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Abstract

A software component graph, where a node represents a
component and an edge represents a use-relation between
components, is widely used for analysis methods of soft-
ware engineering. It is said that a graph is characterized
by its degree distribution. In this paper, we investigate soft-
ware component graphs composed of Java classes, to seek
whether the degree distribution follows so-called the power-
law, which is a fundamental characteristic of various kinds
of graphs in different fields. We found that the in-degree
distribution follows the power-law and the out-degree dis-
tribution does not follow the power-law. In a software com-
ponent graph with about 180 thousand components, just
a few of the components have more than ten thousand in-
degrees while most of the components have only one or zero
in-degree.

Keywords: Software Component Graph, Degree Distribu-
tion, Power-law, Scale-free Network

1 Introduction

Modern software systems are rarely developed from
scratch, that is, developed reusing various software compo-
nents. For example, thousands of standard library compo-
nents are included in the Java development kit [4]; hundreds
of open source software systems including libraries and ap-
plication systems using the libraries on Apache software
foundation [2], SourceForge [8] and so on. The structure
of the software systems built from components is focused
by some authors [14, 18, 22, 26, 29] because of its complex
nature.

A software component graph (a component graph),
which is a graph where a node represents a software com-
ponent (a component) and an edge represents a use-relation
between components, is widely used for the methods which
support the various phases of software development. Us-
ing various types of component graphs, we can represent
inherent characteristics of the static structure and dynamic

behavior of software. We may obtain the static characteris-
tics of the software such as design structure by analyzing the
impact relation of the software statically. We would obtain
the dynamic characteristics of the software such as collab-
orations among objects by analyzing the object invocation
dynamically.

In this paper, we investigate component graphs con-
structed by static analysis, which are widely used in various
software engineering methods such as software component
retrieval [12, 19], software measurement [16, 27], design
recovery [11, 25, 28], and software modularization [20]. It
is important to know the characteristic of component graphs
for effective and efficient analysis; however, there are little
researches on their characteristic.

We focus on whether the degree distribution of a compo-
nent graph follows so-called power-law, intuitively meaning
that very few nodes have extremely high degrees and most
nodes have very low degrees. The degree distribution char-
acterizes structure of a graph. The graphs whose degree
distributions follow the power-law are know in various do-
mains such as physic, social science, biology, information
science [10, 13, 23]. Such graphs are also called as scale-
free networks and attract researchers’ interest because of its
complex nature. If the degree distribution of a component
graph followed the power-law, we could say not only that
the fact will help to make software analysis methods more
effective and efficient, but also that the analysis from new
viewpoints based on these graph characteristics can be ex-
pected.

In this paper, we explore various component graphs
based on the following questions:

Question 1 Do the in- and out-degree distributions of a
component graph of a software system follow the
power-law?

There are some related works on the power-law of the
distribution of a component graph [14, 18, 22, 29, 31],
but the results may be different because we use differ-
ent definition of a component graph from those related
works.



Question 2 Do the in- and out-degree distributions of a
component graph for multiple software systems follow
the power-law?

We will target on not only a single software system but
also but also collection of software systems where a
system uses other systems each other. In the related
works, component graphs constructed from multiple
software systems are not explored. The details about
the difference between a single software system and
multiple software systems are described in Section 4.2

Question 3 Do the in- and out-degree distributions of sub-
graph of a component graph for software systems fol-
low the power-law?

A subset of components may be used for dependency
analysis, but there are no related works explored on
such subset.

Question 4 What aspects of components contribute to the
power-law (or non-power-law) at the in- and/or out-
degree distribution of a component graph?

It is believed that the degree reflects some sort of as-
pects of a component structure. Therefore, exploring
relationships between components and its degree helps
to discuss on findings the above questions.

This paper is organized as follows: In Section 2, we
describe related works where the power-law of component
graph is focused on. In Section 3, we describe our defini-
tions of component graph and a brief overview of power-
law. In Section 4, we describe our experiments against
above questions. In Section 6, we conclude this paper with
our future works.

