
Supporting Dynamic Communications with Development Histories

Kei Sasaki†, Makoto Matsushita†, Katsuro Inoue†
†Graduate School of Information Science and Technology, Osaka University

{k-sasaki,matushita,inoue}@ist.osaka-u.ac.jp

Abstract

In a open source software development, developers use
revision control system for efficient management of prod-
uct, and mailing list for communication among developers.
These systems store development histories of the products.
Developers can obtain a deeper understanding about for-
mer development by reviewing an archive. In addition, we
think that developers have “task” and “knowledge” in their
development histories. But, as those information become
immense volumes, it is not easy to retrieve the information
from the stored information that developers require.

In this paper, we purpose software development sup-
porting system CoxR for searching development history in-
formation. Additionally, focusing “developer”, we aim to
extract effectively “task” and “knowledge” as “Dynamic
Community”. Then CoxR will enable developers to reduce
communication costs and improve software quality.

1 Introduction

In a open source software development, developers use
revision control system for efficient management of prod-
uct, and mailing list system for communication between
developers. These systems store development histories of
the products which the developer developed, and the trans-
mitted E-mails at the individual archive. The archive in-
formation include much information which is useful to fu-
ture development. Developers can obtain a deeper under-
standing about former development ”task and knowledge”
by reviewing an archive in the software development, and
it is expectable that they help developers. In addition, if
new developer wants to use or develop the existing sys-
tem, he/she must refer the history information or question
for Developer’s community. Stated another way, we think
that developers have “knowledge” and “task” in their devel-
opment. We call the group of these “task and knowledge”
to “ Dynamic Community”, because task and knowledge
are floating for each developer which needs history infor-
mation. However, as those information become immense

volumes, it is not easy to retrieve the information from the
stored information that developers require.

So, we purpose the CoxR[6], extracting information
that developers require and displaying pertinent data by
integrating supporting system for source code modifi-
cation (CoDS)[7] and software products cross reference
system(SPxR)[5]. Also, we applied this system to real data
in open source development for applicable experimentation.
Next, we purpose how to design new supproting system ex-
tending CoxR. We focus “developer history” of CoxR. Fi-
nally, we aim to extract the “task” and “knowledge” effec-
tively . Then CoxR will enable developers to reduce com-
munication costs and improve software quality.

In section 2, we will briefly overview the CoxR. In sec-
tion 3, we will present a “Supporting Dynamic Communi-
cations with Development Histories”. In section 4, we will
conclude our discussions with a few remarks.

2 CoxR

In this section, we briefly explain the software develop-
ment supporting system CoxR. CoxR aims at realizing the
following 4 functions.

(1) Search the source code similar to the source code which
the users are owner of .

(2) Search file name or directory name

(3) Search keyword of history information.

(4) Search additional information again using search re-
sults.

2.1 CoxR Structure

CoxR consists ofCoDS module, SPxR module and
main module.(fig.1) User can use query word as input
data.In CoDS module, User can search similar source
code.(1) In SPxR module, user can search useful history in-
formation from CVS and E-mail archive.(2),(3)And，CoxR

main is interface which connects previously cited mod-
ules and developer. User use search results as next query
word.(4)

CoxR(Web Server)CoxR user

Related Files /Data

E-mail ArchiveCVS Repository

Query Word

Search Result

SPxRCoDS

Sender name

Time

Topics

Source code search

Query Word = Source code

Keyword, Time

Commit log

File name

Developer name

File name

Keyword

Developer name

Time

Commit log

Fusion info Create tool

Lexical analysis tool

Token compare tool

CVS Info DB Fusion info DB E-mail Info DB

CVS info Create tool E-mail info Create toolDB Create toolCode DB

CGI-Main

Source code

Search result

Token

Similarity

Developer name

Time

File name

Data Display Record System

Search Result

File name

Developer name

Time

Figure 1. CoxR overview

3 Supporting Dynamic Communication Sys-
tem

In this section, we explain how to design new supporting
system extending CoxR.

3.1 Analysis of Dynamic Community

We define three analysys patterns as follows. We have re-
alized to extract “developer history” of former development
in the CoxR. We use these history information to analyze
former development.

3.1.1 Process Analysis

We analyze the tree of developer history. Does the group
of developers develop the system in similar development
process?

• Building up developer tree
We analyze who are often development group together
from development history. We assume same develop-
ment member develop together in some project. We
analyze on a root directory-to-root directory basis.
Then, we consider the groups form tree of the develop-
ers. an example shows fig.2. Three developers develop
subsystem A in the order as indicated fig.2. Then, de-
veloper tree and group became as indicated.

And, we assign developers to past development by past
development history.

Developer A

Developer C

Developer B

Subsystem A

Subsystem A

Subsystem A

1

2

3

4

Developer A

Developer tree

Subsystem A

Subsystem A

3.1

3.2

Developer B

Developer C

A

B

C

C A

B

Developer group

Subsystem A

A,B,C

Figure 2. development process on subsystem A

• Predicting future process
We predict future development process statistically,
then using the prediction data, we know who develops
in a special project.

3.1.2 Topic Analysis

We analyze E-mail and commit log. Who send the topic
about “discussion X” ? What does “developer Y” write in
the mail and Commit log?

