
A Preliminary Study on Impact of Software Licenses on
Copy-and-Paste Reuse

Yu Kashima
Graduate School of

Information Science and
Technology, Osaka University

y-kasima@ist.osaka-
u.ac.jp

Yasuhiro Hayase
Faculty of Information

Sciences and Arts, Toyo
University

hayase@toyo.jp

Norihiro Yoshida
Graduate School of

Information Science, Nara
Institute of Science and

Technology

yoshida@is.naist.jp

Yuki Manabe
Graduate School of

Information Science and
Technology, Osaka University

y-manabe@ist.osaka-
u.ac.jp

Katsuro Inoue
Graduate School of

Information Science and
Technology, Osaka University

inoue@ist.osaka-u.ac.jp

ABSTRACT
Source code of open-source software is permitted to be reused
when and only when the conditions of its license are satis-
fied. There are many different conditions for reusing, since
various open-source licenses are used. Therefore, the license
of the source code may affect the frequency of reusing or
the property of the software for which the source is reused.
To identify the relationship between software license and
reusing, we are planning to classify copy-and-pasted code
fragments based on the license of the fragments. This pa-
per presents a preliminary and manual investigation on a
small source file set. The result indicates that the license
of a fragment affects the quantity and the license of copied
fragments.

Categories and Subject Descriptors
K.5.1 [LEGAL ASPECTS OF COMPUTING]: Hard-
ware / Software Protection—Licensing
; K.6.3 [MANAGEMENT OF COMPUTING AND

INFORMATION SYSTEMS]: Software Management—
Software Selection

General Terms
Legal Aspects, Experimentation

Keywords
Software License, Open Source Software, Reuse, Copy and
Paste

1. INTRODUCTION

Source code of open source software (i.e. OSS) is avail-
able for anyone to modify or redistribute. According to the
growth of OSS development [16], software developers can
reuse huge amount of OSS source code nowadays.

Everyone has to adhere to the license of a software product
when he/she obtains or uses the product. The license of
a product expresses the intent of the right holder; Several
OSS licenses require the derivative works to apply the same
license of the original product, i.e. copyleft1. Since different
right holders have different intents, many OSS licenses are
used.

Software reuse is recognized as a practice for reducing the de-
velopment cost and improving the product quality. Software
reuse happens at several levels of granularity; from simple
copy and paste of code snippet, to whole the inclusion, to
subsystem reuse.

Software reuse must adhere the license of the reused product.
Furthermore, developers must pay attention not to violate
the licenses of the product they are developing by reusing
other software.

OSS licenses have different attitudes toward reuse.[14] For
example, the GNU General Public Licenses (GPL)[5] re-
quires derivative works, including a product that contains a
code fragment copied from a GPL product, to be distributed
under the GPL. On the other hand, the BSD license[13] only
requires that the copyright notice, the license text and the
disclaimer are retained. Thus, the reused product must be
carefully selected to not conflict with the license of a product
under development.

Consequently, software license may affect the frequency of
code reuse or the variety of the derived products. For in-
stance, the source code distributed under a copyleft license
may be reused less frequently and reused in narrow a vari-
ety of software products, compared to non-copyleft license

1http://www.gnu.org/copyleft/ (accessed Oct 2010)



source code. To the knowledge of the available, there is no
quantitative study of CnP reuses from the point of view of
software license.

This paper presents a preliminary study on the impact of
the software licenses on CnP reuse on a small data set.
The preliminary experiment intends to assess the process
of evaluating CnP source code based on the software li-
cense. The target of the experiment is Java source code
distributed in Debian GNU/Linux lenny[3]. We investigated
copy-and-pasted code fragments that are distributed under
three major licenses; the 3-clause BSD license (BSD3), the
GPL Version 2 or later (GPLv2+) and the Apache License
2.0 (Apachev2)[1]. To detect copy-and-pasted code frag-
ments, CCFinder[10] and LNR filtering criterion are used.