2 Related works

Valverde et al. [29] show that the power-law is observed
in the degree distribution of component graphs, where
nodes are classes and interfaces in Java class diagrams (such
as JDK [4]) and edges are relations such as inheritance or
dependency. They also show that small-worldness [30], a
characteristic of graphs where the minimal length between
edges is very small in spite of sparsity of the edges, appears
in the component graphs. Additionally, they argue that such
characteristics of component graphs emerge if the software
systems are well designed considering reusability, under-
standability, and so on.

Myers [22] presents the power-law of the degree distri-
bution, small-worldness and hierarchical structure in com-
ponent graphs based on class diagrams. In his experiments,
the in- and out-degrees are examined individually and it is
shown that the in- and out-degrees both follow the power-
laws with different parameters. He also proposes the gener-

ative model of graphs which have the same characteristics
with component graphs.

Concas et al. [18] measured the degrees of component
graphs and CK metrics [17] of Smalltalk programs and Java
programs. They observed the power-law or the lognormal
distributions as the results.

Wheeldon et al. [31] show that the power-law is ob-
served in several types of component graphs for Java pro-
grams in which edges represent different use-relation re-
spectively.

Baxter et al. [14] found the power-law or the lognormal
distributions in the class relationships in Java programs.

The works described above have similar approaches with
ours, where the degree distribution of the component graphs
which are constructed based on statical analysis of source
files are explored. However, our work is different from them
in the following points:

• We explore the component graphs based on multiple
software systems and their subgraphs, which have not
been explored by the other researchers. The com-
ponent graphs of this type are also used by software
engineering researches such as software component
retrieval system [19]. By exploring the component
graphs of this type, we can obtain the global nature of
a component graph. Details of the component graphs
which we investigate are described in Section 4.2.

• Related to foregoing, we focus on acquiring general
characteristic of the component graph. In addition
to investigation of the power-lawness of component
graphs, we examined correlation between degrees and
software metrics (in Section 4.1) and discuss on the
results from the viewpoint of the software practice (in
Section 5) In contrast, in the related works, insights to-
wards the factor behind the characteristics such as the
power-law of the component graph.

• The results in our experiments may differ from ones
of the related works since our definition of compo-
nent graph is different from any of the related works.
The difference is twofold. First, in the related works,
the use-relations as edges of a component graph are
only “significant” types of use-relation, such as in-
heritance or field declaration, and ignores some types
of use-relation such as method call or local variable
declaration, which sometimes dominates use-relation
among components. Second, some works acquires
use-relations only based on lexical analysis of source
code and text matching of component name, by which
precise relationships are hard to be acquired.

We construct component graphs using all types of use-
relations which are analyzable statically for the com-
ponent graph based on light semantic analysis. Our



Figure 1. An example of component graph

definition of component graph is described in Section
3.1 and the analysis method is described in Section 4.4.

Our exploration and the related works described above
are based on statical analysis. In contrast, Potanin et al.
[26] shows that the degree distribution of component graph
based on dynamic analysis of a software system in operation
follows the power-law.

3 Component graph and Power-law

3.1 Component graph

A software component generally represents a building
unit of a software system such as a module, a function or a
class in a broad sense. It also represents a software entity
designed for reuse purpose in a restricted sense. We use
the term software component in the broad sense and call
software component as component.

A use-relation is an interaction between components in
a software system, such as a method call or a field access.

A software component graph is a graph where a node
represents a component and an edge represents a use-
relation between components. We call a software compo-
nent graph as a component graph. Figure 1 is an example
of a component graph, where components A, B, and E use
component C, and component D uses component E.

In-degree and out-degree, which we investigate in the
experiments, mean the number of incoming edges (rela-
tions) to a node (component) and the number outgoing
edges from a node respectively.

In this paper, a component graph is constructed with
components and use-relations defined as follows:

Component A Java class or a Java interface extracted from
the source files. Neither a class nor an interface con-
tained in a binary library (“jar” file) is not treated as a
component in this paper.

