
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

コードクローン情報を用いたリファクタリング支援ツール

肥後 芳樹† 神谷 年洋†† 楠本 真二† 井上 克郎†

† 大阪大学 大学院情報科学研究科 コンピュータサイエンス専攻 〒 560-8531 豊中市待兼山町 1-3
†† 科学技術振興機構 さきがけ 〒 560-8531 豊中市待兼山町 1-3

E-mail: †{y-higo,kamiya,kusumoto,inoue}@ist.osaka-u.ac.jp

あらまし 近年，ソフトウェアの保守を悪化させている一要因として，コードクローンが議論されている．コードク

ローンとはソースコード中に存在する同一，または類似したコード片のことである．例えば，あるコード片にバグが

含まれていた場合，そのコード片のコードクローン全てについて修正の是非を考慮する必要がある．コードクローン

を対象とする保守支援としては，ソフトウェア内に存在するコードクローンを把握，管理する方法と，ソフトウェア

からコードクローンを取り除く（リファクタリング）方法の 2つがあげられる．前者については我々はこれまでに，

コードクローン分析環境Geminiを開発し，さまざまな事例に対して適用してきた．また後者に関しては，これまでに

いくつかの手法が提案されているが，解析時間のコストが高いなどの理由により，実際に社会で用いられているソフ

トウェアに対しては適用が難しかった．本論文では，実用的な時間でソースコード中からリファクタリングに適した

コードクローンの検出手法を提案する．また，抽出したコードクローンの特徴をメトリクスを用いて数値化する．こ

れにより，そのクローンの集約方法が予測でき，ユーザは効率的なリファクタリング作業ができると期待される．ま

た提案手法を実装したツールを作成し，適用実験を行なうことで，本手法の有用性を確認した．

キーワード コードクローン，リファクタリング，ソフトウェア保守，オブジェクト指向

Code Clone Analysis Method for Practical Refactoring Support

Yoshiki HIGO†, Toshihiro KAMIYA††, Shinji KUSUMOTO†, and Katsuro INOUE†

† Graduate School of Information and Science Technology, Osaka University
1-3, Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan

†† PRESTO, Japan Science and Technology Agency
1-3, Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
E-mail: †{y-higo,kamiya,kusumoto,inoue}@ist.osaka-u.ac.jp

Abstract Recently, code clone has been regarded as one of factors that make software maintenance more difficult.

A code clone is a code fragment in a source code that is identical or similar to another. For example, if we modify a

code fragment which has code clones, it is necessary to consider whether we have to modify each of its code clones.

There are two ways of maintenance support for code clones. One is to comprehend and manage code clones, and the

other is to remove them. For the former support, we have developed code clone analysis environment Gemini. For

the latter support, several methods have proposed. But, it is difficult to apply them to industrial software because of

various reasons such as high time complexity. In this paper, we propose a method that detects refactoring-oriented

code clone in practical use time. And, we develop a characterization of code clones by some metrics, which suggest

how to remove them. Then, we develop refactoring support tool Cancer. We expect Cancer can support software

maintenance more effectively.

Key words Code Clone, Refactoring, Software Maintenance, Object-Oriented

1. Introduction

Recently, maintaining software systems has been becom-

ing more difficult as the size and complexity of software is in-

creasing. Maintenance of software system is defined as modi-

fication of a software product after delivery to correct faults,

to improve performance or other attributes, or to adapt the

products to a modified environment [12]. Actually, it is re-

— 1 —

ported that many software companies expend a lot of time

and human cost for software maintenance.

It is generally said that code clone is one of factors that

make software maintenance more difficult [6]. Code clone

is a code fragment that is identical or similar to another.

Code clones are introduced because of various reasons such

as reusing code by ‘copy-and-paste’. If we modify a code

fragment and it has many code clones, it is necessary to

consider pros and cons of modification in its corresponding

all code clones. Especially, for large scale software, such pro-

cesses are very complicated and need much cost. So, efficient

code clone detection is necessary and important in software

development and maintenance.