Result of the experiment shows that source code distributed
under the BSD3 or the Apachev2 is more frequently reused
than the GPLv2 code. On the other hand, Apachev2 and
GPL code has a trend to be reused in code distributed un-
der specific licenses. Through the preliminary experiment,
we confirmed that the process of evaluation is effective and
applicable for large data set.

The rest of this paper is organized as follows. Section 2 ex-
plains background of this study. Section 3 illustrates design
and result of the experiment, and Section 4 interprets the
result of the experiment. Section 5 discusses about the valid-
ity of the experiment, finally, Section 6 shows the conclusion
and future remarks.

2. SOFTWARE LICENSE AND REUSING
Nowadays, many open-source licenses are used; for instance,
the Open Source Initiative officially approves 67 licenses 2.
This section illustrates three of most major licenses, 3-clause
BSD license (BSD3), Apache License 2.0 (Apachev2) and
GNU General Public License version 2 (GPLv2) from the
perspective of a developer who makes a derivation product.
From the point of view of a developer, different licenses mean
different restrictions.

When a developer makes a derivative work from a BSD3
product, the former should retain the copyright notice and
the full text of the license.

If a developer makes a derivative work from an Apachev2
product, all copyrights, patents, trademarks, and attribu-
tion notices should be retained in the new product. More-
over, changed file also should have notices of the modifica-
tion.

When a developer makes a derivation from a GPLv2 prod-
uct, the whole derivation must be distributed under the
GPLv2 and, changed file should have notices of the mod-
ification.

2.1 OSS License and Reuse
Software reuse is recognized as a practical method for devel-
oping high quality software with low cost. A developer can

2http://www.opensource.org/licenses (accessed Oct
2010)

BSD3 CnP

GPL CnP BSD3

GPL

Figure 1: Reusing source code in a different license

product

reuse source code of OSS products since the source code is
easily available.

Copy-and-paste (CnP) is one of the most frequently per-
formed methods of reuse. In CnP reuse, source code is
copied, modified if needed, and finally, used as a part of
new product.[11, 14]

When reusing existing software, both the license of the prod-
uct being reused and of the developing product must be
satisfied. In case the two licenses are incompatible, both
cannot be satisfied simultaneously. For example, Apachev2
products cannot be incorporated into the GPLv2 products,
since several requirements in the Apachev2 conflict with a
clause in GPLv2.3

Furthermore, even if the licenses do not conflict, an OSS
product cannot be reused if license of the developing prod-
uct cannot be changed. For example, GPLv2 source code
cannot be incorporated into a BSD3 product. In contrast,
BSD3 source code can be incorporated into a GPLv2 prod-
uct because the restrictions of the BSD3 are included in the
GPLv2. (Figure 1)

2.2 Impact of Software License on Copy and

Paste Reuse
As described above, the license of the reused product is the
main concern to software reuse. If a license of source code
doesn’t match a developing product, the source code cannot
be reused in the developing product unless the license of the
developing product is changed. Therefore, it is clear that the
reusability of software depends on not only functionality or
quality, but also license of the software.

Whether reusing source code by CnP is allowed or not de-
pends on its license. As previously explained, when a de-
veloper reuses source code, the developer must observe the
source codes license. Licenses with very restrictive terms
(i.e. GPL) might make it difficult to satisfy their condition,
while licenses with more relaxed conditions have easier to
meet requirements.

We make the following assumptions:

• source code with a relaxed license is reused under var-
ious licenses.

3http://www.gnu.org/licenses/license-list.html (ac-
cessed Oct 2010)



Table 1: kept packages and excluded packages

kept packages excluded packages

antlr3 antlr
asm3 asm, asm2
db4.6 db4.2, db4.3
junit4 junit
tomcat6 tomcat5.5

• source code with a relaxed license is reused more fre-
quently than source code under a strict license.

