fail

boardgame/gbatnav-1.0.4, editor/gedit-1.120.0, editor/gmas-
1.1.0, editor/gnotepad+-1.3.3, editor/peacock-0.4

104

10 AOP, emitcode, esp, ICRESULT, IC LEFT, obstack, aop, mov, aopGet,
IC RIGHT

compilers/clisp-2.30, compilers/gbdk, compilers/sdcc 100

11 tuple, uint32, plan, int32, lsn, elm, rec, interp, TCLERROR, finfo database/mysql-3.23.49, database/postgresql-7.2.1 79
12 xdrs, blob, DB, UCHAR, XDR, mutex, keylength, logp, pageno, bdb database/firebird-1.0.0.796, database/mysql-3.23.49 73
13 UCHAR, relation, stmt, trigger, yyvsp, yyval, tdata, plan, dbname, USHORT database/firebird-1.0.0.796, database/postgresql-7.2.1 68
14 fout, interp, TCLERROR, typ, YYRULE SETUP, List, DATA, Tcl Interp, id,

YY BREAK
compilers/freewrapsrc53, compilers/gbdk, compilers/gsoap2,
database/postgresql-7.2.1

50

15 GtkWidget, gchar, gpointer, dlg, gint, gfree, gtkwidget show, gtk, GList,
GTK BOX

editor/gedit-1.120.0, editor/gmas-1.1.0, editor/gnotepad+-
1.3.3

46

16 UCHAR, relation, stmt, trigger, yyvsp, yyval, tdata, plan, dbname, USHORT database/firebird-1.0.0.796, database/postgresql-7.2.1 43
17 AOP, emitcode, mfp, ic, uchar, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT compilers/gbdk, compilers/sdcc, database/mysql-3.23.49 36
18 adr, FX, word, stm, ED, xt, REF, prop, term, FP compilers/gprolog-1.2.3, compilers/pfe-0.32.56 35
19 AOP, emitcode, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT, pic14emitcode,

iCode, etype
compilers/gbdk, compilers/sdcc, database/firebird-1.0.0.796 31

20 dyn, FPRINTF, processid, p offset, ctl, rab, que, ioptr, prior, PRINTF database/firebird-1.0.0.796, database/gtmV43001A src linux 29
21 dyn, FPRINTF, processid, p offset, ctl, rab, que, ioptr, prior, PRINTF database/firebird-1.0.0.796, database/gtmV43001A src linux 27
22 regparse, dbp, mech, reginput, flagp, NOTHING, tuple, db,P, regnode boardgame/btechmux-1.4.3, database/leap-1.2.6,

database/mysql-3.23.49
26

23 rectype, argp, rec, fileid, saveerrno, datalen, qp, argpp, int4, dbp database/gtmV43001A src linux, database/mysql-3.23.49 26
24 AOP, emitcode, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT, pic14emitcode,

iCode, etype
compilers/gbdk, compilers/sdcc, videoconversion/mjpgTools 26

25 jobject, JNIEnv, JNICALL, JNIEXPORT, jint, jstring, interp, TCLERROR, objv,
TCL OK

compilers/freewrapsrc53, compilers/jcom223, compilers/pfe-
0.32.56, database/mysql-3.23.49

24

26 entrypoint, USHORT, TEXT, yyvsp, raddr, R, UCHAR, yyval, blob, REQ compilers/clisp-2.30, database/firebird-1.0.0.796 17
27 int32 t, dbp, cinfo, net, unpack, argp, sinfo, cur1, purpose, mysql database/mysql-3.23.49, videoconversion/mjpgTools 17
28 AOP, emitcode, mfp, ic, uchar, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT compilers/gbdk, compilers/sdcc, database/mysql-3.23.49 16
29 USHORT, UCHAR, blob, REQ, NULLPTR, hIcon, SCHAR, interp, wndclass,

bdb
compilers/freewrapsrc53, database/firebird-1.0.0.796 16

30 optind, nextchar, P, optstring, lastnonopt, optionindex, uchar, optarg, pfound,
dbp

boardgame/ttt-0.10.0, compilers/clisp-2.30, database/mysql-
3.23.49

15

31 int4, ctl, tn, rec, semid, blkno, ti, oprtype, saveerrno, AH database/gtmV43001A src linux, database/postgresql-7.2.1 14
32 notify, mech, PyObject, fargs, Node, Name, pset, zone, tprintf, NOTHING boardgame/btechmux-1.4.3, database/postgresql-7.2.1 11
33 interp, notify, dbp, tuple, mech, PyObject, uint32, plan, int32, buff boardgame/btechmux-1.4.3, database/mysql-3.23.49,

database/postgresql-7.2.1
10

34 adr, stm, AOP, emitcode, operands, ASSERT, ICRESULT, pred, lg, REF compilers/gprolog-1.2.3, compilers/sdcc 9
35 yyvsp, yyn, PARAMS, codeset, domainname, msgid1, binding, msgid2, yylsp,

domainbinding
boardgame/gbatnav-1.0.4, boardgame/gchch-1.2.1,
compilers/clisp-2.30

9

36 ERREXIT, picture, poolid, USHORT, getbuffer, outputbuf, cinfo, xxx,
UCHAR, streams

database/firebird-1.0.0.796, videoconversion/mjpgTools 9

37 REF, dyn, USHORT, vec, pathname, clause, STATUS, E, UCHAR, CSB compilers/gprolog-1.2.3, database/firebird-1.0.0.796 8
38 AOP, emitcode, pfile, ic, ICRESULT, IC LEFT, aop, aopGet, ICRIGHT,

pic14 emitcode
compilers/gbdk, compilers/sdcc, database/postgresql-7.2.1 7

39 ic, ply, npiece, score, AOP, pawnfile, uchar, bkingloc, wking loc, emitcode boardgame/Sjeng-10.0, compilers/gbdk 7
40 clause, cinfo, pred, ci, Group, Np, word, X, A, tmp4 compilers/gprolog-1.2.3, database/postgresql-7.2.1, video-

conversion/mjpgTools
6

Table 3: 41