There are two ways of maintenance support for code clones.

One is to comprehend and manage code clones, and the other

is to remove them. For the former support, there exist many

researches to automatically detect code clones [4] [11]. We

have also developed code clone detection tool CCFinder [9]

and code clone analysis environment Gemini [13]. We have

been delivering Gemini (including CCFinder) to more than

50 software organizations and evaluated the usefulness of

them in the actual software maintenance. For the latter

support, several code clone removal methods have been pro-

posed [2] [3] [10]. But, it is difficult to apply them to indus-

trial software because of various reasons such as high time

complexity.

For supporting refactoring activity in practical, we devel-

oped Cancer to support the refactoring for code clone. Can-

cer can detect refactoring-oriented code clones in practical

time from large scale software. Moreover, Cancer character-

izes detected code clones using some metrics. In other word,

Cancer tells the user which code clones can be removed and

how to remove them. So, the user can concentrate on mod-

ifying source code, which leads software development and

maintenance to more effective ones. Through case studies

for several open source software, we confirm the applicabil-

ity of Cancer.

2. Preliminaries

Here, we define some terminology regarding code clones.

Next, we briefly explain our previous research results, a code

clone detection tool CCFinder [9].

2. 1 Code Clone

A clone relation is defined as an equivalence relation (i.e.,

reflexive, transitive, and symmetric relation) on code frag-

ments [9]. A clone relation holds between two code fragments

if (and only if) they are the same sequences. (Sequences are

sometimes original character strings, strings without white

spaces, sequences of token type, and transformed token se-

quences.) For a given clone relation, a pair of code frag-

ments is called a clone pair if the clone relation holds be-

tween the fragments. An equivalence class of clone relation

is called a clone set. That is, a clone set is a maximal set of

code fragments in which a clone relation holds between any

pair of code fragments. A code fragment in a clone set of a

program is called a code clone or simply a clone.

2. 2 CCFinder

CCFinder [9] detects code clones from programs and out-

puts the locations of the clone pairs on the programs. The

length of minimum code clone is set by the user in advance.

Clone detection of CCFinder is a process in which the input

�� ��� ���	��
��
���� � � ��
��������
� ������������! #" $&%('�)�$+*(,�)�$�-�-�.
/
0�1�2 3 4 5�6�7�8�0 %9" : 0 #;�, 0=<�2 : 0�> .@? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 .�.�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5 $+%C$D)
0�1�2 3 4 5�6�7�8�0 %�EGF <�<)

H
� ��� ���BIKJGL�L��

�

�� ��� ���B��
������
���! #" 2 %M'�) 2 *9NO'�) 2 -�-�.
/
0�1�2 3 4 5�6�7�8�0 %B" : 0 #;�, 0=<�2 : 0�> .�? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 . .�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5�2 % 2)
0�1�2 3 4 5�6�7�8�0 %�EKF <�<)

H
�	�M� �

�
PRQ+S�T(U�VXW�Y�Z[T�\!]&^

PRQ+S!T(U@V_W�Y�Z[TO\!]=`

a b�c d eKfhg�i�eGjke�i�e�lOlOmnpo
q�r s t u�vOwXx

o fkd y o c zO{ o�| r y
o�} m ~ qOs s b�{Od y r ��w b�a d

|
r y
o m m�io

q�r s fhd
|
r y
o�} m o qOr s t u�vOwXx

o io
q�r s t u eGfke�io
q�r s t u�vOwXx

o f��!� |�| i�
�����D�������������������&�

�� ��� ���	��
��
���� � � ��
��������
� ������������! #" $&%('�)�$+*(,�)�$�-�-�.
/
0�1�2 3 4 5�6�7�8�0 %9" : 0 #;�, 0=<�2 : 0�> .@? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 .�.�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5 $+%C$D)
0�1�2 3 4 5�6�7�8�0 %�EGF <�<)

