
Towards Locating a Functional Concern Based on a Program Slicing Technique

Takashi Ishio1,2, Ryusuke Niitani2, Katsuro Inoue2

1Department of Computer Science
University of British Columbia

2366 Main Mall, Vancouver, BC
Canada V6T 1Z4
ishio@acm.org

2Graduate School of
Information Science and Technology

Osaka University
1-3 Machikaneyama, Toyonaka,

Osaka 560-8531, Japan
{rniitani, inoue}@ist.osaka-u.ac.jp

Abstract

A functional concern is often implemented by collabora-
tive software modules. When developers modify or reuse the
implementation of a concern, they need to find the module
units contributing to the concern and understand how the
units collaborate with one another. Although program slic-
ing is an automatic method to extract relationship among
program elements in modules, slicing often results in many
program elements to understand. This position paper pro-
poses a variant of program slicing that uses heuristics to
stop visiting vertices in a program dependence graph. A
preliminary case study shows that our method extracts a
small subgraph of the usual program slice that seems most
applicable to understand the feature. This paper also dis-
cusses other possible heuristics towards the automatic ex-
traction of a concern.

1. Introduction

Software developers often must spread the implementa-
tion of a functional concern across several related modules.
When maintaining that concern, a developer then must han-
dle the multiple modules that contribute to the concern [10].
Some estimate that understanding concerns in source code
accounts for more than half of the total cost of maintenance
[3].

When a developer starts to modify or reuse a concern,
developers first need to find the software entities, which in-
cludes methods and fields, related to the concern. Feature
location [14, 19] and component repository [9] have been
proposed as ways to find software entities related to a func-
tional concern. These methods provide a list of software en-
tities related to the concern of interest to a developer.

After they have found the software entities, developers
have to understand how the entities collaborate to form the
concern. One perspective of collaboration is control-flow
and data-flow among the software entities. One way to ex-
tract appropriate software entities (in this case statements)
based on control-flow and data-flow is to use program slic-
ing [16]. However, for a large system, program slicing of-
ten results in a large number of statements since program
slicing extracts all statements which may have an affect on
the variables of interest [7]. This is because a functional
concern is connected to other related functional and non-
functional concerns. Long dependence paths through an en-
tire software system may be needed to help complete a de-
bugging task, but it is not suitable for a developer who needs
to understand the relationships among specific software en-
tities. For example, a developer may want to know “Which
is a parameter for business logic”. If a slice is used to try
to answer this question, software entities corresponding to
how to calculate the parameter in the user-interface level
will also be returned, which is not important for the devel-
oper analyzing the business logic.

In this paper, we propose the use of heuristics to help
guide program slicing to return the control-flow and data-
flow relationship among software elements related to a par-
ticular concern. Our heuristic rules identify vertices that ter-
minate the traversal of the program dependence graph used
to extract a program slice.

Our method takes as input a list of methods and fields
of interest to a developer. The developer can identify such
methods and fields by keyword search or feature location
techniques [9, 14, 19]. Our method produces a subgraph of
a program dependence graph that includes the vertices rep-
resenting the input, other related vertices and edges repre-
senting control-flow and data-flow among the input vertices.
The resultant subgraph is a union of backward and forward
heuristic program slices for each vertex that corresponds to

an entity in the input list.
We report on a preliminary case study we conducted to

evaluate our approach. The study shows that heuristics are
important to reduce the size of program slice.

We begin by describing the background of the research,
which focuses on program slicing. In Section 3 we describe
our methods in detail. Section 4 represents the result of pre-
liminary case study. Section 5 discusses about our heuris-
tics. Related works are presented in Section 6. Finally, we
conclude in Section 7.

2. Background

Program slicing is a technique to extract statements that
are relevant to a particular variable [16]. Given a source pro-
gram p, a program slice is a collection of statements possi-
bly affecting the value of slicing criterion (in the pair <s,
v>, s is a statement in p, and v is a variable defined or re-
ferred to at s).

