
A Sentence-Matching Method for Automatic License
Identification of Source Code Files

Daniel M. German
University of Victoria, Canada

dmg@uvic.ca

Yuki Manabe
Osaka University, Japan

y-manabe@ist.osaka-
u.ac.jp

Katsuro Inoue
Osaka University, Japan

inoue@ist.osaka-u.ac.jp

ABSTRACT
The reuse of free and open source software (FOSS) compo-
nents is becoming more prevalent. One of the major chal-
lenges in finding the right component is finding one that
has a license that is adequate for its intended use. The li-
cense of a FOSS component is determined by the licenses
of its source code files. In this paper, we describe the chal-
lenges of identifying the license under which source code
is made available, and propose a sentence-based matching
algorithm to automatically do it. We demonstrate the feasi-
bility of our approach by implementing a tool named Ninka.
We performed an evaluation that shows that Ninka outper-
forms other methods of license identification in precision and
speed. We also performed an empirical study on 0.8 million
source code files of Debian that highlight interesting facts
about the manner in which licenses are used by FOSS.

1. INTRODUCTION
Free and Open Source Software (FOSS) has become an

important source of reusable code [19]. To be able to reuse
a FOSS component an application (proprietary or FOSS)
should satisfy all the requirements and conditions that the
license of the component imposes [17]. Sometimes a com-
ponent is available under various licenses, giving the inte-
grator the ability to choose the license that best fits her
purpose (the license of the component is compatible with
the intended use). For example, the MySQL database can
be used under the conditions of the General Public License
(GPL) version 2, or the integrator can buy a commercial
license for her specific needs [10]. Most frequently, however,
a component can only be used under one license. For ex-
ample, in August of this year, Nokia tried to convince the
developers of PyQT to change its license from GPL version
2 to the Lesser GPL version v2.1, but did not succeed. As a
result, Nokia has started a project to create a replacement,
called PySide[16]. Nokia explains its rational: “PySide has
been published as a response to the lack of suitably licensed
Qt bindings for Python. PySide is licensed under the LGPL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

version 2.1 license, allowing both Free/Open source software
and proprietary software development.”

In an empirical study, Li et al. reported that 37% of com-
panies that used OSS components modify their source code
[15]. They also emphasize that any organization wanting to
reuse FOSS components (either with or without modifica-
tion) should consider the legal implications of such changes.

The legal issues of reusing FOSS components affect not
only companies, but other FOSS components and applica-
tions. As reported in [10], FOSS applications are also con-
cerned about licensing issues, primarily if the license of the
FOSS component is compatible with the license of the ap-
plication that uses it. If they are not, then the component
cannot be used.

One of the major challenges of intellectual property clear-
ance is to identify the license under which a FOSS compo-
nent, and each of its files, is made available. This is due
to several factors: 1) there is a vast number of open source
licenses, some approved by the Open Source Initiative (cur-
rently 65), and many more that are not—Table 1 shows
some frequent FOSS licenses and their abbreviations, as used
in this paper; 2) a FOSS product might be made available
under several licenses, 3) different versions of a FOSS com-
ponent might be available under different licenses; and 4) the
overall license of a product might be different than the li-
cense of each of its files.

When files under various licenses are combined to create
a FOSS component, there is a risk that one of these licenses
might be incompatible with the overall license of the com-
ponent, hence any integrator using that component might
be liable for infringement [17, 18].

Another problem is that several well-known licenses ex-
ist in various versions. For example, the GPL exists in
versions 1, 2 and 3, and each of these versions is incom-
patible with the others (files under one version cannot be
combined with files under another version, as described in
[8]); similarly code under the BSD4 code cannot be included
in software released under the BSD3 or BSD2. Frequently
FOSS software portals, such as SourceForge, only list the
name of the license and omit the version in the metadata of
the applications they host. Furthermore, they make no at-
tempt to verify that this license listed is indeed the license of
the component. For example, the FOSS portal Freshmeat
(freshmeat.net) lists Eclipse as licensed under the CPL,
when in fact, it uses the EPLv1 (the CPL is a predecessor
of the EPL).

The contributions of this paper are: 1) We describe and
categorize the challenges of license identification. 2) We pro-

Abbrev. Name

Apache Apache Public License

BSD4 Original BSD, also known as BSD with 4
clauses

BSD3 BSD4 minus advertisement clause

BSD2 BSD3 minus endorsement clause

boost The Boost Software license

CPL Common Public License

CDDL Common Development and Distribution
License

EPL Eclipse Public License

GPL General Public License

IBM IBM Public License

LesserGPL Lesser General Public License (successor of
the Library GPL, also known as LGPL)

LibraryGPL Library General Public License (also
known as LGPL)

MIT/X11 Original license of X11 released by the MIT

MITold License similar to the MIT/X11, but with
different wording

MPL Mozilla Public License

SameAsPerl File is licensed in the same terms as Perl

SeeFile File points to another where the its license
is

SunSimpleLic Simple license used by software developed
by Sun Microsystems

ZLIBref The zlib/libpng license

Table 1: Names of common open source licenses and
their abbreviations used in this article. Many of
these licenses have several versions. In that case
we use the suffix v<number> to identify it. If it
is followed by +, that means the user can choose
this version or any newer: “or later”. For example,
GPLv2+ means “GPL version 2 or later”.

pose a method for license identification based on the analysis
of each of the sentences in the license statement of a source
code file (the portion of the file that contains the terms under
which the file is licensed). 3) We perform an empirical eval-
uation of our method and three other license identification
tools showing that our method outperforms the others in
precision and speed. Finally, we present an empirical study
of approximately 0.8 million source code files that demon-
strates the feasibility of our method and highlights some
characteristics of the legal landscape of FOSS.

1.1 Related work
Several papers have used metadata from FOSS forges and

application portals (such as Freshmeat and SourceForge) to
identify the license of FOSS applications. In [2] Capaluppi
et al. used this data to report that, in a sample of 400
applications, 77% used the GPL, 6% the LGPL and 5% the
BSD (no versions were indicated). Other papers have used
this data to analyze the impact of a license in the success
and impact of FOSS applications [20, 4]. The authors of
these papers did not analyzed its source code.