H
� ��� ���BIKJGL�L��

�

�� ��� ���B��
������
���! #" 2 %M'�) 2 *9NO'�) 2 -�-�.
/
0�1�2 3 4 5�6�7�8�0 %B" : 0 #;�, 0=<�2 : 0�> .�? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 . .�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5�2 % 2)
0�1�2 3 4 5�6�7�8�0 %�EKF <�<)

H
�	�M� �

�
PRQ+S�T(U�VXW�Y�Z[T�\!]&^

PRQ+S!T(U@V_W�Y�Z[TO\!]=`

a b�c d eKfhg�i�eGjke�i�e�lOlOmnpo
q�r s t u�vOwXx

o fkd y o c zO{ o�| r y
o�} m ~ qOs s b�{Od y r ��w b�a d

|
r y
o m m�io

q�r s fhd
|
r y
o�} m o qOr s t u�vOwXx

o io
q�r s t u eGfke�io
q�r s t u�vOwXx

o f��!� |�| i�
�����D�������������������&�

Fig 1 Example of merging two code fragments

is source files and the output is clone pairs. The process

consists of following four steps:

Step1: Lexical analysis: Each line of source files is divided

into tokens corresponding to a lexical rule of the program-

ming language. The tokens of all source files are concate-

nated into a single token sequence, so that finding clones

in multiple files is performed in the same way as single file

analysis.

Step2: Transformation: The token sequence is trans-

formed, i.e., tokens are added, removed, or changed based on

the transformation rules that aims at regularization of iden-

tifiers and identification of structures. Then, each identifier

related to types, variables, and constants is replaced with a

special token. This replacement makes code fragments with

different variable names clone pairs.

Step3: Match Detection: From all the sub-strings on the

transformed token sequence, equivalent pairs are detected as

clone pairs.

Step4: Formatting: Each location of clone pair is con-

verted into line numbers on the original source files.

3. Proposed Method

3. 1 Extraction of Refactoring-Oriented Code

Clone

The key idea of our method is to find a kind of cohesive

code fragment (like compound block or method bodies) from

the code clone fragments. Figure 1 shows an example. In

this figure, there are two code fragments A and B from a

program, and the code fragments with hatching are maxi-

mal clones between them. In code fragment A, some data

are substituted to list data structure from the head succes-

sively. In code fragment B, they are done so from the tail

successively. The for blocks in A and B have a common

logic that handles a list data structure. There are, however,

sentences before and after for block, that are not necessarily

related with the for block from semantic point of view. Such

semantically unrelated sentences often obstruct refactoring.

In other word, extracting only for block as a code clone is

more preferable from refactoring viewpoint in this example.

We extract refactoring-oriented code clone from the out-

put of CCFinder. For example, the following kinds of code

clone are extracted as a refactoring oriented code clone for

Java language.

— 2 —

Declaration : class { }, interface { }
Method : method body, constructor, static initializer

Statement : if, for, while, do, switch, try, synchronized

3. 2 Code Clone Metrics for Determining Refac-

toring Pattern

We use existing refactoring pattern [6], especially “Extract

Method” and “Pull Up Method”, to remove code clones.

“Extract Method” means that a fragment of source code

are extracted and redefined as a new method [6]. Originally,

this pattern is applied to too long method or too complex

part. Here, in order to remove code clones, we use “Extract

Method” to extract code clone fragments as a common new

method. “Pull Up Method” means that the same methods

defined in child classes are pulled up to its parent class [6].

This pattern is performed because of various reasons such as

design pattern. If plural child classes which have common

parent class include clone method, pulling up such methods

means clone removal.

We attempt to refine detected code clones by measur-

ing their characteristics to remove some of them. “Extract

Method” is the extraction of a code fragment, so it is de-

sirable that the target fragment has low coupling with the

other surrounding fragments in the method, in other words,

the variables defined outside the fragment aren’t used (re-

ferred and substituted) in the fragment. If such variables

are used, it is necessary to provide them as parameters for

the new method. Therefore, we measure the amount of such

variables.