In the process of program slicing, a program is con-
verted to a program dependence graph whose vertices rep-
resent statements and edges represent control and data rela-
tions [4]. A program slice is extracted by backward/forward
traversal of the graph from slice criteria. A backward slice
contains statements that affect on variables, and a forward
slice contains statements that depend on the variables, re-
spectively.

Chopping, which is a variant of program slicing, is pro-
posed to support the understanding of how a statement af-
fects to another statement [5]. Chopping extracts control-
flow and data-flow paths from input variables to output vari-
ables in a program dependence graph. This approach re-
quires developers to distinguish statements into input and
output. However, such a labeling task is hard for a developer
who has just found variables and methods without enough
knowledge about a concern. Therefore, it is not suitable to
inspect the structure of a concern.

On the other hand, a program slicing based approach
is proposed to automatically extract a concern graph [6].
Concern graph is a graph whose vertices represent soft-
ware entities such as methods and fields, and edges repre-
sent the relationship among elements such as method call
and a field access, respectively [11]. This approach converts
a program slice to a concern graph since a program slice
is a functional unit to calculate a value of a variable. How-
ever, this approach may output a large concern graph since
a program slice always includes shared concerns such as
main(String[]) method in Java and crosscutting con-
cerns such as logging.

Krinke proposed length-limited slicing based on the dis-
tance from a criterion [7]. This approach stops the traversal
at a vertex after k steps from the criterion vertex. However,
it is hard to determine an appropriate parameter k. Krinke

also proposed chopping with barriers [8]. A barrier is a ver-
tex that terminates the graph traversal. In [8], only chopping
criteria (source and target vertices) are used as barriers. Our
approach aims to automatically find such barriers in order
to extract a small set of statements for specific software en-
tities.

3. Extracting a Functional Concern with Slic-
ing

Our method automatically extracts relationship among
software entities based on methods and fields that are speci-
fied by a developer. This method supports developers to un-
derstand how software entities are contributing to a concern
when they find entities that might be related to a concern.

Our method is a variant of program slicing that extracts
a subgraph of a program dependence graph which includes
vertices representing the entities specified by developers
and edges connecting the vertices. The extracted slice shows
control-flow or data-flow paths among entities to develop-
ers.

3.1. Slicing a Concern

Program dependence graph [4] is a graph whose ver-
tices represent program statements and edges represent con-
trol and data dependence relations. In this paper, we use
a program dependence graph for Java [18]. Polymorphic
method calls are resolved based on points-to set analysis.
One method call vertex has edges connected to one or more
methods which might be executed.

We define our method based on the graph terminology.

Input: A pair of (G,Vd) is the input for the method.
Graph G is a dependence graph for a program. Vd is
a set of vertices in G corresponding to software enti-
ties specified by a developer. In order to allow devel-
opers to specify software entities without knowledge
about graph structure, we translate a field to all ver-
tices which refer to the field and a method to the entry
point vertex of the method.

Output: A sliced graph S which is a subgraph of G in-
cludes at least vertices Vd and edges for connecting the
vertices. Graph S is usually connected but may not be
if a vertex v is not reachable from other vertices in Vd.

Extracting relationship among specified software enti-
ties is finding a connected subgraph that includes vertices
Vd. One conservative solution is the union of backward and
forward program slices for each vertex in Vd. The union
slice becomes a connected graph including all vertices in
Vd. However, the output will be large amount of statements.

A smaller subgraph is more suitable for developers to in-
spect. A program slice is calculated by traversing the depen-
dence graph from a vertex. Therefore, we introduce heuris-
tics to stop the traversal at vertices that satisfy certain pat-
terns in order to find a small set of collaboration code frag-
ments.

3.2. Heuristics for Extracting Slices

There are many possible subgraphs of a dependence
graph that include vertices Vd and relationship among the
vertices. We define additional conditions for understand-
ing how particular software entities collaborate with one an-
other.

1. The resultant graph should include information about
who (an object) or where (a method call statement)
starts and finishes the collaboration.

2. The resultant graph should include reinforced methods
and fields that contribute to the same concern to which
specified entities contribute. An entity x is reinforced
by a set of interest I if most elements related to x are in
I [13].