Currently two methods exist for license identification. The
first is the use of regular expressions to identify the license
of a file. Two tools use this method: ohcount, developed by
Ohloh (ohloh.net), a portal of statistics for FOSS projects
recently acquired by SourceForge; and OSLC, the Open
Source License Checker (http://oslc.sourceforge.net/). The

second method for license identification is used by FOS-
Sology [12]. It uses an algorithm called the Binary Sym-
bolic Alignment Matrix (bSAM), traditionally used in pro-
tein alignment. All these tools are open source.

In [21] Tuunanen et al. compared OSLC, FOSSology and
their own implementation, called ASLA (based on the reg-
ular expression method). Their evaluation consisted in an
empirical study that used 12 FOSS applications. They mea-
sured the recall of each of the tools, but did not verify their
precision. They also reported that the major disadvantage
of FOSSology is that it is slow (it took approximately 1
minute per file) compared to OSLC and ASLA (that were
able to process almost 4000 files per minute in the same
computer). To date, this has been the only formal evalua-
tion of license identification tools. License identification is
only a facet of ALSA. It is also a GUI environment for the
analysis of the interactions between the licenses of different
FOSS components in a heterogeneous system. Similar work
has been proposed by Alspaugh et al. [1].

Research we have performed in the last two years has re-
quired the identification of licenses of a large collection of
files (see [11, 6, 7]). We have identified the following issues
with the current license identification systems:

• They are not precise enough. In many cases these sys-
tems can identify the family of a license, but not its
version. In [7] and [9] we have demonstrated that li-
cense evolution is a growing issue, acerbated by lack of
tools that properly identify the version of a license. As
licenses evolve, the new versions are not always com-
patible with older versions.

• They do not report unknown licenses. It is important
to know that a file has a license, even if the tool is not
capable of identifying it. A legal auditor can skip files
that do not to include any license, and concentrate on
those with an unknown one.

• They report false positives. ohcount and OSLC use
simple regular expressions that might be matched even
if the intention of the licensor is the opposite. For ex-
ample, we have encountered cases in which these sys-
tems report a file as using the General Public License
because it was found in text such as: “This file is not
licensed under the GPL”. We presume a legal auditor
will prefer to scan a file manually than to incorrectly
assume it has a given license.

• FOSSology is slow. In our experience, FOSSology is
more accurate than the other two (we perform a com-
parison further below that corroborates this fact), but
runs one or two orders of magnitude slower. It requires
also a complex setup, including a running database.

Barahona et al. measured different characteristics of the
Debian distributions, but did not include licensing in their
study [13].

2. LICENSING OF SOURCE CODE
The license of a source code file is typically found in a

comment at the very beginning of the file. We refer to this
region of the file as its license statement. A license state-
ment typically contains four sections (not necessarily in this
order) [5]: 1) a list of copyright owners, 2) a list of authors

(if different from the copyright owners), 3) the license or li-
censes that cover the file (see below for details), and 4) war-
ranty and liability statements. The licenses in the licensing
statement can be of two types:

by-inclusion: the text of the license is embedded in the file,
examples are the BSD and the MIT families of licenses;

by-reference: the license statement indicates where the
text of the license can be found. This can be a file (in
the case of the family of GPL licenses) or a URL (as the
Apachev2, the MPLv1.1, and the CPL).

In order to understand the characteristics of license state-
ments as they appear in FOSS, we have created a corpus
of source code with approximately 30,000 files. This in-
cluded applications such as Linux, Eclipse JDT, OpenBSD,
FreeBSD, and Mozilla. We have analyzed the licensing state-
ments of these files in a combination of manual and au-
tomatic methods, trying to determine the various ways in
which different licenses are present in files. We also studied
the Open Source Initiative (OSI) approved licenses, and the
corpus of licenses of FOSSology. This exploratory study re-
sulted in the identification of challenges of license identifica-
tion, which are summarized in Table 2. They fall into three
categories: 1) Finding the license statement: how many
licenses are there in the file, where (within the file) they
are located; 2) Language related: the grammar, spelling,
and wording use in a license statement; and 3) License cus-
tomization: the terms of the licenses are sometimes altered
by their users. Each of these challenges is described below:

F1. License statements are usually mixed with other
text. Frequently the first comments of a file contain text
that is not part of the licensing statement, such as a de-
scription of the file, or a ChangeLog. One exception is the
files in various Mozilla projects, in which well-defined delim-
iters mark the beginning and end of the licensing statement,
simplifying their identification.

F2. Files might reference another file where the li-
cense is located. Frequently a file will contain a licens-
ing statement such as “For licensing information, see the
file [...]”, “See [...] for licensing information”, “See [...] for
license details”, etc.. Sometimes the file is in the same di-
rectory, sometimes in a“main”,“root”or“top”directory. The
name of the file varies: “COPYING”,“LICENSE”,“README”,
“copyright.txt”,“AUTHORS”,“COPYRIGHT and LICENSE”,
another source code file, etc. (For the sake of space, we use
[...] to abbreviate sections of text in the examples.)

F3. Files might contain multiple licenses. It is not
uncommon for files to contain more than one license. Such
licenses can apply in a conjunction (the terms of all licenses
apply) or a disjunction (the terms of only one license, at
the choice of the licensor, applies; see disjunctive licensing
pattern in [10]). Determining the number of licenses present
in a file, and how they interact with each other, is not trivial.

L1. Licensing statements might contain spelling er-
rors. This is not surprising. A very common mistake we
found is words split by whitespace.

L2. A given license is referred in different ways.
When a file is licensed by-reference, usually the creator of
the license documents the recommended way to create the
reference (such as the GPL family of licenses, the MPL v1.1
and the EPL v1.0). Unfortunately this is not always the

case. For example, we discovered files that refer to the GPL
as “This [...] is licensed under the GPL”, “You may use
[...] under the GNU public license if you so wish”, “[...] is
provided under the provisions of the GPL”, where [...] is
replaced by “software”, “library”, “program” or the name of
the product. We also found the variant: “[...] provides this
source code under the GPL License” where [...] is replaced
with the name of the copyright owner, or its author.

L3. Licensors change the spelling/grammar of a li-
cense. Sometimes users change the grammar or spelling.
For example, they replace “license” with “licence”, “it would
be useful” with “it will be useful”, “developed by” with “writ-
ten at”, “dealings in” with “dealings with”, “Redistribution”
with “Redistributions”. The changes are also in punctua-
tion: they add or remove a comma or a semicolon. Gram-
mar changes are particularly significant because they might
have the effect of changing the meaning of the license (in-
tended or unintended). It should be left to legal experts to
determine if these changes to a license should be considered
a different license or not.