On the other hand, “Pull Up Method” means moving iden-

tical existing methods in child classes to the parent class, so

it is necessary that the child classes have common parent

class. Therefore, we measure the dispersion of clones in the

class hierarchy. The above characterizing makes it possible

to determine how each clone can be removed. In order to

make the decision, we introduce several metrics.

For the variables which are defined outside the code clone

fragment, we define two metrics RV K(S), and RV N(S).

Here, we assume that clone set S includes code fragments

{f1, f2, · · · , fn}. Code fragment fi uses externally defined

variables {vi1 , vi2 , · · · , vimi
}. Also, RS(vij) denotes the

total number of referred and substituted count of vij .

RV K(fi) = mi,

RV N(fi) =

mi∑
i=1

RS(vi)

and,

RV K(S) = (

n∑
i=1

RV K(fi))/n,

RV N(S) = (

n∑
i=1

RV N(fi))/n

Intuitively, RV K(S) represents the number of externally

defined variables used in the fragments of the clone set

S. Additionally, RV N(S) counts the number of usage of

the variables used in the fragments of S. For the disper-

sion in class hierarchy, we defined a metrics DCH(S). As

described above, the clone set S includes code fragments

{f1, f2, · · · , fn}. Ci denotes the class which includes code

fragment fi.

Then, if the classes {C1, C2, · · · , Cn} have several com-

mon parent classes, Cp is defined as the class which lays the

lowest position in class hierarchy among the parent classes of

{C1, C2, · · · , Cn}. Also, D(Ck, Ch) represents the distance

between class Ck and class Ch in the class hierarchy.

DCH(S) = max {D(C1, Cp), D(C2, Cp), · · · , D(Cn, Cp)}

If the classes don’t have common parent class,

DCH(S) = -1

The value of DCH(S) also becomes larger as the degree of

the dispersion of its clone set becomes large. If all fragments

of a clone set S are in the same class, the value of its DCH(S)

is set as 0. If all fragment of a clone set are in a class and

its direct children classes, the value of its DCH(S) is set as

1. Exceptionally, if classes which have some fragments of a

clone set don’t have common parent class, the value of its

DCH(S) is set as -1. In detail, this metric is measured for

only the class hierarchy where the target software exists be-

cause it is unrealistic that the user pulls up some methods

which are defined in the target software classes to library

classes like JDK.

4. Refactoring Support Tool: Cancer

Based on the proposed method, we have implemented a

refactoring support tool Cancer with Java language. Fig-

ures 2(a) and 2(b) show snapshots of Cancer with the name

of the windows.

Intuitively, the user specifies the distinctive clone set on

the Main Window. Then, he/she analyzes the details of it

on the Clone Set Viewer.

4. 1 Function of Each Component

Here, we explain some components on Cancer.

4. 1. 1 Metric Graph View

The Metric Graph View uses existing metrics, LEN(S),

POP (S), and DFL(S) [13] in addition to three metrics de-

fined in Section 3. 2. The followings are brief explanations of

each metric.

LEN(S) for clone set S is the maximum length of token

sequence for each one in S.

POP(S) is the number of elements (code fragments) of a

given clone set S. A clone set with a high value of POP (S)

means that similar code fragment appear in many places.

DFL(S) indicates an estimation of how many tokens would

be removed from source files when the code fragments in a

clone set S are reconstructed. This reconstruction is consid-

ered as the simplest case that all code fragments of S are

replaced with caller statements of a new identical routine

(function, method, template function, or so). After the re-

construction, LEN(S)×POP (S) tokens are occupied in the

source files. In the newly reconstructed source files, they

occupy k × POP (S) tokens (let k be the number of tokens

for one caller statement) for caller statements and LEN(S)

tokens for callee routine.