3. EXPERIMENT
The goal of this study is an investigation of the impact of li-
censes on CnP reuse in OSS. To achieve the goal, we need to
analyze actual OSS to identify the relationship between li-
censes and CnP reuse. In this paper, we analyzed the source
files of OSS in order to validate our method.

This study focused only source code reuse across applica-
tions. We believe that the impact of license on source code
reuse within an application is small. Because, even though
there are CnP between files under different license, a license
problem occurred by these files must be resolved.

3.1 Analysed Code
We selected a part of the source files of Debian/GNU Linux
as our analysis target for the following reasons:

• Various licenses are used by it.

• It includes different type of software.

First, we downloaded the packages contained in the main
section of Debian/GNU Linux; second, we extracted the con-
tent of the “.tar.gz” files; finally, we selected the source code
written in Java(.java) the target of our analysis. Conse-
quently, the analysis target consisted of 77452 files (8530896
LOC) from 452 packages.

Note that we kept one of several packages having different
versions respectively and excluded the others in the analysis
target. For example, between asm, asm2 and asm3, we kept
asm3 and excluded asm and asm2 from the analysis target.
Table 1 shows the kept packages and the excluded packages.

3.2 Experiment Method
Figure 2 shows an overview of the method of this experi-
ment.

Step 1 We identified the licenses of each file by analyz-
ing the description specifying its licenses in the file.
We used Ninka[7] to identify the licenses. Ninka is a
tool which analyzes descriptions specifying licenses in
a source file and identifies specified licenses. The rea-
son why Ninka was used in this step is that Ninka is a
state-of-art license identification tool and more precise
than other existing license identification tools such as
FOSSology[8]. Note that not only a source file but also

Table 2: Distribution of licenses in all files of the

analysis target

License Name #File

Apachev2 16350 3

GPLv2+ 8160 3

LesserGPLv2.1+ 6534
GPLnoVersion,GPLv2+,LinkException 5887
GPLv2 3222
BSD3 2181 3

GPLv2,ClassPathException 1498
No description specifying license in the file 15813
Fail to analyze the description 6862
SeeFile 2786

a package can have a license. According to the Debian
Policy[4], Each package has a ’copyright’ file specifying
the license of the package. However, this step didn’t
use this ’copyright’ file because the license of source
files in the package does not always correspond to the
license of the package[6, 8].

Step 2 We extracted the clone sets[10] created by copy-
and-paste. A clone set is an equivalence class of the
clone-relation. The clone-relation is defined as an equiv-
alence relation. The clone-relation holds between two
code portions if (and only if) they are the same se-
quence. A code fragment which is similar to another
is called code-clone. We give a detailed description of
the method for extracting clone sets in Section 3.3.

Step 3 We extracted clone sets including a code fragment
under specific license A, and we classified and counted
the code fragments in these clone set based on their
license. Since the source of the CnP cannot be re-
trieved from code clones, the direction of CnP was not
considered in this experiment.

Due to time limitation, we investigated only some licenses
that are widely used and differ from each other in the con-
dition on CnP reuse. Table 2 shows the abbreviated names
of the licenses ranked in descending order by the number of
files under it in the analysis target. Licenses marked with a
check are the ones we investigated. Table 3 shows the full
names of the licenses in Table 2. When we show a version
of license, “v<number>” follows. In addition, if users can
choose this version or any later, “+” follows. Furthermore, if
user can choose several licenses, usable license names follow
after “,”.

We analyzed Apachev2, GPLv2+ and BSD3 as Table 2 shows.
Apachev2 is used by the largest number of files in the anal-
ysis target; GPLv2+ and GPL derivatives are counted in
the second. BSD3 is used by the largest number of files
except files under Apachev2 or licenses which conditions
like GPLv2+ such as “LesserGPLv2.1+”, “GPLnoVersion,
GPLv2+, LinkException”, “GPLv2+”.

