
Assessing the Quality of Refactoring Patterns for
Introducing Design Patterns

Masatomo Yoshida, Norihiro Yoshida, Katsuro Inoue
Graduate School of Information Science and Technorogy, Osaka University

1-3, Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
{mstm-ysd, n-yosida, inoue}@ist.osaka-u.ac.jp

ABSTRACT
Refactoring is a well-known process to improve the code de-
sign of object-oriented programs. Recently, several litera-
tures focus on refactoring with introducing design patterns
that are general repeated solutions to common problems in
software design. For making it easy to perform such refactor-
ing, a lot of refactoring patterns are proposed. Each refac-
toring pattern includes a description of refactoring oppor-
tunities (i.e., when a software system should be performed
refactoring with introducing design patterns) and the cor-
responding procedure (i.e., how to perform refactoring with
introducing design patterns). However, the usefulness of
each refactoring pattern is not clearly assessed. This paper
describes our approach to assess the quality of refactoring
patterns for introducing design patterns and also shows the
assessment of open source software.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maitenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering ; D.2.2 [Software Engineering]: Design Tools
and Techniques—Object-oriented design methods; D.3.3 [Pr-
ogramming Languages]: Language Constructs and Fea-
tures—Patterns

General Terms
Design, Languages, Experimentation

Keywords
Quality assessment, Refactoring pattern, Design pattern

1. INTRODUCTION
Refactoring[2] is the process of changing a software system
in such a way that it does not alter the external behavior
of the code yet improves its internal structure. Recently,
several literatures focus on refactoring with introducing De-
sign Patterns (DPs)[3] that are general repeated solutions
to common problems in software design. Refactoring with

introducing DPs can improve design quality of maintaining
software systems that lack of application of DPs[5, 8]. For
making it easy to perform such refactoring, Kerievsky pro-
posed 27 refactoring patterns[5]. Each refactoring pattern
includes a description of refactoring opportunities (i.e., when
a software system should be performed refactoring with in-
troducing DPs) and the corresponding procedure (i.e., how
to perform refactoring with introducing DPs).

However, the quality of each refactoring pattern is not clearly
assessed. We can not determine which refactoring patterns
should be given priority to apply. Also, we do not know
whether it is easy to apply each refactoring pattern.

P1 How many refactoring opportunities are involved in soft-
ware systems?

P2 Is it easy to perform refactoring to those opportunities?

In this paper, we propose an approach based on above points
to assess the quality of refactoring patterns introducing DPs.
First of all, we briefly explain about refactoring with in-
troducing DPs. Then we propose a plan for assessing the
quality of such refactoring patterns and present an auto-
mated tool that identifies opportunities for applying one of
the refactoring patterns described in Kerievsky’s book[5].
Finally, we show a case study of Open Source Software (OSS)
and discuss P1 and P2. In the case study, we identify such
opportunities in OSS by using that automated tool and per-
form refactoring to those opportunities.

2. REFACTORING WITH INTRODUCING
DESIGN PATTERNS

Kerievsky made a catalogue of refactorings introducing De-
sign Patterns (DPs)[5]. His catalogue includes 27 pairs of a
description of a refactoring opportunity and the correspond-
ing procedure for performing refactorings introducing a DP.

Here, as an example, we explain the refactoring is called
Introduce Polymorphic Creation with Factory Method de-
scribed in his catalogue. The refactoring opportunity in his
catalogue is defined as “Classes in a hierarchy implement a
method similarly except for an object creation step”. Similar
method can be called code clone[1, 4] or duplicated code[2].
Code clone is generally considered as one of factors that
make software maintenance more difficult[1, 4].



+testAddAboveRoot() : void

DOMBuilderTest XMLBuilderTest

junit::framework::TestCase

・・・
builder = new DOMBuilder(“orders”);・・・ ・・・

builder = new XMLBuilder(“orders”);・・・
+testAddAboveRoot() : void

Similar methods (Code clones)

+testAddAboveRoot() : void

DOMBuilderTest XMLBuilderTest

junit::framework::TestCase

・・・
builder = new DOMBuilder(“orders”);・・・ ・・・

builder = new XMLBuilder(“orders”);・・・
+testAddAboveRoot() : void

Similar methods (Code clones)

(a) Before refactoring

Factory Method: Creator

#createBuilder(rootName : String) : OutputBuilder

+testAddAboveRoot() : void

AbstractBuilderTest

junit::framework::TestCase

#builder: OutputBuilder ・・・
builder = createBuilder(“orders”);・・・

DOMBuilderTest

Factory Method: ConcreteCreator

return new DOMBuilder(rootName); return new XMLBuilder(rootName);