Here, we explain the Metric Gragh View using an example

shown in Figure 3. In the Metric Graph View, each metric

has a parallel coordinate axe. Upper and lower limits are set

per each metric. The hatching part is between upper and

lower limits of each metric. A polygonal line is drawn per

each clone set. In this example, values for the clone sets S1

and S2 are drawn. In the left graph(3(a)), all metric values of

— 3 —

��������� �
	��
�����
��� ��� ������������������� �"!#������� ����$ ��% �&$ ��'��(��$ ��%)%*$ � %)�

���������������*������$ ��'��,+�'�� �

��������� �
	��
�����
��� ��� ������������������� �"!#������� ����$ ��% �&$ ��'��(��$ ��%)%*$ � %)�

���������������*������$ ��'��,+�'�� �

(a) Main Window

���������	��

����������� � ��� �����	�	� ������
�� !�#"�
$�����

%&�$ '�����(�!�
�'����� ��) *�+,�

$�	�
$-$� �'�.� � ���

���������	��

����������� � ��� �����	�	� ������
�� !�#"�
$�����

%&�$ '�����(�!�
�'����� ��) *�+,�

$�	�
$-$� �'�.� � ���

(b) Clone Set Viewer

Fig 2 Snapshots of Cancer

����� ����� 	�
��
����
���� 	����

���

���

����� ����� 	�
��
����
���� 	����

���

���

(a) Before selection

����� ����� 	�
��
����
���� 	����

���

���

����� ����� 	�
��
����
���� 	����

���

���

(b) After selection

Fig 3 Metric Graph

S1 and S2 are between upper and lower limits. So, these two

clone sets are selected state. In the right graph(3(b)), the

value of DCH(S2) is bigger than the upper limit of DCH,

which means S2 is unselected state. The Metric Graph View

enables the user to select arbitrary clone set by changing

upper and lower limits of each metric. And, the result of

selection is reflected on the Clone Set List.

4. 1. 2 Checkbox of RV Variables

In the Checkbox of RV Variables in Figure 2(a), the user

can decide which variables are counted as metrics RV K(S)

and RV N(S). Currently, the variables are selected from the

following five types.
• field members of its class,
• field members of parent class,
• “this” variable,
• “super” variable,
• local variables.

For example, if the user is going to perform “Extract

Method” within a class, it is not necessary to count all kind

of variables except local ones because these variables can be

accessed anywhere in the same class. On the other hand,

if the user is going to perform refactoring that crosses over

plural classes like “Pull Up Method”, these ones should be

counted.

4. 1. 3 Checkbox of Clone Unit

In the Checkbox of Clone Unit, the user can decide which

kind of clone unit are shown in the Metric Graph View. Cur-

rently, the number of unit types are twelve as described in

Section 3. 1. For example, if the user is going to perform

“Pull Up Method”, he/she should check only ‘method’ unit

because the target of this pattern is the existing methods.

4. 1. 4 Clone Set List

The Clone Set List shows all clone sets which are selected

in the Metric Graph View. And the list can sort clone sets

in ascending and descending sequence of each metric value.

Double-clicking a clone set on this view is a trigger to run

the Clone Set Viewer as shown in Figure 2(b). It shows more

detail information of the selected clone set.

4. 2 Refactoring Procedure

Now, we explain refactoring process using Cancer. If the

user wants to perform “Pull Up Method”, the following con-

ditions should be considered for example.

(PC1) The target is ‘method’ unit code clone.

(PC2) The value of DCH(S) is more than 1.

Usually, ”Pull Up Method” is performed on existing meth-

ods, so (PC1) should be considered. And, the classes whose

method includes target code clones have to inherit common

parent class, so (PC2) should be considered. Next, the re-

finement process is as follows. At first, the user checks only

‘method’ unit checkbox on the Checkbox of Clone Unit, which

is reflected to the Metric Graph View. Next, the user sets

the lower limit of DCH(S) as more then 0. This operation is

reflected to the Clone Set List. As the result, the list shows

the clone sets which meet the conditions (PC1) and (PC2).

