
A-SCORE: Automatic Software Component Recommendation
Using Coding Context

Ryuji Shimada Yasuhiro Hayase Makoto Ichii Makoto Matsushita Katsuro Inoue
Graduate School of Information Science and Technology, Osaka University

{r-simada, y-hayase, m-itii, matusita, inoue}@ist.osaka-u.ac.jp

Abstract

Reusing software components (e.g. classes or modules)
improves software quality and developer’s productivity. Un-
fortunately, developers may miss many reusing opportuni-
ties since current keyword based component search systems
cannot provide reusable components if the developers do
not use them. This paper proposes a new automatic compo-
nent recommendation system which supports various usage
scenarios and procedures for component reuse.

1 Automatic Component Recommendation

Reusing software components (e.g. modules or classes)

improves software productivity and quality [3]. There exists

a countless number of software components but developers

cannot easily benefit from their reuse, since components are

sometimes poorly documented and not designed for reuse.

To find reusable components satisfying certain require-

ments, developers often use keyword-based search systems.

However, keyword-based search systems recommend com-

ponents only upon an explicit developer interrogation; con-

sequently, developers may miss a significant number of op-

portunities for reusing some software components.

To deal with the problem, Ye et al. proposed an au-

tomatic component recommendation system: CodeBro-
ker[4]. Automatic component recommendation systems

collect search conditions and requirements while develop-

ers edit the source code, and recommend possible reusable

components without being explicitly instructed. These sys-

tems have two advantages over ordinary keyword search

systems:

1. the system can recommend components even if the de-

veloper thinks there are no reusable components be-

cause it automatically searches possible reusable com-

ponents;

2. the system can search components even if the devel-

oper cannot provide good search keywords because it

Data
Controls

Legends

Editor

Determine
search
timing

Generate
query

Search
components

Extract
characteristics

Build index

Index

Characteristics

Content
of edit

Source code and
cursor position

Invoke

Components

Edit
source code

Developer

Recommend
components

Source code of
components

Recommendation
view

Query

Figure 1. Overview of our approach

automatically extracts search conditions and require-

ments from the source code.

Although there are many way to reuse software compo-

nents, CodeBroker supports only the replacement of a new

method with an already existing one; other ways to reuse a

component are not supported by the tool.

This paper proposes a new automatic component recom-

mendation system. Our system extends CodeBroker’s ap-

proach at component reuse and supports not only method re-

placement, but also modified component imports and code

fragment copy-and-paste operations. The system uses com-

ments and identifiers to extract developer’s requirements

and search conditions.

2 Approach

In our approach components are represented by Java

classes. Recommended components are similar to those the

developer is editing in the meaning of Latent Semantic In-

dexing (LSI)[1]. The co-occurrence matrix between doc-

uments and words required for LSI searching is computed

using components source code as documents and their char-

acteristics as words.

Our approach is divided in two phases: index building

and recommendation (see Figure 1). Each phase is de-

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3494-7/09/$25.00 © 2009 IEEE Companion Volume439

scribed below.

Indexing 1: Characteristic Extraction. Firstly, the com-

ponent’s source code is parsed for extracting elements in-

cluding characteristics. The elements are document/normal

comments, class/method/field/local-variable declarations,

and method invocations. Then, each element is divided into

discrete words.

Indexing 2: Index Building. Firstly, the characteristic-by-

component co-occurrence matrix is built. The (i, j) element

of the matrix represents the number of occurrence for the i-
th characteristic in the j-th component. A row vector of the

co-occurrence matrix is called component vector. Then, the

dimension relative to component’s characteristics is reduced

and the matrix is transformed into an LSI-index.

Recommendation 1: Search Invocation. Editing opera-

tions are monitored and searches initiated at appropriate

time. Specifically, searches are triggered when a statement

delimiter (semicolon, brace or end-of-comment mark “*/”)

is typed, or when the cursor is moved out of a statement or

comment after a modification.

Recommendation 2: Query Generation. A query is rep-

resented by a set of tuples < characteristic, weight >.

Characteristics are extracted from the edited source code in

the way illustrated at the Indexing 1 clause. The weight is

a positive real value attenuated by the characteristic’s dis-

tance from the cursor, and represents the relevance of the

characteristic for the search.

Recommendation 3: Components Search. The index is

used to search components matching the query previously

built, and the results are presented to the developer. Firstly,

the query is transformed into a pseudo-component vector,

a sequence of the query’s weights in the same order of the

component vector; the weight value of characteristics not

present in the query is zero. Then, the several components

are presented to the developer in descendant order of their

cosine similarity value to the pseudo-component vector.

3 Tool Implementation

This section describes A-SCORE (Automatic Software

Component Recommendation Environment), the tool im-

plementing our approach.

A-SCORE is structured as a client-server system: the

server is implemented as a web service and the client is im-

plemented as an Eclipse plug-in. The elements in Figure 1

from Source code of components to Search Components are

implemented in the server, and the rest in the client.

Figure 2 shows a snapshot of A-SCORE. The bottom-

right view in the main window is the A-SCORE user in-

terface. While a developer is editing the source code,

Source Code Editor

Import to current project

Recommendation
View

Double-click
to show

Show detail
information
in SPARS-J

source code

Figure 2. A Screen Snapshot of A-SCORE

if A-SCORE’s automatic recommendations are enabled,

reusable component candidates are automatically presented

in the recommendation view. If the developer double-clicks

a candidate in the view, the source code of the selected com-

ponent is displayed in a new editor window. A right-click

on a candidate allows the developer to display the details of

the selected candidate using SPARS-J[2] or, if the developer

decides to reuse the component, to automatically download

and import the component into the current project.

Acknowledgment
This work was supported by KAKENHI (18650006) and

supported in part by “Global COE (Centers of Excellence)

Program” of the Ministry of Education, Culture, Sports,

Science and Technology, Japan.

References

[1] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and

R. Harshman. Indexing by latent semantic analysis.

J.Am.Soc.Inf.Sci, 41(6):391–407, 1990.
[2] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and

S. Kusumoto. Ranking Significance of Software Components

Based on Use Relations. IEEE Trans. on Softw. Eng., pages

213–225, 2005.
[3] C. Krueger. Software reuse. ACM Computing Surveys

(CSUR), 24(2):131–183, 1992.
[4] Y. Ye and G. Fischer. Reuse-Conducive Development Envi-

ronments. Automated Softw. Eng., 12(2):199–235, 2005.

440

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