C1. Several licenses must be customized when used.
Licenses such as the BSD must be customized to include the
name of the copyright owner of the software. For instance,
the warranty statement of the BSD sentence should read
“THIS SOFTWARE IS PROVIDED BY <name> AS IS
AND ANY EXPRESS [...]” with the name of the copyright
owner in place of <name>.

C2. Licensors modify, add or remove conditions to
well known licenses. Frequently a well-known license is
modified to create a new license. Two of the best known ex-
amples are the BSD3 license, and the Apache v.1.1. The
BSD3 is derived from the original BSD4, by removing a
clause (famously known as the advertisement clause). The
Apache License v1.1 is composed of the BSD3 license plus
four more sentences. The OpenSSL license is a derivative
of the Apache License v1.1. Other licenses derived from
the BSD licenses are the Zlib/libPng license and the Sleep-
ycat License. In other instances, the modifications are more
subtle. For example, we found many cases in which the
MIT/X11 license was changed from“Permission to use, copy,
modify, distribute, and sell this software [...]” to “Permis-
sion to use, copy, modify and distribute this software [...]”
(dropping sell). Similarly, the BSD condition “Redistribu-
tions of source code must retain [...]” is changed to “Redis-
tributions of source code or documentation must retain [...]”
(adding or documentation). Some licenses by-reference, such
as the GPL and the MPL allow the licensor to modify the
license using an addendum (this avoids the need to create
variants of the license). These addenda are usually known
as exceptions (they create exceptions to the conditions of
the license–see Exception Pattern in [10]). These exceptions
usually follow the reference to the license. For example,
parsers generated with Bison contain files that are licensed
under the GPLv2+ with a special addendum that allows
their use under any license: “As a special exception, when
this file is copied by Bison into a Bison output file, you may
use that output file without restriction.”

C3. Licensors modify licenses for various intents.
By-inclusion licenses are prone to being modified by its users,
willingly or unwillingly. For example, we have found vari-
ants of the BSD endorsement clause such as: “<copyright
owner names> may not be used to endorse [...]”, “Neither

Type. Challenge

Finding the license statement F1. License statements are usually mixed with other text
F2. Files might reference another file where the license is located
F3. Files might contain multiple licenses

Language related L1. Licensing statements contain spelling errors
L2. A given license is referred in different ways
L3. Licensors change the spelling/grammar of the license statement

License customization C1. Several licenses must be customized when used
C2. Licensors modify, add or remove conditions to well known licenses
C3. Licensors modify licenses for various intents

Table 2: Major challenges of license identification.

the names of the authors may not be used to endorse [...]”,
and “The name of the author may not be used to endorse
[...]”. Similarly, we found in some cases “without prior writ-
ten permission” and in others “without specific prior written
permission”. In the MIT/X11 we discovered the words de-
veloper, author and copyright owner used interchangeably;
we also found “software and associated documentation files”
replaced with “source file”; and in other files “The above
copyright notice [...] shall” replaced with “The above copy-
right notice [...] (including the next paragraph) shall [...]”.

2.1 An algorithm for license identification
Based on our analysis of the corpus of source code files

and the challenges described before, we developed a license
identification algorithm. Its goals are to properly identify
each of the licenses in a file (license name and version) and
to sacrifice recall (being able to determine the license of a
file) for the sake of precision (making as few mistakes as
possible), and to run efficiently.

It works by extracting the license statement from the file,
it then breaks it apart into textual sentences, and proceeds
to find a match for each of them individually; the list of these
matched sentences is analyzed to determine if it contains
one or more licenses. This method requires a knowledge-
base with three sets of information: 1) filtering keywords K,
2) sets of equivalence phrases E , 3) known sentence-token
expressions T , 4) license rules R. These sets were created
during the study of our corpus and are described below.

Set of filtering keywords K: One of the challenges of li-
cense identification is discriminating between those sen-
tences that are part of the license statement and those
that are not relevant (see challenges F1, and F3 above).
Any sentence that does not match at least one keyword is
not expected to contribute to the license of the file. Key-
words can be composed of one or more words. Examples
of filtering keywords are license, conditions, disclaimer,
written permission. We have identified 82 such keywords.

Set of sets of equivalence phrases E: To deal with lan-
guage related challenges (L2 and L3) we have created sets
of equivalent phrases. Any phrase that is in a set is con-
sidered semantically equivalent to any other in the same
set. Examples of these equivalence phases sets are: (at
your option) any later version, any later version or any
greater version; distributable, licensed, released or made
available. These sets should be created carefully: replac-
ing one phrase with another in the same equivalence set
should not change the meaning of the sentence. For ex-
ample, some might argue that “you may” is not always

equivalent to “you can”. This set also includes equivalent
punctuation (such as different types of matching quotes
“ ”, ‘ ’, ’ ’, ” ”). We have created 12 such sets.

Set of known sentence-token expressions T : We use the
term sentence-token to refer to a sentence of a known
license. A license (both by-inclusion or by-reference) is
a sequence of sentence-tokens. Sentence-tokens are gen-
eralized using one or more regular expressions (see chal-
lenges C1, C2, and C3). We refer to the pair 〈sentence-token,
regular expression〉 as a sentence-token expression. The
objective of this set is to translate each sentence found in
the licensing statement into a sentence of a known license
(a sentence-token). We have identified 427 sentence-
token expressions. For example, two of the sentence-
token expressions matching variants of the sentence-token
“SeeFile” (the license is inside a given file name) are:

SeeFile,^For the licensing terms see the file ([^,;]+)$

SeeFile,^See ([^,;]+) for license$

Set of license rules R: Each license corresponds to a se-
quence of one or more sentence-tokens (which we call
a license rule) plus a set of non-critical sentence to-
kens (which we call its associate sentence-tokens).
Most by-inclusion licenses require matching two or more
consecutive sentence-tokens. In contrast, by-reference
licenses usually require only one sentence-token to be
matched (indicating the intention to use such license).
We have identified 126 licenses rules to match 112 li-
censes. For example, the BSD2 license rule is the se-
quence of 5 sentence-tokens, 〈BSDpre, BSDcondSource,
BSDcondBinary, BSDasIs, BSDWarr〉; in other words,
these 5 sentence-tokens should appear contiguously and
in the same order for the file to be considered licensed un-
der the BSD2. Each rule also contains a list of sentence-
tokens that usually appear with the license, but are not
required for the file to have such license (its associate
sentence-tokens); for example, a file licensed under a
GPL license will also contain the typical GPL warranty
and liability sentences (as recommended by the Free Soft-
ware Foundation).