On the other hand, if the user wants to perform “Extract

Method”, the following conditions should be considered for

example.

(EC1)The target is ‘statement’ unit code clones.

(EC2)Tthe value of DCH(S) is 0.

(EC3)The value of RV K(S) is less than 1.

Since “Extract Method” is usually performed on a code

fragment in a method, (EC1) is considered. Next, if all frag-

— 4 —

ments of clone set S exist in the same class, it is easy to

merge them. So, (EC2) is considered. The reason to con-

sider (EC3) is that if some variables which are externally

defined are used in a fragment, it is necessary to make them

parameters of the new extracted method. Moreover, if some

values are substituted to some of them, they have to be re-

turned to method caller place to reflect the values of them.

It is necessary to contrive like making new data class if plural

value are substituted. The refinement process is as follows.

At first, the user checks only ‘statement’ unit (do, if, for,

switch, synchronized, try, while) checkbox on the Checkbox

of Clone Unit, which is reflected to the Metric Graph View.

Next, the user checks only ‘local variable’ on the Checkbox of

RV Variables because other kind variables can be accessed

as far as in the same class. Next, the user set the range of

DCH(S) as some value between 0 and 1(0 <= DCH(S) <=
1), and the upper limit of RV K(S) as less then 2. As the

result of these operations, the Clone Set List shows only the

clone sets which meet above three conditions (EC1), (EC2)

and (EC3).

5. Case Study

5. 1 Overview

In order to evaluate the usefulness of Cancer, we have ap-

plied it to Ant 1.6.0 [1]. It includes 627 files and the size is

180,000 LOC. In this case study, we set thirty tokens as the

length of minimum code clone of CCFinder(intuitively, thirty

tokens correspond to about five LOC). The value thirty is the

empirical value which was derived from our previous appli-

cations of CCFinder. We also set thirty tokens as the length

of minimum clone of Cancer. Then, we tried to perform

“Extract Method” and “Pull Up Method” to code clones de-

tected by Cancer. We got 154 clone sets from Ant. The

followings are the number of clones.
All detected clones 154

“Pull Up Method” 20

“Extract Method” 32

The conditions of “Pull Up Method”and “Extract

Method” are the same as ones described in Section 4. 2. In

Section 5. 3 and 5. 2, we describe the details of refactoring

using Cancer. Also, after removing several clone sets, we

performed regression tests to confirm the behavior of Ant.

In the regression test, we used totally 220 test cases included

in Ant package. These test cases used JUnit [8], which is one

of regression testing frameworks. So, we could easily perform

all test cases and took about 4 minutes to perform all test

cases.

5. 2 “Pull Up Method”

Next, we describe the results of applying ‘Pull Up

Method”. As described above, we extracted 20 clone sets

using the “Pull Up Method” conditions described in Section

4. 2. Then, we browsed and examined all source codes of each

code clone, and classified them to the following four groups:

Group 1 clone sets that can be removed only by moving

them to the common parent class.

Group 2 clone sets that can be removed by moving them to

common parent class after adding variables which are defined

outside.

Group 3 clone sets that can be removed by moving them to

common parent class and adding a new method which needs

parameters of outside variables and return statement. Ex-

isting methods which includes the pull-uped clones can be

deleted or changed so that they call the new method from

the inside. If they are deleted, it is necessary to change all

its caller places.

Group 4 clone sets that need much contrivance to remove.

Here, no clone set was classified to Group 1.

private void getCommentFileCommand(Commandline cmd) {

if (getCommentFile() != null) {

/* Had to make two separate commands here because
if a space is inserted between the flag and the
value, it is treated as a Windows filename with
a space and it is enclosed in double quotes (").
This breaks clearcase.