Use-relation Any of the following six relation types ac-
quired by static analysis of the component source files.
If a pair of components has any of the following re-
lations, a directed edge is created between the corre-
sponding nodes.

• A class or an interface extends another class or inter-
face respectively.

• A class implements an interface.

• A class or an interface declares a variable (a local
variable, a field, a parameter, or the return type of a
method) of a class or an interface.

• A class instantiates a class object.

• A class calls a method of a class or an interface. If
the callee method is an inherited method from a parent
class (or interface) of the callee class (or interface), we
interpret that the method of the parent class (or inter-
face) is called.

• A class or an interface refers to a field variable of a
class or an interface. If the referenced field is an inher-
ited field from a parent class (or interface) of the refer-
enced class (or interface), we interpret that the field of
the parent class (or interface) is referred to.

3.2 Power-law

We focus on whether the in- and out-degree distributions
of a component graph follow the power-law or not. A graph
with the power-law distribution are also called “scale-free
network” and it can be seen on various domains such as
coauthoring relationship among scientists [23], hyperlink
relationship among WWW pages [10]. Power-law is also
called as Pareto’s law or Zipf’s law [24].

The power-law, where the probability where a value oc-
curs is proportional to the power of the value, is the distri-
bution of the following form:

p(x) ∼ x−α (1)

The distribution which follows the power-law is plotted
with double logarithmic axes because we cannot identify
well the characteristics of the distribution with liner axes as
shown in Figure 2 (a). Equation (1) can be transformed into
Equation (2) and we can see that the plotted values form a
straight line whose gradient is −α.

log p(x) ∼ −α log x (2)

When plotting real data, the cumulative frequency is
plotted instead of the frequency since a plot of real data has
jaggy as seen in Figure 2 (b). Equation (1) is transformed
into the cumulative distribution function shown in Equation
(3)1; we can see that the plotted values form a straight line
which gradient is −(α − 1) as shown in Figure 2 (c).

P (x) ∼ x−(α−1) (3)
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Figure 2. Plottings of the power-law

In the experiments, we calculate the value of α of Equa-
tion (1) as the characteristics value of the distribution by
estimating the regression line of the cumulative frequency
plot using double logarithmic axes. We also find the deter-
mination coefficient which was adjusted for the degree of
freedom R∗2, which represents fitness of a regression model
for data and runs from 0 to 1.

4 Experiments

4.1 Scheme of experiments

In order to answer to the questions in Section 1, the fol-
lowing experiments have been performed:

Experiment 1 (Question 1) We examined component
graphs for single software systems whether the in-
and out-degree distributions of them follow power-law.
The cumulative distribution is plotted on double loga-
rithmic axes, and the gradient and the determination
coefficient of the regression line are calculated to de-
termine whether they are the power-law or not.

Experiment 2 (Question 2) The same experiment as Ex-
periment 1 was performed using the component graphs
for multiple software systems.

Experiment 3 (Question 3) The same experiments per-
formed as Experiment 1 with component graphs for a
subset of components of software systems.

Experiment 4 (Question 4) We calculated spearman’s rank
correlation coefficient between the degree and metrics
of the components. In addition, we list top ten compo-
nents on the in- and out-degree to find characteristics
which are not represented by the metrics used in this
experiment.

4.2 Component sets

We prepare two types of component sets for experiments.
For Experiment 1, we prepare component sets where com-

1See [24] for details of the transformation.

ponents are extracted from a single software system. Mean-
while we prepare component sets where components are ex-
tracted from multiple software systems for Experiment 2.

4.2.1 Single software system

We prepared following four component sets based on a sin-
gle software system respectively. Each of them includes
the components which are acquired by analyzing the source
files in the distribution package. The binary libraries are not
included in the component set even if the distribution pack-
age contains binary libraries and the source files depend on
them. The component sets varies in lines of code and appli-
cation domain. Table 1 describes the sizes of the component
sets.

ANT A component set of the distribution package of
Apache Ant 1.6.2 [1], a Java build tool. This com-
ponent set is the smallest in our experiments.

JBOSS A component set of the distribution package of
JBoss Application Server 3.2.5 [5], a Java enterprise
application server.