#createBuilder(rootName:String) 
: OutputBuilder

XMLBuilderTest

#createBuilder(rootName:String)
: OutputBuilder

Factory Method: Creator

#createBuilder(rootName : String) : OutputBuilder

+testAddAboveRoot() : void

AbstractBuilderTest

junit::framework::TestCase

#builder: OutputBuilder ・・・
builder = createBuilder(“orders”);・・・

DOMBuilderTest

Factory Method: ConcreteCreator

return new DOMBuilder(rootName); return new XMLBuilder(rootName);

#createBuilder(rootName:String) 
: OutputBuilder

XMLBuilderTest

#createBuilder(rootName:String)
: OutputBuilder

(b) After refactoring

Figure 1: Introduce Polymorphic Creation with Fac-
tory Method

Figure 1 shows an example of the refactoring described in his
catalogue. As shown in Figure 1(a), the targets of the refac-
toring are test classes DOMBuilderTest and XMLBuilderTest
for DOMBuilder and XMLBuilder, respectively. Because tar-
get classes have similar methods except for an object cre-
ation step, they imply the opportunity for Introduce Poly-
morphic Creation with Factory Method. This refactoring is
comprised of following two steps.

Step1 As shown in Figure 1(b), a common superclass (Ab-
stractBuilderTest) for the target classes is introduced,
and similar methods in the target classes are merged
into new method in the common superclass.

Step2 A Factory Method[3] is introduced in each of the
common superclass (AbstractBuilderTest) and the sub-
classes (DOMBuilderTest and XMLBuilderTest). Fac-
tory Method means a method is primarily intended to
create an object.

Because of removing code duplication and introducing Fac-
tory Method, it is easier to add new test class as a subclass
of AbstractBuilderTest than before.

3. ASSESSMENT PLAN
The aim of our plan is to assess the quality of each refactor-
ing pattern introducing Design Patterns (DPs). In our plan,
we assess the following points for each refactoring pattern.

• Number of Refactoring Opportunities: The num-
ber of refactoring opportunities in a software system

is closely related to the usefulness of a refactoring pat-
tern for the system. Therefore, we assess the number
of refactoring opportunities in a software system. The
assessment requires an automated tool that identifies
opportunities for refactoring. For our case study, we
have developed the tool that identifies opportunities
for the refactoring described in section 2. The detail
of the tool is introduced in section 4.

• Ease of Refactoring: The major purpose of refac-
toring is to reduce maintenance cost[2]. Therefore, if
it is too costly to apply a refactoring pattern, it is not
desirable to perform the refactoring[6]. In our plan,
we assess the ease of applying each refactoring pat-
tern. For each performed refactoring, we confirm the
performed procedures other than which are described
in Kerievsky’s book[5].

4. AUTOMATION OF IDENTIFYING OPPOR-
TUNITIES

For our case study, we have developed the tool that iden-
tifies opportunities for Introduce Polymorphic Creation with
Factory Method described in section 2.

According to Kerievsky’s book, to identify code shown in
Figure 1(a), the automated method has to find code that
satisfies the following conditions:

C1 Similar methods belong to classes have common parent
classes

C2 Only difference among similar methods is an object cre-
ation step

Figure 1 is a special case of Form Template Method Refac-
toring[2], thus we presented C1. C2 is presented for intro-
ducing Factory Method[3]. The automated tool judges those
conditions by the steps below.

Step1 Detect similar methods using a code clone detection
tool CCFinder[4].

Step2 Evaluate whether detected methods belong to classes
that have common superclasses and whether they in-
clude object creation statements.

5. CASE STUDY
We present a case study as an example of implementing our
plan. In our case study, we identify Introduce Polymorphic
Creation with Factory Method in Open Source Software by
using the tool described in section 4, and then perform refac-
toring to those opportunities. The target software systems
are ANTLR, Ant and Azureus which are written in Java.

Table 1 shows the numbers of refactoring opportunities in
each target system. We could confirm that a system, which
is comprised of relatively large number of classes, has a ten-
dency to involve a lot of opportunities.

Figure 2 shows the performed refactoring in ANTLR. This
refactoring needs for additional procedure other than that



CodeGenerator

CSharpCodeGenerator
#processActionFor
SpecialSymbols(...)