*/
cmd.createArgument().setValue(FLAG_COMMENTFILE);

cmd.createArgument().setValue(getCommentFile());

}
}

Fig 4 Example of Pull Up Method in group 2

Ten clone sets were classified to Group 2. Figure 4 shows a

source code of one of them. In this ‘method’ clone, the vari-

able “this” was omitted at calling method “getCommentFile”

which was defined in the same class. The variables “this” and

“FLAG_COMMENTFILE”, which are field members of the same

class, are externally defined. To adapt “Pull Up Method”

pattern, with adding two parameters, we pulled up them to

the common parent class.

public void verifySettings() {

if (targetdir == null) {

setError("The targetdir attribute is required.");

}
if (mapperElement == null) {

map = new IdentityMapper();

} else {
map = mapperElement.getImplementation();

}
if (map == null) {

setError("Could not set <mapper> element.");

}
}

Fig 5 Example of Pull Up Method in group 3

Two clone sets were classified to Group 3. Figure 5 shows a

source code of one of them. In this method clone, the variable

“map” was externally defined, and some values were substi-

tuted to it(Method “setError” was defined in the common

parent class). So, to pull up this clone set to the common

parent class, it was necessary to add a parameter and return

statement for the variable “map”.

public void execute() throws BuildException {

Commandline commandLine = new Commandline();
Project aProj = getProject();
int result = 0;

// Default the viewpath to basedir if it is not specified

if (getViewPath() == null) {

setViewPath(aProj.getBaseDir().getPath());

}

// build the command line from what we got. the format is

// cleartool checkin [options...] [viewpath ...]

// as specified in the CLEARTOOL.EXE help

commandLine.setExecutable(getClearToolCommand());

commandLine.createArgument().setValue(COMMAND_CHECKIN);

checkOptions(commandLine);

result = run(commandLine);
if (Execute.isFailure(result)) {

String msg = "Failed executing: " +

commandLine.toString();

throw new BuildException(msg, getLocation());

}
}

Fig 6 Example of Pull Up Method in group 4

Eight clone sets were classified to Group 4. Figure 6 shows

a source code of one of them. In this method, the method

“checkOptions” was called. This method was defined in the

— 5 —

same class(Methods, “getProject”, “getViewPath” and “get-

Location” were defined by using common parent class). And,

the variable “commandLine”, which was a parameter of this

method, was defined and used in the clone. So, this method

caller made it difficult to apply “Pull Up Method” to this

clone set. But, the method “checkOptions” was defined in

each child class. In this case, “Template Method” pattern [6]

could be applied. Procedure of this pattern appliance is the

followings. At first, we moved the clone to the common par-

ent class. Next, we defined an abstract method “checkOp-

tions” in the common parent class.

5. 3 “Extract Method”

As described above, we extracted 32 clone sets using

the “Extract Method” conditions described in Section 4. 2.

Then, we browsed and examined all source codes of each

clone set, and classified them to the following four groups:

Group 1 clone sets that can be removed only by extracting

them and making a new method in the same class.

Group 2 clone sets that can be removed by extracting them

and making a new method with setting the externally defined

variables as parameters of it because such variables are used

in the clone.

Group 3 clone sets that can be removed by extracting them

and making a new method with setting the externally defined

variables as parameters of it and with adding parameters of

return statement to deliver the results to the variables used

in the caller.

Group 4 clone sets that can be removed but need a lot of

effort.

if (!isChecked()) {
// make sure we don’t have a circular reference here
Stack stk = new Stack();
stk.push(this);

dieOnCircularReference(stk, getProject());

}

Fig 7 Example of Extract Method in Group 1

Three clone sets were classified to Group 1. Figure 7 shows

a source code of one of them. In this ‘if-statement’ clone, no

externally defined variable was used. So, it was very easy to

extract it as a new method in the same class.

if (javacopts != null && !javacopts.equals("")) {

genicTask.createArg().setValue("-javacopts");

genicTask.createArg().setLine(javacopts);