3.3 CnP Detection
We used CCFinder[10] for detecting code fragments created
by CnP. CCFinder is a code-clone detection tool. We can



Identifying 

License

Detecting 

C&P

Classifying 

Based on 

License

Source File Set

License Aunknown

License B

License

Name

#Code 

Clone

A 10

B 3

…. ….

License A

License B

Figure 2: Overview of evaluation method

Table 3: License name abbreviations
Abbreviation Name

Apache Apache Public License
BSD3 Original BSD minus advertisement clause
ClassPathException GNU Classpath License
CPL Common Public License
GPL General Public License
LesserGPL Lesser General Public License
LibraryGPL Library General Public License
LinkException GPL linking exception
MITX11noNotice MIT License/X11License
MPL Mozilla Public License
MX4jLicense MX4J License
publicDomain Public Domain
SeeFile File Points to another where the its license is
subversion Subversion License

extract code fragments copied and pasted by detecting code-
clones.

In this experiment, when we detect CnP from the analysis
target, we detected code-clone ignoring the identifier names,
because we wanted to detect code fragments in which iden-
tifier names changed after the CnP.

Additionally, we used LNR to filter clone set involving code
fragment created by CnP from extracted clone set. LNR is
the number of tokens of non repeated elements in a code
fragment. A code fragment which LNR is small might in-
cludes only variable declarations, assignments or getter/setter
declarations. These code fragments are called language spe-
cific clones. By contrast, if the LNR of a code fragment
is large, the code fragment has higher classes to be created
by CnP. Therefore, in this experiment, we presumed that a
clone set is created by CnP if the average of LNR of code
fragments is over some specific value. This value was set at
50, because our experience shown that 50 is an appropriate
value to exclude language specific clones.

3.4 Results
Table 4 shows the number of code fragments under each
license; Table 5 shows the case of Apachev2; Table 6 shows
the case of GPLv2+.

Table 7 shows the number of code fragments, files and the
ratio of code fragments to files of BSD3, Apachev2 and
GPLv2+. We can see from Table 7 that the order arranged
in descending order of number of code fragments compared
to number of files is BSD3, Apachev2, GPLv2+.

Table 4: Distribution of code fragments having

clone-relation to files under BSD3
License Name #Fragments

BSD3 613
GPLv2+ 20
Apachev2 16
LibraryGPLv2+ 14
GPLv2,ClassPathException 1
LesserGPLv2.1+ 1

Table 5: Distribution of code fragments having

clone-relation to files under Apachev2

License Name #Fragments

Apachev2 1533
Apachev1.1 316
LesserGPLv2.1+ 42
MPLv1 1 33
BSD3 29
MX4JLicensev1 16
GPLv2+ 4
LibraryGPLv2+ 3
MPLv1 0 2
MITX11noNotice 2
publicDomain 1
subversion+ 1
EPLv1 1

We found that CnP fragments tend to have the same li-
cense. In the case of BSD3, code fragments under BSD3
account for 92% of all code fragments. Similarly, in the case
of Apachev2, code fragments under Apachev2 account for
77% of all. In the case of GPLv2+, code fragments under
GPLv2+ account for 48% of all.

In the case of Apachev2, code fragments under Apachev1.1
account for 16% of all. Similarly, in the result of GPLv2+,
“GPLnoVersion, GPLv2+, LinkException” account for 41%
of all.

If we evaluate the results from the point of view of the num-
ber of licenses, Apachev2 has CnP relationship to the largest
number of licenses. Apachev2 has CnP relationship to 13 li-
censes. BSD3 and also GPLv2+ have CnP relationship to 6
licenses.