CppCodeGenerator

・・・

antlr.actions.cpp.ActionLexer lexer = 
new antlr.actions.cpp.ActionLexer(…);
・・・

JavaCodeGenerator
#processActionFor
SpecialSymbols(...)

#processActionFor
SpecialSymbols(...)

・・・

antlr.actions.csharp.ActionLexer lexer = 
new antlr.actions.csharp.ActionLexer(…);
・・・

・・・

antlr.actions.java.ActionLexer lexer = 
new antlr.actions.java.ActionLexer(…);
・・・

Similar Methods
(Code Clones)

(a) Before refactoring

#createActionLexer(...)
CppCodeGenerator

return new antlr.actions.cpp.ActionLexer(…);

JavaCodeGenerator
#createActionLexer(...)

CSharpCodeGenerator
#createActionLexer(...)
return new 
antlr.actions.csharp.ActionLexer(…);

return new antlr.actions.java.ActionLexer(…);

CodeGenerator
#createActionLexer(...)
: antlr.actions.OOActionLexer
#processActionFor
SpecialSymbols(...)

・・・

antlr.actions.OOActionLexer
lexer = createActionLexer(…);
・・・

Factory Method: 
ConcreteCreator

Factory Method: Creator

(b) After refactoring

Figure 2: Refactoring in ANTLR

describe in Kerievsky’s book[5]. In Figure 2(a), three types
of the created objects (i.e. antlr.action.csharp.ActionLexer,
antlr.action.cpp.ActionLexer and antlr.action.java.ActionLexer)
do not have any common superclass or superinterface in tar-
get source code. In this situation, we can not introduce a
Factory Method in each class because it is not able to deter-
mine appropriate return type of each Factory Method. To
break this situation, we created the antlr.action.OOActionLexer
interface as the common superinterface of those types. Then
we introduced a Factory Method (i.e. createActionLexer)
that returns antlr.action.OOActionLexer in each class (Fig-
ure 2(b)).

6. DISCUSSION

Table 1: The target software systems
Name LOC #classes #opportunities

ANTLR 2.7.4 47K 285 1
Ant 1.7.0 20K 778 2

Azureus 3.0.3.4 538K 2226 14

Each target system has at least one opportunity for Intro-
duce Polymorphic Creation with Factory Method refactoring.
Especially, Azureus has 14 opportunities.

On the other hand, the refactoring is shown in Figure 2
needs for the introduction of new interface other than that
describe in Kerievsky’s book[5]. That is to say, we confirmed
this refactoring pattern has low ease of refactoring if types
of the created objects do not have any common superclass
or superinterface in target source code.

7. CONCLUSION
In this paper, we proposed an approach based on above
points to assess the quality of refactoring patterns intro-
ducing DPs. We proposed a plan for assessing the quality of
such refactoring patterns and presented an automated tool
that identifies opportunities for applying the Introduce Poly-
morphic Creation with Factory Method pattern. Also, we
showed a case study of ANTLR, ANT and Azureus, and then
discussed the quality of the pattern regarding the number
of refactoring opportunities and the ease of refactoring.

We are planning to assess the other refactoring patterns,
such as Replace One/Many Distinctions with Composite and
Encapsulate Composite with Builder. We believe that it is
able to detect several opportunities for applying the refactor-
ing patterns based on code clone detection or design pattern
detection [7, 9].

Acknowledgments
This reseach was supported by JSPS, Grant-in-Aid for Sci-
entific Research (A) (No.17200001).

8. REFERENCES
[1] B. S. Baker. Finding clones with Dup: Analysis of an

experiment. IEEE Trans. Sofw. Eng., 33(9):608–621,
2007.

[2] M. Fowler. Refactoring: improving the design of
existing code. Addison Wesley, 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, 1995.

[4] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system
for large scale source code. IEEE Trans. Sofw. Eng.,
28(7):654–670, 2002.

[5] J. Kerievsky. Refactoring to Patterns. Addison Wesley,
2004.

[6] R. Leitch and E. Stroulia. Assessing the maintainability
benefits of design restructuring using dependency
analysis. In Proc. of METRICS 2003, pages 309–322,
2003.

[7] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In
Proc. of ICSE 2002, pages 338–348, 2002.

[8] J. Rajesh and D. Janakiram. JIAD: A tool to infer
design patterns in refactoring. In Proc. of PPDP 2004,
pages 227–237, 2004.

[9] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. T. Halkidis. Design pattern detection using similarity
scoring. IEEE Trans. Sofw. Eng., 32(11):896–909, 2006.