}

Fig 8 Example of Extract Method in Group 2

Eighteen clone sets were classified to Group 2. Figure 8

shows a source code of one of them. In this ‘if-statement’

clone, the variable “javacopts” was a field member of its class,

and the variable “genicTask” was a local variable. So, it is

necessary to set “genicTask” as a parameter of a new method

to extract this code clone in the same class.

if (iSaveMenuItem == null) {
try {

iSaveMenuItem = new MenuItem();
iSaveMenuItem.setLabel("Save BuildInfo To Repository");

} catch (Throwable iExc) {
handleException(iExc);

}
}

Fig 9 Example of Extract Method in Group 3

Seven clone sets were classified to Group 3. Figure 9 shows

a source code of one of them. In this ‘if-statement’ clone, the

variable “iSaveMenuItem” was externally defined. Moreover,

the value was substituted to it. So, it is necessary to set

“iSaveMenuItem” as a parameter of a new method and add

‘return statement’ to reflect the result of substitution to the

caller.

if (name == null) {
if (other.name != null) {

return false;
}

} else if (!name.equals(other.name)) {
return false;

}

Fig 10 Example of Extract Method in group 4

Four clone sets were classified to Group 4. Figure 10 shows

a source code of one of them. In this ‘if-statement’ clone,

some ‘return-statements’ were used. So, a lot of effort would

be necessary to extract it. In this case study, we didn’t re-

move these four clone sets because we think that removal of

them is strongly dependent on the skill of each programmer.

6. Conclusion

In this paper, we have proposed a new refactoring method

of code clone, and implemented a refactoring support tool,

Cancer. The code clone analysis algorithm used in Cancer

is so fast that it can apply industrial huge scale software.

Also, we have applied Cancer to Ant, and removed almost of

refined clones.

As future works, we are going to perform more detail anal-

ysis for code clones. For example, distinction of reference

and substitution of externally defined variables should be

considered. Also, we are going to consider the effectiveness

of refactoring. Currently, we refine code clones based on the

judgment whether they can be removed or not. If we can

judge whether the code clones should be removed or not, the

supporting of the refactoring will become more effective.

References

[1] Ant, http://ant.apache.org, 2003.
[2] M. Balazinska et al., “Advanced Clone-Analysis to Support

Object-Oriented System Refactoring”, Proceedings the 7th
Working Conference on Reverse Engineering, 2000, 98-107.

[3] I. D. Baxter et al., Clone Detection Using Abstract Syntax
Trees, Proc. of ICSM98, pages 368-377, Nov. 1998.

[4] S. Ducasse et al., A Language Independent Approach for
Detecting Duplicated Code, Proc. of ICSM99, pages 109-
118, Aug. 1999.

[5] Eclipse, http://www.eclipse.org, 2004.
[6] M. Fowler, Refactoring: improving the design of existing

code, Addison Wesley, 1999.
[7] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto and K. In-

oue, On software maintenance process improvement based
on code clone analysis, Proc. of Profes 2002, pp. 185-197
(2002).

[8] JUnit, http://www.junit.org, 2003.
[9] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A

multi-linguistic token-based code clone detection system for
large scale source code IEEE Transactions on Software En-
gineering, vol. 28, no. 7, pp. 654-670, (2002-7).

[10] R. Komondoor and S. Horwitz, Using slicing to identify
duplication in source code, In Proc. of the 8th International
Symposium on Static Analysis, Paris, France, July 16-18,
2001.

[11] J. Mayland, C. Leblanc, and E. M. Merlo Experiment on
the Automatic Detection of Function Clones in a Software
System Using Metrics, Proc. of IEEE Int’l Conf. on Soft-
ware Maintenance (ICSM) ’96, pages 244-253, Monterey,
California, Nov. 1996.

[12] Pigoski T. M, Maintenance, Encyclopedia of Software En-
gineering, 1, John Wiley & Sons, 1994.

[13] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, Gemini:
Maintenance Support Environment Based on Code Clone
Analysis, 8th International Symposium on Software Met-
rics, June 4-7, 2002.

— 6 —