JDK A component set of JDK1.4, a standard library of
Java. Use-relations based on foundational components
are likely formed in this component set. JDK was also
examined by the related works, and we can compare
the results.

ECLIPSE A component set of the distribution package of
Eclipse SDK 3.0.1 [3], a Java software development
environment.

4.2.2 Multiple software systems

The component sets based on multiple software systems
are composed of the components acquired by analyzing
the source files retrieved from the distribution packages
and/or software repositories. Each of the component sets is
constructed so that the component graph includes the use-
relations that cross the border of the software systems.

ASF A component set contained in the software systems
checked out from the CVS repository of the Apache
Software Foundation [2] at June 2005. This compo-
nent set does not include JDK. Each of the software
systems is developed individually, and some software
systems are developed as common libraries. There-
fore, the use-relations based on such libraries are likely
formed.

SPARS DB A component set contained in the database of
SPARS-J [9] at June 2005. This includes JDK and
many software systems checked out from open source
repositories: the Apache Software Foundation (that



is, SPARS DB includes ASF), SourceForge.net [8],
Eclipse, and NetBeans [6]. There are various compo-
nents including libraries such as JDK, application soft-
ware such as Eclipse, and small sample components.
Because the similarity of the components in this com-
ponent set is nothing or only using JDK if any, use-
relations based on JDK are likely formed.

4.2.3 Subset

For Experiment 3, we use variations of subset of
SPARS DB. The strategies to pick out subsets are as fol-
lows:

Random Pick out components randomly.

Use-relation Pick out the components which use a pivot
component. The pivot components are randomly se-
lected so that the number of components is about
10000, 1000 and 100.

Keyword Pick out the components which include a key-
word in the source code. The keywords are randomly
selected so that the number of components is about
10000, 1000, and 100.

Using above strategies, we prepare following component
sets.

RND10K, RND1K Component sets picked out with the
Random strategy. RND10K and RND1K contain
10,000 and 1,000 components respectively.

REL10K, REL1K, REL1H Component sets picked out
with the Use-relation strategy. The pivot compo-
nents are java.util.HashMap, java.io.
OutputStreamWriter, and java.awt.
GraphicsEnvironment respectively.

KWD10K, KWD1K, KWD1H Component set picked out
with the Keyword strategy. The keywords are
getstring, labels, and getsummary respec-
tively.

4.3 Metrics

For Experiment 4, we use following metrics whose val-
ues are measured using only the source code of a given com-
ponent and which represents some sort of the quality.

LOC Non-comment source lines of code. LOC represents
the size of the component.

WMC1, WMC2 Variants of weighted methods per class
[17]. WMC represents the complexity of the compo-
nent. We use two kinds of definitions as the weight for
the methods.

WMC1 uses a constant value, 1 as its weight. WMC1
is identical to the number of methods defined in the
component and represents the size of the implemented
functions in the component. On the other hand,
WMC2 uses cyclomatic complexity as the weight.
WMC2 represents the complexity of the implemen-
tation of the component because the cyclomatic com-
plexity is measured based on blanches and loops in the
methods.

LCOM Lack of cohesion of methods. There are some
different definitions of LCOM. We use LCOM5 [15],
which is measured based on use of the fields by meth-
ods. LCOM5 runs from 0 to 1 and smaller value means
the higher cohesion of the implementation.

We calculate correlation between LCOM and degree or
another metrics using components where LCOM can
measure; LCOM is defined only classes which have 1
or more implemented methods.

4.4 Analysis method

In order to analyze Java source code, construct its com-
ponent graphs and measure metric values from them, we
use SPARS-J [19], a software component retrieval system.
Meanwhile, we use R [7], an environment for statistical
computing and graphics, for the analysis of the degree dis-
tributions.

First, SPARS-J analyses Java source files and stores the
classes and interfaces as components into its database. The
use-relations between the components are also analyzed and
stored into the database. SPARS-J can analyze all types of
the use-relations described at Section 3.1. The metric values
of the components are measured after finishing the relation
analysis. Then, the component graph of a component set is
constructed using the analysis result of SPARS-J. Finally,
the in- and out-degree distributions of the component graph
are plotted, and regression analysis is applied to them.