In this paper we discuss only the first condition. We leave
the development of heuristics for the second condition to fu-
ture work.

To find a subgraph that satisfies the first assumption, we
search dominator and post-dominator for Vd specified by
a developer. Dominator is the nearest common ancestor for
Vd in a control-flow graph. The dominator is the nearest ver-
tex reachable from all vertices in Vd via control-flow edges
and method-call edges by backward traversal. For example,
we show a code fragment processing files in Figure 1. In the
code fragment, execute method (lines 01-03) sets a pa-
rameter using setFolderList method (lines 04-05) and
calls runmethod (lines 06-18). Figure 2 represents control-
flow and method calls for the code fragment. The domina-
tor for line 05 (writing folders field) and line 07 (creat-
ing FileList object) is line 02. Similarly, post-dominator
is the nearest common successor, that is the nearest vertex
reachable from all vertices in Vd via control-flow edges and
method return edges by forward traversal. For example, the
post-dominator for line 05 and line 07 is line 03. To find
nearest common ancestor, a simple iterative algorithm is de-
fined in a part of a dominance tree analysis algorithm [1].

The dominator and the post dominator in control-flow
represent the start and the end of control-paths related to
vertices Vd. Therefore, we apply usual program slice in
the paths from the dominator to the post-dominator via Vd.
Heuristic rules block traversal process at a vertex out of the
paths.

The modified program slicing process is as follows.

 class Console {
01: public void execute() {
 :
02: checker.setFolderList(folders);
03: checker.run();
 } }
 class Checker {
04: public void setFolderList(List folders) {
05: this.folders = folders;
 }
06: public void run() {
07: FileList filelist = new FileList();
 :
08: for (Iterator it = folders.iterator(); it.hasNext();) {
09: String folder = (String)it.next();
10: filelist.parseFile(new File(folder), is_recursive);
 }
 :
11: int count = 0;
12: for (Iterator it = filelist.iterator(); it.hasNext();) {
13: Collection files = (Collection)it.next();
14: if (files.size() > 1) {
15: makeDuplicationGroups(files);
 }
16: count += files.size();
17: notifyProgressValue(count);
 }
 :
18: notifyFinished();
 }
19: private void makeDuplicationGroups(Collection l) {
20: for (Iterator it = l.iterator(); it.hasNext();) {
21: File f = (File)it.next();
22: String signature = FileMD5.makeMD5(f);
23: if (signature.startsWith(Settings.SIGNATURE_ERROR)) {
24: notifyErrorFile(signature);
 } else { /* process a file */ } } }

Figure 1. An example code fragment

1. We get the dominator and the post-dominator for ver-
tices Vd in control-flow. We refer to the dominator as
dom(Vd), and the post-dominator as pdom(Vd) in the
following steps.

2. The vertices in Vd, dom(Vd) and pdom(Vd) bounds a
region based on control-flow. All vertices in backward
paths from the vertices in Vd to dom(Vd) and in for-
ward paths from the vertices in Vd to pdom(Vd) are
marked as “primary” vertices.

3. We apply the usual program slice algorithm to the pri-
mary vertices. A backward/forward search from each
vertex in Vd is blocked at a non-“primary” vertex if:

• the vertex is a field vertex, or

• the vertex is a method entry point which has no
arguments, or

• the vertex is a method entry point for an abstract
method, or

01

02

03

04

05

06

call

return

07

08

11

09

10

12

18

13

17

14

16

15

19

20 22

23

24

21call

return

call

return

control flow
method call / return

Figure 2. Control flow graph of the example
code

• the vertex is in library classes (e.g. java and
javax packages).

We set the condition for a method entry point without ar-
guments since the behavior of such a method is indepen-
dent of the caller method but depends on only the fields of
the invoked object. The fields and the methods that have
no arguments represent the boundary of the intermethod
data-flow for the vertices in Vd. For example, line 05 writes
field folders and line 08 reads the field. This intermethod
data-dependence edge is not traversed unless both lines are
primary vertices.