Table 6: Distribution of code fragments having

clone-relation to files under GPLv2+

License Name #Fragments

GPLv2+ 268
GPLnoVersion,GPLv2+,LinkException 225
BSD3 28
LibraryGPLv2+ 20
Apachev2 4
LesserGPLv2.1+ 4

Table 7: Number of code fragments and files

#Fragments #File #Fragments/#File

BSD3 665 2181 0.304906
Apachev2 1983 16350 0.121284
GPLv2+ 549 8160 0.067279

4. DISCUSSION
In the result of Apachev2, there is large number of code
fragments having CnP relationship to code fragments under
Apachev1.1. We believe that Apachev1.1 has been changing
to Apachev2 currently because Apachev1.1 is an old version
of Apachev2.

GPLv2+ has the smallest number of #Fragments/#File in
table 7. This result shows that GPLv2+ is reused less fre-
quently than BSD3 and Apachev2. We believe that code
fragments under other licenses are copied into code under
GPLv2+, however, there is little case that a code fragment
under GPLv2+ is copied into code under another license not
in the GPL family. We believe the reasons are:

• Copy-and-Pasting a code fragment under GPLv2+ to
code under another license except GPLv2+ and GPLv3
violates the condition of GPLv2+.

• Copy-and-Pasting a code fragment under Apachev2 or
BSD3 in code under GPLv2+ is permitted.

• Copy-and-Pasting a code fragment under GPL fam-
ily such as LesserGPL or “GPLnoVersion, GPLv2+,
LinkException” and changing their license to GPL is
permitted.

Code fragments under BSD3 or Apachev2 are reused more
frequently than code fragments under GPLv2+. We believe
that it is easier to satisfy the conditions of the BSD3 or the
Apachev2 than these of the GPLv2+. In fact, code frag-
ments under the Apachev2 have CnP relationship to code
fragments under more licenses than code fragments under
the GPLv2+. Therefore, we suggest that code fragments
under Apachev2 are copy-and-pasted frequently into code
under another license.

In section 3.4, we shown that all licenses share the common
characteristic that code fragments under each of the own
license have the highest proportion in each result of inves-
tigations. We suggest that there are many cases that code
fragments are copy-and-pasted to code fragments created by
a developer in same development organization.

There are many open source licenses as described in Section
2, the developers of the OSS have to select a license from
the many available. The result of the investigation may be
contributory to license selection.

This experiment is a preliminary study. Therefore, we plan
to perform an experiment on a larger analysis target. It is
possible to detect CnP in larger source code because we can
split a set of source code to decrease their size as possible
as to analyze by CCFinder, and merge these results. On
the other hand, identifying license of code fragment in large
object is also possible. Because Ninka analyzes files one by
one.

5. THREAT TO VALIDITY
It is possible that the result of the experiment depends
on the CnP detection capability of code clone detection
tool CCFinder[10]. We are motivated to use CCFinder in
the experiment because one of main application of code
clone detection tool is CnP detection, and the usefulness
of CCFinder is shown in Bellon’s benchmark[2]. As future
work, comparative experiments with other available code
clone detection tools (e.g., CP-Miner[12]) should be per-
formed.

The result of the experiment also depends on the charac-
teristic of metric LNR and its threshold value. We use the
metric LNR to exclude language-dependent clones (e.g., re-
peated setter/getter invocations in Java programs). As fu-
ture work, we should perform the experiments to show the
effect of threshold values of metric LNR. RNR[9] is another
metric to exclude language-dependent clones. Currently, we
are planning to perform the comparative experiment with
LNR and RNR.

Ninka is employed to identify the licenses of source files. We
believe that using Ninka is valid because the accuracy of
Ninka is good; In [7], recall was 82% and the precision was
96%.

However, Ninka cannot detect a license if a source file con-
tains no description about license. In addition, Ninka also
cannot detect a license if the license is not registered in
the database. In this experiment, source files that Ninka
couldn’t detect their license are removed from the target of
detecting CnP. Hence, source files which were not detected
their license didn’t influence results.

The analysis target is a small portion of source files in De-
bian GNU/Linux. Therefore, this result may include a lot
of sampling error. For this reason, we believe that applying
this result to general OSS is not acceptable.