4.5 Results

The number of nodes (components) and the number of
edges (use-relations) of the component graphs are shown in
Table 1.

4.5.1 Experiment 1

Figure 3 and 4 illustrate the cumulative frequency of the in-
and out-degrees on the each of the single software systems
respectively. Table 2 presents the characteristic values: the
values of α in Equation (1) and R∗2.

It is clear that the in-degree follows the power-law be-
cause the all plotted values form almost a straight line and
each of the values of R∗2 is much closed to 1.
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Figure 3. In-degree distribution (single soft-
ware system)

In contrast, the out-degree seems to incompletely follow
the power-law. The plotted values form a straight line in
the range of large values; however, we can see it forms a
peak near the value of 1. Furthermore, the values of R∗2

are relatively small.

4.5.2 Experiment 2

Figure 5 and 6 depict the cumulative frequency of the in-
and out-degree respectively. The characteristic values are
shown in Table 2.

We can see that both of ASF and SPARS DB have simi-
lar tendency with the results of Experiment 1. The in-degree
distribution follows the power-law. The value of α is about
2, which is near to the value of JDK and ECLIPSE. The out-
degree distribution follows the power-law only in the range
of large values.

4.5.3 Experiment 3

Figure 7 and 8 show the cumulative frequency of the in- and
out-degree respectively. Table 3 shows the characteristic
values.

Random The in- and out-degree distribution of RND1K
does not follow the power-law. The in-degree distribution
of RND10K follows the power-law.

The in-degree distributions of the all component sets
based on Keyword strategy follow the power-law and the
values of α are similar to SPARS DB, their original set. In
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Figure 4. Out-degree distribution (single soft-
ware system)

contrast, as regards the component sets based on Random
strategy and Use-relation strategy, the in-degree distribu-
tions of the component sets which number of components
are less than or equal to 1,000 do not follow the power-law
clearly.

The out-degree distributions seem to have the similar
characteristics as SPARS DB, except for RND1K.

4.5.4 Experiment 4

Table 4 describes correlation between the degree and the
metrics. Table 5 and 6 show the top ten components on the
in- and out-degree respectively. They are based on compo-
nent set SPARS DB.

The in-degree does not have high correlation with any
of the metrics in Table 4. Table 5 is filled with the foun-
dational classes in JDK. For example, the java.lang.String
class represents a character string and the java.lang.Object
class is the parent class of all other classes. They are the
roles which are given at design-phase. It is believed that
components with a foundational or general role tend to have
high in-degrees, while components with a specialized role
tend to have small in-degrees.

The out-degree has a high correlation with LOC and
WMC1, WMC2. Table 6 is filled with classes which are
large/complex. None of them seems to be generated by
code-generators. It seems to be reasonable that the out-
degree has a correlation with the size and the complexity
since the outgoing edges of a node in a component graph
come from statements using other components in the source
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Figure 6. Out-degree distribution (multiple
software systems)

code corresponding to the node.

4.6 Summary of the experiments

We summarize findings from these experiments by the
questions mentioned at Section 1.

Question 1 As the results of Experiment 1, with the com-
ponent graphs with our definition, we found that the in-
degree distribution follows the power-law almost ideally.
We also found that the out-degree distribution does not fol-
low the power-law, where the distribution has a peak in the
range of small values while a straight line is observed in the
range of larger values.

Question 2 As the results of Experiment 2, we found the
same results as Experiment 1 with the component graphs for
multiple software systems: the in-degree distribution fol-
lows the power-law and the out-degree distribution does not
follow the power-law.

Question 3 As the results of Experiment 3, we found that
the subsets whose components are picked out based on a
keyword has similar characteristic with the superset: The
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Figure 7. In-degree distribution (subset)

in-degree distribution follows the power-law with the simi-
lar parameters and the out-degree distribution partially fol-
lows the power-law.

