
Assessing the Impact of Framework Changes Using Component Ranking

Reishi Yokomori † Harvey Siy †† Masami Noro † Katsuro Inoue †††
† Department of Software Engineering, Nanzan University

27 Seirei-cho, Seto, Aichi 489-0863, Japan
†† Department of Computer Science, University of Nebraska at Omaha

6001 Dodge Street, Omaha, NE 68182, USA
††† Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
{yokomori, yoshie}@se.nanzan-u.ac.jp, hsiy@mail.unomaha.edu, inoue@ist.osaka-u.ac.jp

Abstract

Most of today’s software applications are built on top
of libraries or frameworks. Just as applications evolve, li-
braries and frameworks also evolve. Upgrading is straight-
forward when the framework changes preserve the API and
behavior of the offered services. However, in most cases,
major changes are introduced with the new framework re-
lease, which can have a significant impact on the applica-
tion. Hence, a common question a framework user might
ask is, “Is it worth upgrading to the new framework ver-
sion?” In this paper, we study the evolution of an appli-
cation and its underlying framework to understand the in-
formation we can get through a multi-version use relation
analysis. We use component rank changes to measure this
impact. Component rank measurement is a way of quantify-
ing the importance of a component by its usage. As frame-
work components are used by applications, the rankings of
the components are changed. We use component ranking
to identify the core components in each framework version.
We also confirm that upgrading to the new framework ver-
sion has an impact to a component rank of the entire system
and the framework, and this impact not only involves com-
ponents which use the framework directly, but also other
indirectly-related components. Finally, we also confirm that
there is a difference in the growth of use relations between
application and framework.

1. Introduction

In software development, creating applications on top
of frameworks is a widely-accepted practice. Frameworks
contain reusable functions, models and code patterns. De-
velopers build on the framework with their own functions,

reducing development interval while maintaining software
quality.

Modern software systems often consist of hundreds or
thousands of classes, packages, functions and modules. Im-
portant information is scattered all over the software sys-
tem. Analysis based on use-relations between components
is essential to grasp the entire picture. However, use rela-
tion analysis is a very effort-intensive task due to the need
to perform syntactic and semantic analysis of source code.
Most of the previous work on use-relation analysis has fo-
cused on analyzing individual software versions rather than
multiple versions. We suggested a method for detecting im-
portant updates in a development history by analyzing use
relations[14]. In [14], we suggested a metric which rep-
resents the overall impact of the update by calculating the
difference between two component ranks, before and after
update. However, we also have to analyze inside the soft-
ware system by using use relations and metrics calculated
from them.

In this paper, we analyze the evolution of the use rela-
tionship between the framework and an application built on
it. We make use of several metrics calculated from use re-
lations. In an experiment, each version of the combined
software system is analyzed first, and then each version of
the application and the associated framework version are
analyzed separately. We extract external use relations be-
tween framework and application. Based on these use rela-
tions, we analyze the system by using several metrics such
as number of incoming and outgoing edges, component
rank[8], and the impact of the update. In the experiment,
trends of the above metrics of each subsystem are also an-
alyzed and we weigh the differences between the evolution
of distribution of incoming and outgoing edges.

The impact of upgrading to a new framework version is
analyzed by investigating how component ranks change as

a result of the update. By determining the effect of frame-
work updates in the ranks and the growth of use relations,
application developers can recognize where to pay atten-
tion when they update the framework. The sensitivity of the
component rank metric is also evaluated by comparing the
component ranks of the framework classes with and without
the application classes. By finding functions and functional
groups used in actual applications, framework developers
can organize their framework to simplify its usage.

Through these analyses of use relations across multiple
versions in a software repository, we observe the effects
such external use relations would have on both the frame-
work and the application, and consider characteristics of a
development project which uses a framework. These anal-
yses provide a rich source of information, alerting us to the
fact that we can observe the growth of software multilater-
ally by also using the growth of use relations.

In Section 2, we present models and approach based on
use relations as background. The results of applying the
approach to an open source project are presented in Section
3. Finally, we discuss the effectiveness of the model and
related works in Section 4.