Our algorithm for license identification is divided into six
steps, detailed below; they are illustrated in Figure 1.

1. License statement extraction: The comments at the
header of the file are extracted. If no comment extractor
for the programming language exists, we simply extract
the first 1,000 lines of text (the longest license statement
we have found is 700 lines long).

2. Text Segmentation

Sentence Filtering

Sentence Token Matching

License Rule Matching

1. License Stmt. Extraction

source file

comments

normalized sentences

sentences relevant to license

sentence tokens

License

sentences

6.

equiv. phrases

3. Text normalization

4.

5.

equiv. phrases

filtering

keywords

known sentence-

token expressions

rules

Legend

Process

Data

Knowledge

Base

Figure 1: Diagram depicting the main steps of the
algorithm of license identification.

2. Text segmentation: Using a text segmentation algo-
rithm, the comments are converted into a sequence of
statements S. Our implementation is based upon [3]
with further modification to remove source code com-
ments and special characters used as prefixes in each line
(such as # and |).

3. Equivalent phrase substitution: Each sentence is scanned
for occurrences of phrases in E , and if found, replaced
with a normalized version of the phrase.

4. Sentence filtering: S is split into two sequences, S+

and S−. A statement is part of S+ if it contains at least
one legal keyword k ∈ K, otherwise it is part of S−. The
relative order of the sentences in S is preserved in S+

and S−. If S+ is empty, the file does not have a license,
and we label the source file NONE. S+ contains the
sequence of all sentences that are expected to contribute
to the licensing of the file.

5. Sentence-token matching: ∀si ∈ S+, we find its cor-
responding sentence-token ti ∈ T such that the regular
expression corresponding to ti matches si. If no such ti

exists, we use the sentence-token UNKNOWN instead.
Some regular expressions contain variable sections (for
instance, the BSD license requires the name of the copy-
right owner to be included as part of some of its sen-
tences). Hence each sentence in S+ is equivalent to a
pair consisting of the sentence-token plus its list of k op-
tional parameters 〈ti, < p1, ..., pk >〉 for a value of k ≥ 0.
The result of this step is a sequence of sentence-tokens

(with parameters), each equivalent to their correspond-
ing sentence in S+. We call this sequence M .

6. License rule matching: ∀r ∈ R, we try to match r
to M . If r is contained in M , we output the license l
that corresponds to r. The sentence-tokens of M that
match r and any sentence-token that matches an associ-
ated sentence-tokens of r are marked as matched. This
step stops when all sentence-tokens in M are matched or
all rules in R are exhausted (see challenge F3).

Result: The license of the file is the list of licenses matched
in the previous step. If no license is matched, the file is
considered to have an UNKNOWN license. From M
a sequence of sentence-tokens that were not matched is
built. We will refer to it as the list of unmatched
sentences.

It is possible that the algorithm identifies a valid license,
and its list of unmatched sentences still contain known and
unknown sentence-tokens (in other words, part of the license
statement of the file has been identified, but another part
has not). This poses a risk that the file might contain one
or more licenses that have not being identified (see F3), and
therefore it is recommended that these lists be inspected
manually. The list of unmatched sentences of all files can be
aggregated and inspected all at once (instead of having to
inspect each file individually).

2.2 Example
We illustrate our method with this license statement:

/* Copyright (C) 2006 Apple Computer, Inc. All rights reserved.
* Copyright (C) 2006 Michael Emmel mike.emmel@gmail.com
* Copyright (C) 2007, 2008 Alp Toker <alp@atoker.com>
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ‘‘AS IS’’ AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE
* COMPUTER, INC. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE. */

This license statement is segmented into 7 sentences. Sen-
tence 6 is modified to replace “ with <QUOTES> (its pre-
ferred equivalent phrase). The number in front of each line
identifies its order in the original licensing statement:

1 Copyright (C) 2006 Apple Computer, Inc. All rights reserved.
2 Copyright (C) 2006 Michael Emmel mike.emmel@gmail.com Copyri[...]
3 Redistribution and use in source and binary forms, with or w[...]
4 Redistributions of source code must retain the above copyrig[...]
5 Redistributions in binary form must reproduce the above copy[...]
6 THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. <QUOTES>AS[...]
7 IN NO EVENT SHALL APPLE COMPUTER, INC. OR CONTRIBUTORS BE LI[...]

The second sentence is filtered out (it contains no filtering
keywords). The remaining sequence of sentences is trans-
lated to the following sequence of sentence-tokens and their
parameters:

1 <AllRights, <Copyright (C) 2006 Apple Computer, Inc.>>
3 <BSDpre, <:>>
4 <BSDcondSource, <above>>
5 <BSDcondBinary, <>>
6 <BSDasIs, <APPLE COMPUTER, INC.>>
7 <BSDWarr, <APPLE COMPUTER, INC. OR CONTRIBUTORS>>

Each line is composed of the name of a sentence-token,
followed by a list of instantiated parameters. For example,
line 1 has sentence-token AllRights with a parameter of the
leading string “Copyright . . . ”. Line 2 BSDpre is sometimes
followed by a colon. Line 3 BSDcondSource includes the pa-
rameter “above” because we have found two variants of this
license, one using “above copyright notice” and another us-
ing only“copyright notice” (this variant is context dependent
and cannot be an equivalence phrase). The purpose of these
parameters is to simplify the identification of variants of the
license, and to inform the user of how they are matched, as
sometimes there might be errors in them (e.g. the copyright
owner being different in the BSDasIs and BSDWarr sen-
tences, or incorrect) or a rule might have a regular expression
that is too greedy and match more than the intended text.
In this example, the name of the copyright owner (Apple
Computer, Inc.) is consistent in the three matched rules.