Question 4 As the results of Experiment 4, we found that
the in-degree relates to the roles of the components but it
has low correlation with the size, the complexity, and the
cohesion. We also found that the out-degree has higher cor-
relation with the size and the complexity of the components.

5 Discussion

We found interesting results by these experiments. There
is asymmetricity between the in- and out-degree of the com-
ponent graphs constructed with various use-relations, where
the in-degree follows the power-law meanwhile the out-
degree does not follow the power-law.

5.1 Power-law of in-degree

We found that the in-degree distribution of the compo-
nent graph follows the power-law, and it does not simply
mean that a few components are extremely used. There are
some generative models of a graph whose degree distribu-
tion follows the power-law, and they are common in a point
that a node with large degree tends to get the edge when a
new edge is added to the graph. This means that the compo-
nents (nodes) with large in-degree such as the components
shown in Table 5 tend to get more in-degree when new com-
ponents are added to the component graph. Therefore, it
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Figure 8. Out-degree distribution (subset)

is likely that the set of components which have extremely
large in-degree tends not to change even if new components
are added to the graph.

Using this tendency, we believe that it is possible to ob-
serve the changes of software architecture along with soft-
ware development. The set of components which have ex-
tremely large in-degree hardly changes even when the soft-
ware development proceeds, that is, components are added
to or removed from the component graph. But such set of
components will change when large changes occur in the
software such as the modification of the software architec-
ture. An example of such changes is that a new commonly-
used component is added to the software and many of the
existing components in the software are modified to use the
new component. Hence, we believe that it is possible to
detect the changes of the software architecture, or to mea-
sure its stability by watching the changes of the set of the
components which have the large in-degree.

5.2 Non power-law of out-degree

The out-degree distribution shown in the experiments
have a “peak” in the small values, and “heavy-tail” in the
large values. These characteristics are known as the ones of
the lognormal distribution. However, the tails seems to be
too “heavy” to resolve the distribution of the out-degree as
lognormal distribution. These characteristics likely match
with the double-pareto distribution [21], which is known as
the distribution of the file sizes. Considering that the out-
degree is shown to have high correlation with the LOC, it

is reasonable that the out-degree follows the same distribu-
tion with the file sizes. It is above the subject of this paper
to determine which distribution the out-degree distribution
follows; however, it is interesting topic and further explo-
ration is needed.

The definition out-degree is identical with the CBO
(Coupling between objects), one of the CK metrics suite
[17]. It is said that classes with high values of CBO are com-
plex and hard to maintenance and/or understand. There-
fore, the experimental results on out-degree, where a few
components have the higher out-degree, can be interpreted
as that components with problems with maintenance ex-
ist in almost all software projects. It seems to be that the
components which are to be refactored are neglected. This
means that many software developers and managers lack
the awareness for the design quality of software. However,
it also seems that the components which have unavoidable
complexity (i.e. can not be refactored) appears in the al-
most all software systems. This means that the techniques
are needed to address the software complexity in addition
to the ordinary object-oriented development approaches, on
which the software systems we explored are based.

5.3 Asymmetricity between in- and out-
degree

Myers [22] found that the in- and out-degrees of the com-
ponent graph follow the power-law and that their parameters
are different each other. In our experiments, the different re-
sults were found: the in-degree follows the power-law but
the out-degree incompletely follows the power-law. This
difference likely comes from the difference of the defini-
tion of a component graph, in particular, the difference of
definition of the use-relation as an edge: the use-relations
include method calls and local variable declarations in our
definition, which are ignored in definition in [22].

5.4 Power-law of subset collection

Some sort of scale-free networks have a property such
that networks where some of those nodes are deleted still
hold the scale-freeness. We found that the subsets of the
component sets based on keywords have the same charac-
teristic with the original component set, although the key-
words have no explicit relation to the use-relations. The
reason is that the related components such as the ones in the
same module tend to have common words and have use-
relation each other. Another reason is believed as that when
a component includes a keyword as the name of itself, a
method or etc., the users of the components also includes
the keyword to reference the component.