2. Background

2.1. Component Graph

In general, a component is a modular part of a system
that encapsulates its content and whose manifestation is re-
placeable within its environment [9, 11].

We model software systems by using a weighted directed
graph, called a Component Graph[8]. A node in the graph
represents a software component1, and a directed edge from
node x to y represents a use relation meaning that compo-
nent x uses component y. If the graph consists of several
software systems, a node may be combined with another
node in certain conditions, such as because names of these
nodes are the same, or contents of these nodes are almost
same. Figure 1 shows an example of component graph for
software system X . X consists of 5 components A – E.
This graph also shows that component C uses both A and
B, and D and E use C.

By using a component graph, we can easily identify the
use relations between components and count the incoming
and outgoing edges of a component. And we also calculate
a component rank by using the component graph.

2.2. Component Rank Model

Based on the concept of the component graph, we pro-
posed a component rank model. This rank is determined by

1“Component” is used in the broad sense of the word to mean any class,
function, package, etc., that represents a logical unit in the program.

A B

ED

C

System X

Figure 1. Component Graph

the ordering of values in an eigenvector for an adjacency
matrix, which is derived from a given component graph.

Intuitively, we regard the given graph as a Markov
chain[1]. If the chain is irreducible, a calculation of steady-
state distribution always converges without recourse to an
initial condition. So the initial values of nodes are quite
same values, and then the steady-state distribution of the
graph is calculated by power method on the adjacency ma-
trix. Each value of the nodes is the value in steady-state dis-
tribution, in other words, the value in the eigenvector for the
maximal eigenvalue of the matrix. Components are sorted
by the value of the nodes, and we call the ranked data, the
component rank of a set of components. For details, please
refer to [8].

Product

Concrete

Product B

Concrete

Product A

Creator

Concrete

Creator A

Concrete

Creator B

Client

Figure 2. Component Graph for a Factory
Method pattern

For example, a system which realizes a factory method
pattern[4] is represented as a component graph in Figure 2.
Table 1 is a component rank for this system2. Product and
Creator are used by many other classes, so these classes are
determined as important from the ranking. Thus, the more
a component is directly or indirectly used, the higher is its
rank. Components ranked high are generally important data
structures or will play an important role in understanding

2This component rank takes into consideration pseudo use-relations to
converge[8].

the system’s behavior.

Table 1. Component rank for Figure2
Rank Class value

1 Product 0.40931
2 Creator 0.14301
3 ConcreteProductA 0.09699
3 ConcreteProductB 0.09699
5 ConcreteCreatorA 0.09128
5 ConcreteCreatorB 0.09128
7 Client 0.07113

Component rank is also used as a ranking method in
SPARS-J 3, a search engine for Java software components.
In [8], we indicate that component rank is useful for a
component search engine through evaluation experiments,
which showed that component rank moves the search result
closer to the result expected by user.

2.3. An Update-Evaluation Metric based on
Component Rank

As another usage of component rank model, we sug-
gested a method for detecting important updates in a de-
velopment history[14]. In the model, we considered that
an update which brings sweeping changes in use relations
is an important update because such update has a consid-
erable impact on the entire system. We hypothesized that
component rank also changes along with the change of use
relations between components, and suggested a way to mea-
sure the use relation’s change by calculating the difference
in two component ranks, before and after update.

Based on the method, we developed a system which cal-
culates the metric for each update, by obtaining source code
from CVS and analyzing these code versions. We applied
the system to several open source projects as an evaluation
experiment. As a result, we can identify not only major-
scale updates such as large function addition, but also rel-
atively smaller updates, such as maintenance activities to
core components, and refactoring and re-structuring of a
software system. Some of these updates are not large in
terms of lines of code (LOC) changed, but they are impor-
tant updates because they have a large impact on the entire
system. We confirmed that using the metric to quantify the
use relation’s change is effective to get another perspective
on the source code’s growth.

3. Experiment

In this paper, we analyze use relations between a frame-
work library and an application which uses the framework.