Our method might stop at vertices before the result in-
cludes enough information for developers. A developer can
add a new criterion vertex to find further vertices.

4. Preliminary Case Study

In order to estimate the effectiveness of our approach, we
have conducted a preliminary case study. A target program
is a Duplicated File Checker, a program listing files which
has the same MD5 hash code in the selected directories. The
Checker program consists of 14 Java source files. The total
size is 1331 lines of source code including comments. We
have built a dependence graph for a part of the system based
on Java byte-code in partially automated way. To get points-
to set information, we have used context-sensitive pointer
analysis provided by bddbddb project [17].

This case study compared a conservative solution with
our heuristic approach. We have calculated a program slice
in both approaches, mapped the result on source code and
translated the result into concern graphs.

#lines #methods #files
Heuristic slice 43 15 4
Non-heuristic slice 198 46 8
Program size 1331 110 14

Table 1. The size of slices

Checker.notifyProgressValue(int)

Checker.run() Checker.is_recursive: boolean
Checker.folders: List<String>read

Checker.makeDuplicationGroups(Collection)

call

Checker.notifyErrorFile(String)
call

FileList()
FileList.parseFile(File)
FileList.addFile(File)
FileList.count(): int
FileList.iterator(): Iterator

CheckerListener.onErrorFile(String)

CheckerListener.onProgressValue(int)

Checker.duplicated_files: List

Checker.notifyFinished()

CheckerListener.onComplete(List)
CheckerListener.onAbort(boolean)

read

call

call

call

read

read

Checker.listeners: List

read

call

FileMD5.makeMD5(File)
call

Figure 3. A concern graph for “notify” meth-
ods

In this case study, we want to extract the con-
cern for notification. We identify particular methods in-
volved in notification, namely notifyProgressValue,
notifyErrorFile and notifyFinished. Apply-
ing our method to this program with the identified meth-
ods results in a slice with about 100 vertices. The slice
is mapped on 43 lines in 4 files. Table 1 shows the size
of our slice and conservative program slice. Our resul-
tant slice is a subset of the conservative slice.

We present the slice as a concern graph in Figure 3. A
vertex in the graph represent a method or a field. The trans-
lation rules we have used (defined in [6]) are following:

• A call edge from m1 to m2 is generated if the slice
includes a call edge from method m1 to method m2.

• A read edge from m to f is generated if the slice in-

cludes a vertex of method m which has a data-flow
from field f.

Because of space limitations, several methods are reduced
to one vertex in the concern graph, and fields in FileList
class are omitted. We marked the criterion methods with a
dot.

The concern graph includes the identified notifica-
tion methods, and it includes the methods run and
makeDuplicationGroups that implement the pro-
cess detecting duplicated files. The notification meth-
ods have method calls to methods in CheckerListener
class. This concern graph shows the structure of the noti-
fication concern: the methods for processing files use the
notification methods to notify the progress to listener ob-
jects.

The concern graph also includes FileList class and
the fields is_recursive and folders. These entities
represent the list of files to be processed in run method.
The duplicated_files field in the concern graph con-
tains the detected duplicated files. Therefore, the concern
graph includes entities needed to understand the notifica-
tion concern and the related process that detects the dupli-
cated files.

In contrast, the conservative (non-heuristic) program
slicing results in many methods for user interface that pro-
cess input parameters and output the result of run method.
These methods excluded from our heuristic slice are use-
less to understand the notification concern.

5. Discussion

The preliminary case study shows that heuristic ap-
proach is promising to extract a small set of software en-
tities related to a concern. Applying our method to various
concerns in other applications is our next work.

Our heuristics for preliminary study is based on control-
flow. However, the dominator for input vertices may be too
far from the vertices and it results a large program slice. To
handle such kind of concerns, we will have to evaluate other
possible heuristics for example:

Data-flow pattern We have noticed two patterns in data-
flow. One is an object returned by a method that is fol-
lowed in the next statement by an invocation. This kind
of data path might indicate a series of action contribut-
ing to one concern. The other is long data-flow path
to share one parameter among several modules. Such
a shared parameter might have an important role in a
concern.