This list matches the BSD2 rule: 〈BSDpre, BSDcondSource,
BSDcondBinary, BSDasIs, BSDWarr〉 and AllRights is
marked as an associate sentence-token of the BSD2. For
this license statement, no unmatched or unknown sentences
exist. Hence, this file contains the BSD2 license only.

2.3 Ninka
Using this algorithm, we have developed a license iden-

tification tool called Ninka. Ninka is open source licensed
under the General Public License version 31. It consists
of approximately 1,500 lines of Perl, 82 filtering keywords,
12 equivalence phrases, 427 sentence-token expressions, and
126 license rules. It is capable of identifying 112 licenses.

3. EVALUATION
We conducted a comparison experiment to evaluate Ninka

against other existing tools: FOSSology version 1.0.0[12],
ohcount version 3.0.0rc and OSLC 3.0. FOSSology iden-
tifies licenses using the Binary Symbolic Alignment Matrix
(bSAM) pattern matching algorithm, matching the text files
against license templates contained in a database. FOSSol-
ogy is able to detect a wide variety of specific licenses (ver-
sion 1.1 is capable of recognizing 360 different ones). Its
main disadvantage is its speed (it takes from few seconds
to few minutes to identify the license of a file). Ohcount2

is developed by Ohloh, an open source directory. Ohcount
uses simple regular expressions to match licenses. OSLC3

finds exact or partial matches against the licenses stored in
its database using an algorithm based on a technique for
isolating textual differences [14].

3.1 Setting
1Ninka is available at turingmachine.org/ninka.
2http://ohcount.sourceforge.net/
3http://forge.ow2.org/projects/oslcv3/

In order to guarantee fairness, the evaluation was per-
formed by one of the authors independently from the main-
tainer of Ninka. We did not want our tool to be customized
(consciously or unconsciously) to the files in this study and
consequently improve Ninka’s accuracy.

We selected 250 source code files. First, we randomly
selected 250 applications from Debian 5.0.2. We then ran-
domly selected one file from each. These 250 files form the
set N . Our goal was get as many different types of licenses
and licensing statements as possible. If we consider that
our sample comes from 0.8 million source code files in De-
bian 5.0.2, our study will provide us with a 95% confidence
level of an error of ±6.2% that we can correctly identify the
licenses in the source code files of Debian 5.0.2.

The evaluation was conducted using the following proce-
dure: First, for each source file in N , its license (or licenses)
were manually identified. Second, each tool was used to
identify the licenses in each file. We used the following com-
mands: for FOSSology, fosslic, for ohloh ohcount -l, and
for OSLC java -jar oslc.jar -d.

Each of these tools has a different idiosyncrasy in the way
it reports its results. For example, the names used for each
of the licenses might be different (this is particularly true
for by-inclusion licenses) hence we inspected the documen-
tation of each tool trying to determine if the license name
it uses corresponds to the same license we found4. OSLC
displays the percentage of match of a license; we disregard
this number and considered each of the licenses it outputs
as being identified.

Because files without a license are fairly common (28.4%
in our sample did not have a license) we assume that, if the
tool does not output any license, the tool did not find one,
and will be considered correct if there is no license in the
corresponding file. Neither ohcount nor OSLC report when
they find an unknown license. For FOSSology we consider
the output “Phrase” as an unknown license. Ninka explicitly
states if there is a license that it cannot recognize. The data
used in this experiment and the results of each tool can
be found at http://turingmachine.org/ninkaData/. We
divided the results of each tool into 3 sets:

C Correct license name and version. The tool cor-
rectly identifies each of the licenses in the file, including
their version (where applicable, i.e. the official name
of the license contains a version number, such as the
GPL, or the CPL; we consider the BSD4, BSD3, BSD2
different versions of the same family). If the file con-
tains no license, the tool outputs nothing or that there
is NO license in the file. If the file contains more than
one license, each of them should be correctly identified.

I Incorrect. The tool identifies a license but it is in-
correct. We also consider it an incorrect identification
when the tool outputs multiple licenses and at least
one is incorrect.

U Unknown. The tool explicitly states that it has found
a license and it does not recognize it.

These sets are mutually disjoint, and N = C ∪ I ∪ U .
Finally, we calculate the recall and precision of the results

4There is currently an on-going effort—by several organi-
zations and companies–to standardize licensing data that
can be easily exchanged. This includes standardizing li-
censes names. One of the authors of this paper was in-
vited to be part of the committee. For more information see
www.spdx.org.

of each tool as follows:

Recall =
|C|

|C| + |U | Precision =
|C|

|C| + |I|

F-measure =
2 ∗ |C|

2 ∗ |C| + |I| + |U |

Intuitively Recall measures how good is the tool at dis-
covering that there is a license in the file. Because neither
ohcount nor OSLC support reporting unknown licenses their
recall is 100%. In contrast, Ninka and FOSSology are capa-
ble of reporting when a license is found, but is not identified.
We believe this is an important feature. This information is
valuable to the person doing the license analysis: it is bet-
ter to know that a file might contain an unidentified license,
rather than to think that it contains no license, or worse,
an incorrect one (i.e., if a file contains license A it is better
to say “I don’t know” than to err “the file has no license” or
“the file has license B”).

Precision measures how good is the tool at identifying the
correct license and version. Comparing each tool simply in
terms of their precision or recall is insufficient. Therefore we
use the F-measure to provide a more balanced comparison
of the trade-off between precision and recall.

3.2 Results
Table 3 shows the recall, precision and F-measure of the

results of each of the tools in our study, and the time it took
each to analyze the set of files.

Table 3: Results of the evaluation of the tool. Best
result in each category is depicted in bold.

Ninka FOSSo. ohcount OSLC
|C| 200 137 83 57
|I| 7 112 167 193
|U | 43 1 0 0

Recall 82.3% 99.2% 100.0% 100.0%
Precision 96.6% 55.0% 33.2% 29.5%
F-measure 0.889 0.708 0.498 0.371

Execution Time 22s 923 s 27s 372s

We can make several observations about the results. Ninka

sacrifices recall for the sake of precision. It prefers to report
the license as unknown rather than making a mistake. In
fact, of the 6 files incorrectly identified by Ninka, in three it
correctly identified one of the licenses present in the file, but
not all of them; and in three it reported the file as having
no license when it did contain one. Ninka shows the highest
F-measure in these tools. This is reassuring: its low recall
(Ninka’s recall is the lowest of the four) is offset by its high
precision.