6 Conclusions

In this paper, we have investigated the component graphs
composed of Java components to seek whether the degree
distribution follows the power-law.

As the results, we found that the in-degree distribution
of the component graph follows the power-law almost ide-
ally and that the out-degree distribution does not follow the
power-law; out-degree distribution seems to follow power-
law-like distribution such as lognormal distribution. We
also found similar result in component graphs for multiple
software systems and some sort of its subsets. Additionally,
we found that the in-degree is related with the role of each
component and the out-degree is related with the size and
the complexity of each component. We believe that these
results help improvement of the software analysis methods.

Future works are to explore other sort of component
graphs such as ones based on other types of use-relation
and to discuss about applying to these results for analysis
methods of software engineering.
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Table 1. Component sets for the experiments
# of Nodes # of Edges LOC

ANT 1,260 4,995 95K
JBOSS 5,752 23,636 424K
JDK 11,556 107,198 1.1M
ECLIPSE 13,941 140,678 1.3M
ASF 59,486 303,755 4.5M
SPARS DB 180,637 1,808,982 14M
RND10K 10,000 6,184 780K
RND1K 1,000 52 80K
REL10K 9,286 17,201 2.1M
REL1K 972 1,218 250K
REL1H 163 1,086 76M
KWD10K 8,938 24,317 1.6M
KWD1K 1,002 1,564 290K
KWD1H 129 124 28K

Table 2. Characteristic values of the degree
distributions

α R∗2

ANT 2.01 ± 0.0195 0.984
JBOSS 2.27 ± 0.020 0.978

In
JDK 2.11 ± 0.00816 0.987
ECLIPSE 2.19 ± 0.0163 0.955
ASF 2.37 ± 0.0109 0.981
SPARS DB 2.02 ± 0.00145 0.999
ANT 2.92 ± 0.143 0.872
JBOSS 3.17 ± 0.104 0.905

Out
JDK 3.10 ± 0.0818 0.876
ECLIPSE 3.03 ± 0.0770 0.856
ASF 3.41 ± 0.0637 0.942
SPARS DB 3.66 ± 0.0693 0.903

Table 3. Characteristic values of the in-
degree distributions - Subset

α R∗2

RND10K 1.94 ± 0.0210 0.979
RND1K 2.27 ± 0.177 0.926
REL10K 2.30 ± 0.0203 0.986
REL1K 1.63 ± 0.0815 0.806
REL1H 1.83 ± 0.0646 0.867
KWD10K 2.12 ± 0.00927 0.993
KWD1K 2.21 ± 0.0332 0.980
KWD1H 2.62 ± 0.0805 0.983

Table 4. Correlation between the degree and
the metrics

Out LOC WMC1 WMC2 LCOM
In 0.002 0.070 0.239 0.075 0.118

Out - 0.824 0.641 0.751 0.399
LOC - - 0.793 0.816 0.462

WMC1 - - - 0.567 0.494
WMC2 - - - - 0.332

Table 5. Top ten components (in-degree)
Name LOC In Out

java.lang.String 675 116,239 21
java.lang.Object 35 98,261 4
java.lang.Class 605 29,682 41
java.lang.Exception 15 21,046 2
java.lang.Throwable 136 19,519 12
java.lang.System 170 19,175 27
java.util.Iterator 5 15,522 1
java.util.List 27 14,462 4
java.util.ArrayList 200 13,656 19
java.lang.Integer 285 12,736 9

Table 6. Top ten components (out-degree)
Name LOC In Out

org.apache...FunctionEval 364 1 354
org.jgraph.GPGraphpad 2,196 130 255
com.jgraph.GPGraphpad 2,200 131 253
org.jgraph.GPGraphpad 542 209 252
org.eclipse...ASTConverter 4,520 3 223
org.eclipse...JavaEditor 1,368 115 220
net.sourceforge...GanttProject 3,055 98 216
it.businesslogic...MainFrame 7,177 46 204
org...InstConstraintVisitor 1,626 3 197
org...ASTInstructionCompiler 2,449 1 189