Name similarity Developers often have a consistent rule
to name methods and fields. When a method is deter-
mined as a vertex terminating slicing, another method
which has similar name may be a termination vertex.

The size of dependence graph is proportional to the num-
ber of methods in the graph. We should handle a concern
even if a concern is crosscutting many modules. We plan to
develop a source code viewer which is same as SeeSoft [2]
for large-scale software.

6. Related Work

Chopping, which is a variant of program slicing, is pro-
posed to support the understanding of how a statement af-
fects to another statement [5]. Chopping extracts control-
flow and data-flow paths from input variables to output vari-
ables in a program dependence graph. This approach re-
quires developers to distinguish statements into input and
output. However, such a labeling task is hard for a developer
who has just found variables and methods without enough
knowledge about a concern. Therefore, it is not suitable to
inspect the structure of a concern.

SNIAFL is an information retrieval approach to extract
methods related to the feature and a pseudo execution trace
that represents the dynamic behavior of the methods [19].
Our method is useful for developers to analyze static struc-
ture of entities related to a feature found by this method.

Shepherd et al. proposed a natural language process-
ing approach to extract functional concerns from identifiers
in the source codes [14]. Developers can find source code
fragments from a pair of a verb and a direct object. While
this approach can extract scattered code related to same ac-
tion, it is not suitable to support understanding collabora-
tion among modules since this approach is based on identi-
fiers in source code.

Walkinshaw et al. proposed a method based on program
slicing to restrict the call graph to contain only methods
and calls that may be relevant to the execution of a particu-
lar use-case or scenario [15]. Their approach extracts a call
path including a set of “landmark methods” specified by a
user. A scenario usually consists of several concerns includ-
ing user-interface, business logic and other non-functional
concerns. Our approach aims to find a set of entities which
contribute a concern excluding other concern in a scenario.

Krinke proposed a filtering approach to slicing and chop-
ping with barriers [8]. Barriers are vertices which termi-
nate graph traversal. They regard source and target criteria
as barriers to extract only statements involved in the paths
from the source to the target. Our approach is an automatic
method to find appropriate barriers.

Robillard et al. proposed to categorize entities investi-
gated by a developer into concerns based on the developer’s
activity [12]. This method provides a list of entities for a
concern, but not the relations among entities. Our method
provides the additional information for understanding the
concern.

Robillard also proposed an approach based on static
analysis and developers’ activity to suggest software entities
related to their task [13]. This approach calculates a value
for an entity indicating its degree of relevance to the set of
entities investigated by developers. The value might be ef-
fective to filter the resultant slice of our approach.

7. Summary and Future Work

Understanding how software entities collaborate to im-
plement a functional concern is an important process in the
software maintenance task.

We proposed a novel approach to find a subgraph of a
program dependence graph that represents collaboration of
entities specified by developers. We introduced heuristics
into program slicing to stop graph traversal in slice calcula-
tion to get a small set of entities closely related to the spec-
ified entities.

In the future work, we will develop a fully automated
analysis tool for Java and apply various heuristic patterns to
large-scale software. We are planning to evaluate the effec-
tiveness by comparing with other feature location and slic-
ing techniques.

Acknowledgement

This work was supported by MEXT.Grant-in-Aid for
JSPS Fellows (No.17-9539). The authors are grateful to
Gail Murphy for her valuable comments.

References

[1] Cooper, K. D., Harvey, T. J. and Kennedy, K.: A
Simple, Fast Dominance Algorithm. Avilable online at
http://www.cs.rice.edu/k̃eith/EMBED/dom.pdf.

[2] Eick, S. G., Steffen, J. L. and Sumner Jr., E. E.: Seesoft
- a Tool for Visualizing Line Oriented Software Statistics.
IEEE Transactions on Software Engineering, Vol.18, No.11,
pp.957-968, November 1992.

[3] Fjeldstad, R. K. and Hamlen, W. T.: Application Program
Maintenance Study: Report to Our Respondents. Proceed-
ings of GUIDE 48, Philadelphia, Pennsylvania, April 1983.