FOSSology and OSLC are significantly slower than the
rest (30 and 10 times longer than ohcount or Ninka, respec-
tively), and Ninka is slightly faster than ohcount. We believe
this is because Ninka only analyzes the first lines of each file.

In conclusion, our study shows that we have achieved the
main goals set for Ninka: it has the highest precision of all
the tools in the study, and it does it efficiently (it was the
fastest tool in the study).

4. EMPIRICAL STUDY

To demonstrate the usefulness of Ninka we performed a
study of the licenses found in the files of a large open source
distribution (Debian 5.0.2). More specifically, we have per-
formed an empirical study to answer the following research
questions:

RQ1: What are the licenses used in FOSS? No em-
pirical study has been performed to identify the licenses
of source code files in a large collection of FOSS applica-
tions. Our goal is to identify what licenses are used and
how frequently.

RQ2: When present, what types of errors do license
statements have? Intuitively we would expect license
statements to contain errors. Our goal is to attempt to
identify them and explore how the occur.

To address RQ1, we identified the licenses of the source
files of Debian 5.0.2 using Ninka and evaluated a) how fre-
quently each license is used; b) if there is a relationship be-
tween license and programming languages, and c) if smaller
files are more likely not to have a license.

For RQ2 we looked for inconsistencies in licenses. We
concentrated on applications where most of the files used
the same license, and only a handful had a different one. We
then manually analyzed the differences, checked available
documentation for clarification, and contacted the authors
of the software to verify our findings.

4.1 Setting
We downloaded the source code of Debian 5.0.2 from De-

bian’s official repository5 We analyzed all files written in
Java (.java), C (.c), C++ (.cpp, .cxx, and .cc), Lisp (.el and
.jl), Perl (.pm and .pl), and Python (.py); according to [13]
these are five of the six most frequently found programming
languages used in Debian—the other is shell programming.
In Debian 5.0.2 we analyzed 794,622 files from 11,101 appli-
cations (also known as source packages in Debian’s nomen-
clature). Ninka could not identify a license in 15.9% of files.
These numbers are consistent with our empirical evaluation
of Ninka in Section 3.2. Ninka was able to identify the license
of all files in 31.6% of all applications.

4.2 RQ1: What are the licenses used in FOSS?
Due to space constraints we only present some results.

We invite the reader to download the list of files and their
licenses from http://turingmachine.org/ninkaData/.

4.2.1 What licenses are used by software in Debian
Table 4 shows the most commonly found licenses in De-

bian 5.0.2 files. The files with no license statement are the
most frequent (NONE). The GPL and LGPL licenses, in
all their versions, appear prominently in the list: they are
widely used by many files, in many different applications.
On the other hand, some licenses are used in few appli-
cations but these applications contain many files, e.g. the
disjunctive license “CDDLv1 or GPLv2” it is only used in
two applications (one of them netbeans with 28,523 files).
In comparison, Table 5 shows the number of applications in
which a given license is present in at least one of its file. The
GPLv2+ is the most common in both tables.

With regard to the distribution of licenses per applica-
tion, the number of licenses used in each application tends

5ftp://ftp.debian.org/debian/dists/Debian5.0.2/

License Files Perc. Aps.

NONE 210147 31.5% 8241
GPLv2+ 147535 22.1% 5486
LesserGPLv2.1+ 42692 6.4% 767
CDDLv1orGPLv2 37623 5.6% 2
SeeFile 31685 4.7% 1252
Apachev2 25023 3.7% 151
LibraryGPLv2+ 23705 3.6% 1150
GPLv2 18930 2.8% 582
GPLv2 or LGPLv2.1 or
MPLv1.1

18183 2.7% 30

GPLv3+ 16767 2.5% 224
BSD3 12394 1.9% 646
MITX11 10237 1.5% 601
LesserGPLv2+ 7783 1.2% 470
BoostV1 7348 1.1% 13
GPLv2+,LinkException 6029 0.9% 11
BSD2 3877 0.6% 255
LesserGPLv2.1 3496 0.5% 108
LibraryGPLv2 3283 0.5% 100
SameAsPerl 3275 0.5% 791
GPLnoVersion 3047 0.5% 334
MITX11 variant 2521 0.4% 57

Table 4: Most common licenses per number of files
where they occur in Debian 5.0.2. The last column is
the number of applications in which they are found.

to be very small. The median number of different licenses
detected per project is 1. 5186 (47.2%) had only one de-
tected license, and 1956 applications (17.6%) had two. The
maximum number of licenses in one application is large; e.g.,
40 different licenses in linux, 31 in vnc4, and 26 in texlive.

These numbers could be skewed because Ninka did not
detect the licenses of all the files. To avoid this potential
problem we studied applications in which Ninka resolved all
their files: 3506 (31.8% of the total) (i.e. for each file in
it, Ninka either identified its license or that it contained no
license). 2183 of these applications used only one license.
Table 6 shows the distribution of licenses in these applica-
tions. Another 557 applications used two licenses only.

License Aps. Prop

NONE 8241 74.2%
GPLv2+ 5486 49.4%
SeeFile 1252 11.3%
LibraryGPLv2+ 1150 10.4%
SameAsPerl 791 7.1%
LesserGPLv2.1+ 767 6.9%
MITX11 601 5.4%
BSD3 646 5.8%
GPLv2 582 5.2%
LesserGPLv2+ 470 4.2%
GPLnoVersion 334 3.0%
BSD2 255 2.3%
publicDomain 244 2.2%

Table 5: Most common licenses per number of appli-
cations in which they appear at least once in Debian
5.0.2.

‘

License Aps. Perc.
GPLv2+ 1265 57.9%
SameAsPerl 369 16.9%
MITX11 86 3.9%
BSD3 83 3.8%
SeeFile 63 2.9%
Apachev2 55 2.5%
LesserGPLv2.1+ 44 2.0%
GPLv2 38 1.7%
BSD2 24 1.1%
LibraryGPLv2+ 16 0.7%

Table 6: Most common licenses used by applications
that used only one license, and every file was re-
solved (it either had no license or it was known)
in Debian 5.0.2. There were 3506 such applications
(31.8% of all applications).