6. CONCLUSION AND FUTURE WORK
This paper performed a preliminary study on impact of soft-
ware licenses on CnP reuse. Open-source Java source code
in Debian/GNU Linux was analyzed and classified based
on their license. In particular, copied code fragments that
relate to the source files distributed under 3-clause BSD li-
cense, Apache License version 2.0 or GPL version2 or lator
were analyzed.

The result of the experiment shows that most of the code



fragments are copied to files distributed under same license
or relative licenses that is designed by same organization.
On the other hand, comparing to BSD3 and GPLv2+, Apachev2
code fragments are copied into files that are distributed un-
der a various licenses. By contrast, almost all GPLv2+ code
are copied between the files distributed under the GPL fam-
ily licenses.

We are planning a large scale experiment. Especially, the all
source code and licenses in OSS products in Debian GNU/Linux
is a target of the experiment.

This paper focused on clone sets created by CnP. Thus, the
direction of copying is not identified. To clarify the true
impact of the license to copy-and-pasting, origin analysis is
required to know the direction.

To identify the developing organization or the developer who
copied a fragment is also important to clarify the impact.

In this experiment, we didn’t discriminate between code
clone generated by copy-and-pasted and code clone gener-
ated by including library in source form. Discriminating
these code clone, it will be clear that difference of an impact
of license on their cases. Therefore, we plan to retrieve code
clone generated by including library’s source code using with
FCFinder[15].

7. ACKNOWLEDGMENTS
This work has been supported by Ministry of Education, Sci-
ence, Sports and Culture, Grant-in-Aid for Young Scientists
(B) (No.21700031), and Grant-in-Aid for Research Activity
start-up (No.22800040).

8. REFERENCES
[1] Apache Software Foundation. Apache license, version

2.0. http://www.apache.org/licenses/LICENSE-2.0
Accessed Oct 2010.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone
detection tools. IEEE Trans. Softw. Eng., 33(9):577
–591, Sept. 2007.

[3] Debian Project. Debian gnu/linux.
http://www.debian.org/ Accessed Oct 2010.

[4] Debian Project. Debian policy manual.
http://www.debian.org/doc/debian-policy/

Accessed Oct 2010.

[5] Free Software Foundation. GNU general public license.
http://www.gnu.org/licenses/gpl.html Accessed
Oct 2010.

[6] D. M. German, M. Di Penta, and J. Davies.
Understanding and auditing the licensing of open
source software distributions. ICPC ’10, pages 84–93,
2010.

[7] D. M. German, Y. Manabe, and K. Inoue. A
sentence-matching method for automatic license
identification of source code files. In ASE 2010, pages
437–446, 2010.

[8] R. Gobeille. The fossology project. In Proceedings of
the 2008 international working conference on Mining
software repositories, MSR ’08, pages 47–50, New
York, NY, USA, 2008. ACM.

[9] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Method and implementation for investigating code
clones in a software system. Information & Software
Technology, 49(9-10):985–998, 2007.

[10] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
on Software Engineering, 28:654–670, 2002.

[11] J. Li, R. Conradi, C. Bunse, M. Torchiano, O. P. N.
Slyngstad, and M. Morisio. Development with
off-the-shelf components: 10 facts. IEEE Software,
26:80–87, 2009.

[12] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:
finding copy-paste and related bugs in large-scale
software code. IEEE Trans. Soft. Eng., 32(3):176 –
192, March 2006.

[13] Open Source Initiative. The BSD license. http:
//www.opensource.org/licenses/bsd-license.php

Accessed Oct 2010.

[14] M. Ruffin and C. Ebert. Using open source software in
product development: A primer. IEEE Software,
21(1):82–86, 2004.

[15] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue.
Finding file clones in freebsd ports collection. In
Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on, pages 102 –105, 2010.

[16] W. Scacchi. Free/open source software development:
recent research results and emerging opportunities. In
ESEC/FSE 2007, pages 459–468, 2007.