• Automatic classification
We decide keyword sets at each topics. We sort key-
words into each topics. Then, we analyze who trans-
mitted what topics. we sort developer groups by each
topic.

• Extract discusser
We call graph of mails among developers “thread”. We
search E-mail archive by using some animator of a dis-
cussion’s E-mail address in same mail-thread. Devel-
opers often develop in special field. So, we think that
developers which discussed activity have a high prob-
ability that they have relaited discussion previously.
Therefore, we think user can get related topics by such
develop discusser.

3.1.3 Role Analysis

How do developers develop the system? How do they share
system development?

• Using bug tracking system
When we analyze the tree of developer history, we use
Bug tracking system in addition to CVS and E-mail
archive. Bug tracking system keep track of individual

request for changes. To analyze request, we know who
completed the modification request? and What the de-
veloper modified ?

• Using analysis results
Using described previously analysis method, we con-
sider developer role in each project history.

3.2 Implementation of the system

3.2.1 Design Policy

Web interface It is most effective approach that creating
our proprietary tool.

Cooperate with CoxR User can use this system and CoxR
at same time without being aware.

Depend on the userEvery user may want different knowl-
edge or task. We can’t decide analyzing result to each
user. So, our system gives dynamic result from each
knowledge and each task which user wants, and user
must judge dynamic result which user wants.

3.2.2 System Structure

the system consists of three modules. the modules are
“Analysis”, ”Database” and “System Control” as follows.

• Analysis module
We handle each analysis in this module. We ana-
lyzes about developer history information, using CoxR
database and Bug tracking system database.

• Database module
After described three analysis, we store result
data. Database consists “Process database”, “ Topic
database’ and “Role database’. Process database is
stored “what group developed what product?”, Topic
database is stored “who have what knowledge?”, and
Developer database is stored “Who has what role in
each project?”. these database return the search result
to database query of system control module.

• System control module
We implemente system control by GUI interface, and
accept search requests from user. This module passes
search requests to Database module as database query.
After database search, GUI indicates Search result
from database. User can use the result as next search
request.

We envisage the creation of Supporting environment for
Open Source software development using “CoxR” and
“Supporting Dynamic Communication System”.(fig3)

Web ServerCoxR user

Knowledge and Task

(Developer (Group), Topics, Role)

E-mail Archive

CVS Repository

Query Word

Search result

CoxR

Supporting DC System

Developer’s role

Keyword

Commit log

Filename

Developer name

CoxR search result

Process DB Topic DB Role DB

Analysis(3 pattern)

Search result (fig1)

Source code

Keyword, Time

Commit log

File name

Developer name

System Control

“Developer topics”

(who has develop

history)

Developer History

Developer tree

Developer group

Query Word = Source code

Keyword, Time

Commit log

File name

Developer name

Figure 3. Supporting Dynamic Community sys-
tem

3.3 Search strategy

We can use this system to break the ice of development
problem. First, To search CoxR, we can sight valuable de-
velopment history about problem which user face. Sec-
ondly, to use search result of CoxR to this system, we think
user can understand detailed knowledge and task about the
deveopment. User can choice every search results of CoxR
as next query word to this system. To use such information,
user can obtain knowledge and task of development group
from various sources, and topic about simillar development
which same development and developer involved in.

4 Conclusion

In this paper, we have explained software development
supporting system CoxR’s overview which we established.
Then, we have proposed the implementation design of Sup-
porting Dynamic Communications with development histo-
ries by extending CoxR.

The major characteristics of this system is that the analy-
sis of developer history of CoxR. Any more, We will imple-
ment system based on a detailed design, and We will verify
about the system validity to use the system actually .

References

[1] H. Agrawal, R. A. DeMillo and E. H. Spafford: “An
execution backtracking approach to program debug-
ging”, IEEE Software, pp.21-26(1991).

[2] Peter H. Feiler, “Configuration Management Mod-
els in Commercial Environments”, CMU/SEI-91-TR-
7 ESD-9-TR-7(1991).

[3] Karl Fogel, “Open Source Development with CVS”,
The Coriolis Group(2000).

[4] Dan Gusfield, “Algorithms on Strings, Trees, and Se-
quences”, Cambridge University Press(1997).

[5] Ishikawa, T., Yamamoto, T., Matsushita, M., and In-
oue, k.: “Design of Communication Supporting sys-
tem with Revision Contorol System”, IPSJ Technical
Report, 2001-SE-133, pp.23–30(2001).

[6] Sasaki, K., Matsushita, M., and Inoue, K.: “E-mail
and Source Code Revision Information Retrieval Sys-
tem for Open Source Software Development”, IEICE
Thechnical Report, SS2003-9, pp.19-24(2003).

[7] Tahara, Y., Matsushita, M., and Inoue, K.: “Support-
ing Method for Source COde Modification with the
changes of Existing Software”, IPSJ Technical Report,
2002-SE-136, pp.57-64(2002).

[8] Temple Smith and Michael Waterman, “Identification
of Common Molecular Subsequences”, J.Molecular
Biology, 147, pp.195-197(1981).