4.2.2 Do different programming languages use dif-
ferent licenses?

Table 7 shows the distribution of licenses grouped by pro-
gramming language (based upon the extension of the file).
This table shows the results for Java, C, C++, and Perl.

With respect to Java, as it can be observed, two appli-
cations (netbeans and glassfish) contribute all the files that
appear with the “CDDLv1 or GPLv2” (Java’s most used li-
cense). It is also significant that other licenses appear before
the GPLv2+.

C programs, on the other hand, are more likely to use
the Free Software Foundation licenses. C++ programs were
found to frequently use the triple license GPLv2, LGPLv2.1
or MPLv1.1, promoted by the Mozilla Foundation; the large
number of files that compose Boost pushes the number of
files under its license into this list.

Perl is peculiar because it uses an indirect license: “Same
License as Perl”. This is the default license statement in-
cluded in the skeletons of Perl modules automatically cre-
ated by Perl, and this is likely the reason behind its fre-
quency6. The table also shows Perl files are more likely not
to have a license (67%, more than twice of any of the other
three languages).

4.2.3 Does size matter?
During the development of Ninka we analyzed various FOSS

applications to test the efficacy of our tool. One of these
applications had a significant proportion of files without a
license. We contacted its main developer, informing him of
this. He replied that he did not think it was necessary to
place a license on very small files (usually test files).

Are smaller files more likely not to have a license? The
median size of files in Debian 5.0.2 is 4633 [2041,11863] bytes;
the median size of files without a license is 2137 [708,6857]
bytes, while the ones with a license is 5488 [2868,13217].
Considering that the median size of the license statement of
a file is 1005 bytes, the median size of files with a license
was still more than 2 kilobytes longer.A Mann-Whitney test
confirms that these differences are significant (p < 0.0001).

6This type of license makes it easy to relicense these modules
if and when Perl changes it license[10]. Perl is expected
to change its license to the Artistic v2 when version 6 is
released; it is currently using the disjunctive license between
the Artistic v1 and the GPLv1+.

License Files Perc. Aps.

Java (.java)
CDDLv1 or GPLv2 37562 25.43% 2
NONE 25371 17.17% 344
LesserGPLv2.1+ 22834 15.46% 61
Apachev2 21535 14.58% 100
GPLv2+ 10679 7.23% 72
GPLv2+,LinkException 5888 3.99% 8

c (.c)
NONE 85261 32.25% 3726
GPLv2+ 66654 25.21% 2718
LesserGPLv2.1+ 14981 5.67% 513
SeeFile 14926 5.65% 357
LibraryGPLv2+ 12440 4.70% 795
GPLv3+ 10191 3.85% 133

C++ (.cpp, .cxx, .cc, and c++)
GPLv2+ 47528 31.63% 999
NONE 36661 24.40% 1171
GPLv2 or LGPLv2.1 or
MPLv1.1

12169 8.10% 15

SeeFile 9704 6.46% 95
LibraryGPLv2+ 8854 5.89% 189
boostV1 6554 4.36% 11

Perl (.pm and .pl)
NONE 18227 66.73% 2200
GPLv2+ 3079 11.27% 383
SameAsPerl 2651 9.71% 584
LibraryGPLv2+ 681 2.49% 233
SeeFile 556 2.04% 180
GPLv2 or LGPLv2.1 or
MPLv1.1

293 1.07% 9

Table 7: Most frequent licenses used by each pro-
gramming language in Debian 5.0.2

However, we did not find a correlation between the size of
the file and the existence of a license in it (ρ = 0.1347).

4.3 RQ2: When present, what types of errors
do license statements have?

During the development and testing of Ninka we observed
several potential problems in the licensing of various appli-
cations that we analyzed. These are summarized below:
Application #1. Files without a license We contacted
the author of this application informing him that one of
its files did not contain a license (the rest contained the
GPLv3+). He acknowledged that this file should not have
been distributed with the software and removed it.
Application #2. Cutting & pasting the wrong li-
cense statement In this application we discovered a li-
cense inconsistency. The application, according to its web
site, was licensed under the GPLv2. 169 of its files were li-
censed under the GPLv2+, 3 under the GPLv3+, one in the
public domain, and 26 didn’t have a license. The GPLv3+
files created a licensing conflict: a file licensed under the
GPLv3+ cannot be linked into a system under the GPLv2.
We emailed its mailing list asking for a clarification. The
project leader quickly replied: “Those files did not have a
copyright header and no license at all, I’ve copied a license
header into them, but did not see that it was the wrong one,
sorry.” He also clarified that files without a license state-
ment are licensed under the GPLv2+.

Application #3. Inconsistent license clauses This ap-
plication is licensed under an MIT-style license. 3 files out
of 37 contained different liability and warranty clauses than
the rest. When we contacted the author of the application,
he acknowledged that this was a problem and would be fixed
in the next release.
Application #4. Incorrect name of the license Ac-
cording to the Web site of this application, it is licensed un-
der the Lesser GPL v2.1. Its README.txt file asserts it is
licensed under the Library GPLv2+. Ninka identified 8 files
under the Lesser GPLv2+, but this license does not exist.
The successor of the Library GPL version 2 is the Lesser
GPL version 2.1 (there was never a version 2.0 of this li-
cense). The rest of the files correctly referred to the Library
GPLv2+. When we contacted the author of the applica-
tion, he acknowledged the problem, claiming the licenses of
all files will be changed to Lesser GPLv 2.1.
Application #5. License statements can only be
edited by their copyright owners This application in-
cluded a file under the Lesser GPLv2+ (as mentioned above,
this version of the license does not exist). When we con-
tacted the project leader he informed us that this was a
known problem, and there was a bug report already filled
about it. Unfortunately this file had come from a different
application, and hence because they were not the copyright
owner they could not change its license statement; instead
they were trying to find its copyright owner to perform such
change

In summary, these issues highlight the need for license
maintenance features in software development environments
that support:

• Editing of the license statements.
• Verifying the validity of the license statements.
• Summarizing licenses in source code files.
• Tracking of copyright owners.

5. THREATS TO VALIDITY
With respect to our evaluation of Ninka and the other

tools, we addressed construction validity by randomly choos-
ing files from many different applications. We addressed
conclusion validity by performing a statistical test that in-
dicates the level of confidence of the results.