[4] Horwitz, S., Reps, T. and Binkley, D.: Interprocedural Slic-
ing Using Dependence Graphs. ACM Transactions on Pro-
gramming Languages and Systems, Vol.12, No.1, pp.26-60,
January 1990.

[5] Jackson, D. and Rollins, E. J.: A New Model of Program De-
pendences for Reverse Engineering. Proceedings of the 2nd
ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE 1994), pp.2-10, New Orleans, Louisiana,
USA, December 1994.

[6] Kameda, D. and Takimoto, M.: Building Concern Graph
Based on Program Slicing. IPSJ Transactions in Program-
ming Language, Vol.46, No.SIG11, pp.45-56, August 2005.
In Japanese.

[7] Krinke, J.: Visualization of Program Dependence and Slices.
Proceedings of the 20th International Conference on Soft-
ware Maintenance (ICSM 2004), pp.168-177, Chicago, Illi-
nois, USA, September 2004.

[8] Krinke, J.: Slicing, Chopping, and Path Conditions with Bar-
riers. Software Quality Journal, Vol.12, No.4, pp.339-360,
December 2004.

[9] Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M. and
Kusumoto, S.: Ranking Significance of Software Compo-
nents Based on Use Relations. IEEE Transactions on Soft-
ware Engineering, Vol.31, No.3, pp.213-225, March 2005.

[10] Murphy, G. C., Kersten, M., Robillard, M. P. and Čubranić D.
C.: The Emergent Structure of Development Tools. Proceed-
ings of the 19th European Conference on Object-Oriented
Programming (ECOOP 2005), pp.33-48, Glasgow, UK, July
2005.

[11] Robillard, M. P. and Murphy, G. C.: Concern Graphs: Find-
ing and Describing Concerns Using Structural Program De-
pendencies. Proceedings of the 24th International Confer-
ence on Software Engineering (ICSE 2002), pp.406-416, Or-
land, Florida, USA, May 2002.

[12] Robillard, M. P., Murphy, G. C.: Automatically Inferring
Concern Code From Program Investigation Activities. Pro-
ceedings of the 18th International Conference on Automated
Software Engineering (ASE 2003), pp.225-234, Montreal,
Canada, October 2003.

[13] Robillard, M. P.: Automatic Generation of Suggestions for
Program Investigation. Proceedings of the 13th SIGSOFT
Symposium on Foundations on Software Engineering (FSE
2005), pp.11-20, Lisbon, Portugal, September 2005.

[14] Shepherd, D., Pollock, L. and Vijay-Shanker, K.: Towards
Supporting On-Demand Virtual Remodularization Using
Program Graphs. Proceedings of the 5th International Con-
ference on Aspect-Oriented Software Development (AOSD
2006), pp.3-14, Bonn, Germany, March 2006.

[15] Walkinshaw, N., Roper, M. and Wood, M.: Understanding
Object-Oriented Source Code from the Behavioural Perspec-
tive. Proceedings of the 13th International Workshop on Pro-
gram Comprehension (IWPC 2005), pp.215-224, St. Louis,
Missouri, USA, May 2005.

[16] Weiser, M.: Program Slicing. IEEE Transactions on Software
Engineering, Vol.10, No.4, pp.352-357, July 1984.

[17] Whaley, J. and Lam, M. S.: Cloning-Based Context-Sensitive
Pointer Alias Analysis Using Binary Decision Diagrams.
Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2004), pp.131-
144, Washington, DC, USA, June 2004.

[18] Zhao, J.: Applying Program Dependence Analysis to Java
Software. Proceedings of Workshop on Software Engineer-
ing and Database Systems, 1998 International Computer
Symposium, pp.162-169, December 1998.

[19] Zhao, W., Zhang, L., Liu, Y., Sun, J. and Yang, F.: SNI-
AFL: Towards a Static Noninteractive Approach to Feature
Location. ACM Transactions on Software Engineering and
Methodology, Vol.15, No.2, pp.195-226, April 2006.