Our study of licensing in FOSS is exploratory and its main
threat to construction validity is how reliable our license de-
tection is. Our empirical evaluation of Ninka has been de-
sign to quantify it. In this evaluation Ninka had a 96.6%
precision for files in which it identified a license, hence we
are confident of the quality of our analysis of the complete
Debian distributions. There is, however, the risk that the
unknown licences might change some of the results. This
potential impact would be small because only 15.9% of files
in Debian 5.0.2 contained a license that was not identified.
We inspected many of these files and, in most cases, they
contained variants of other known licenses that were not rec-
ognizable by Ninka. Furthermore, we restricted some of our
analysis to applications for which Ninka identified a license
(or lack of one) in each of their files. With respect to exter-
nal validity, we believe that our results are representative to
FOSS in general because a) we analyzed a very large number
of files and applications, and b) Debian serves as a proxy of
active (or at least used) FOSS applications.

We have also contacted developers (where applicable) to

make sure that our interpretations were not erroneous.
With respect to reliability validity, our study can be repli-

cated: first, we have used a well defined collection of source
code files that is available to anybody (Debian distribu-
tions); second, we are making Ninka available under an open
source license; and third, the data and results or our experi-
ments are available for others to study at http://turingmachine.
org/ninkaData/.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a method of license iden-

tification for source code files. This method is based on
matching each of the sentences of the license statement of
the file to the sentences of known licenses. Based on this
method we implemented Ninka. We empirically evaluated
Ninka and other similar tools and found that Ninka is better
and faster at identifying the license name and version than
these tools, at the cost of lower recall.

We have performed an empirical study of a large collec-
tion of free and open source applications. We discovered, for
example, that the GPLv2+ is the most commonly used li-
cense in terms of number of files and number of applications
that use it.

We also discovered that licensing statements are prone
to errors. The integration of license verification tools into
development environments will alleviate this problem.

With respect to future work, the identification of licenses
of files is only one step in licensing analysis of components.
It is also necessary to analyze the interactions between dif-
ferent files of a system to determine the resulting license of
a component, and, at a higher level, how the interaction of
different components affect the overall license of a system
that uses them.

Acknowledgements
We would like the thank the reviewers of an early draft of
this paper. This work has been supported by the Invita-
tion Fellowship Program of the Japan Society for Promotion
and Science, the Grant-in-Aid for Scientific Research (A)
(No.21240002), the Stage Project, the Development of Next
Generation IT Infrastructure of Mext Japan, and the Na-
tional Science and Engineering Research Council of Canada.

7. REFERENCES
[1] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi.

Analyzing software licenses in open architecture
software systems. In FLOSS ’09: Proc. Workshop on
Emerging Trends in Free/Libre/Open Source Software
Research and Development, pages 54–57, 2009.

[2] A. Capiluppi, P. Lago, and M. Morisio. Characteristics
of open source projects. Software Maintenance and
Reengineering, European Conference on, 0:317, 2003.

[3] P. Claugh. A Perl program for sentence splitting using
rules. http://ir.shef.ac.uk/cloughie/software.html,
April 2001.

[4] J. Colazo and Y. Fang. Impact of license choice on
open source software development activity. J. Am.
Soc. Inf. Sci. Technol., 60(5):997–1011, 2009.

[5] M. Di Penta and D. M. German. Who are source code
contributors and how do they change? In ”Proc. 16th
Working Conference on Reverse Engineering
WCRE’09”, pages 11–20, Oct 2009.

[6] M. Di Penta, D. M. German, and G. Antoniol.
Identifying Licensing of Jar Archives using a
Code-Search Approach. In International Working
Conference on Mining Software Repositories (MSR
2010), pages 151–160, May 2010.

[7] M. Di Penta, D. M. German, Y.-G. Guéhéneuc, and
G. Antoniol. An exploratory study of the evolution of
software licensing. In Proc. of the 32rd Int. Conf. on
Software Engineering (ICSE 2010), pages 145–154,
2010.

[8] Free Software Foundation. Frequently Asked
Questions about the GNU Licenses.
http://www.fsf.org/licensing/licenses/gpl-faq.html.
Accessed Feb. 2009.

[9] D. M. German, M. Di Penta, and J. Davis.
Understanding and auditing the licensing of open
source software distributions. In 18th International
Conference on Program Comprehension (ICPC’2010),
May 2010.

[10] D. M. German and A. E. Hassan. License integration
patterns: Addressing license mismatches in
component-based development. In Proc. 31st Int.
Conf. on Soft. Eng., ICSE, pages 188–198, 2009.

[11] D. M. German, M. D. Penta, Y. Gueheneuc, and
G. Antoniol. Code siblings: Technical and legal
implications of copying code between applications. In
Proceedings of the International Working Conference
in Mining Software Repositories, pages 81–90, 2009.

[12] R. Gobeille. The FOSSology project. In MSR ’08:
Proceedings of the 2008 International Conference on
Mining Software Repositories, pages 47–50, 2008.

[13] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr,
J. J. Amor, and D. M. German. Macro-level software
evolution: a case study of a large software
compilation. Journal of Empirical Software
Engineering, 14(3):262–285, 2009 2009.

[14] P. Heckel. A technique for isolating differences
between files. Commun. ACM, 21(4):264–268, 1978.

[15] J. Li, R. Conradi, C. Bunse, M. Torchiano,
O. Slyngstad, and M. Morisio. Development with
off-the-shelf components: 10 facts. Software, IEEE,
26(2):80–87, 2009.

[16] Nokia Corp. About PySide.
http://www.pyside.org/about/, 2009. Acc. Sept. 2009.

[17] L. Rosen. Open Source Licensing: Software Freedom
and Intellectual Property Law. Prentice Hall, 2004.

[18] C. Ruffin and C. Ebert. Using open source software in
product development: a primer. IEEE Software,
21(1):82–86, 2004.

[19] W. Scacchi. Free/open source software development.
In ESEC-FSE ’07: Proceedings of the the 6th joint
meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, pages
459–468, New York, NY, USA, 2007. ACM.

[20] C. Subramaniam, R. Sen, and M. L. Nelson.
Determinants of open source software project success:
A longitudinal study. Decision Support Systems,
46(2):576–585, 2009.

[21] T. Tuunanen, J. Koskinen, and T. Kärkkäinen.
Automated software license analysis. Automated
Software Engg., 16(3-4):455–490, 2009.