3SPARS-J demo: http://demo.spars.info/

The component ranks and use relation metrics are calcu-
lated using SPARS-J, which treats Java classes as compo-
nents. We consider the following as use relations: decla-
ration of variables, creation of instances, method calls, and
reference of fields. An analysis of use relations uses only
static analysis, so dynamic binding is excluded.

We investigate the evolution of use relations over sev-
eral releases of the application, determining whether use
relations between framework and application show some
trends, by using several metrics.

3.1. Preparation

In the experiment, we analyze the JHotDraw frame-
work4, a Java-based GUI framework for technical and struc-
tured graphics. As an application, we also analyze JARP5.
JARP is a Java-based Petri tool using JHotDraw as a frame-
work for editing a Petri net, drawing the result, and so on.

Both JARP and JHotDraw are hosted in SourceForge 6,
from which we obtained the source code for each version of
JARP and JHotDraw. JARP released 11 versions from 2001
to 2006, and we analyze these 11 versions along with the
JHotDraw release used in each version.

Table 2 is a summary of 11 versions of JARP. Each ver-
sion of JARP uses a certain version of JHotDraw, for exam-
ple, JARP version 1.0.0 used JHotDraw 5.1, and JARP ver-
sion 1.1.12 used JHotDraw 5.3, and so on. The class column
refers to total number of classes, both of JARP classes and
of JHotDraw classes. LOC is a fully inclusive sum, both
JHotDraw and JARP, this set corresponds to Set 1 described
below.

Table 2. The history of JARP
Versions Date JHD Class LOC

1 1.0.0 2001/1/21 5.1 196(41+155) 23K
2 1.0.0.1 2001/1/26 5.1 196(41+155) 23K
3 1.0.1 2001/1/27 5.1 196(41+155) 23K
4 1.1.9 2001/4/30 5.1 284(129+155) 29K
5 1.1.10 2001/10/14 5.2 304(133+171) 31K
6 1.1.11 2001/11/1 5.2 312(141+171) 32K
7 1.1.12 2001/12/12 5.3 416(174+242) 42K
8 1.1.13 2003/4/22 5.3 433(191+242) 44K
9 1.1.14 2004/6/24 5.4 740(215+525) 82K
10 1.1.15 2005/2/11 5.4 740(215+525) 82K
11 1.1.16 2006/7/30 5.4 740(215+525) 82K

3.2. A Procedure of Analysis

In this experiment, we use only direct use relations, such
as declaration of variables, creation of instances, method
calls and reference of fields as use relations.

4JHotDraw: http://www.jhotdraw.org/
5JARP: http://sourceforge.net/projects/jarp/
6SourceForge.net - Open Source Software: http://sourceforge.net/

We extract the following metrics for each version:

(a) The number of outgoing edges of each node

This means how many classes the class uses. Even
if there are more than one use relations between two
classes, we treat as one use-relation exists between
these classes.

(b) The number of incoming edges of each node

This means how many classes use this class. As in
the case of outgoing edges, we exclude duplicate use
relations.

(c) A value of each node in steady-state distribution

These values are calculated from a component graph
which includes both JHotDraw and JARP, and are used
for decision of component rank for a given component
set (both JHotDraw and JARP, only JARP and only
JHotDraw).

JARP

JHotDraw

JARP

JHotDraw

Set 1

(Set 2)

(Set 3)

Set 2’

Set 3’

Compare

Compare

Figure 3. Analysis Overview

Figure 3 is an overview of the analysis. The procedure
of analysis is the following:

(1) We analyze the entire of system (both JARP and JHot-
Draw) by using SPARS-J system. The analysis result
is called Set 1. Set 1 is not used immediately, but is
used for calculation of Set 2 and Set 3.

(2) We divide Set 1 into a result of classes which belong
to JARP package (Set 2), and the one which belong to
JHotDraw package (Set 3).

(3) We analyze JARP by itself by using SPARS-J system.
The analysis result is called Set 2’. Set 2’ considers
only internal use relations in JARP.

(4) In the same way, we analyze JHotDraw by itself. The
analysis result is called Set 3’. Set 3’ considers only
internal use relations in JHotDraw.

(5) By comparing these results, we calculate the number of
external incoming edges and external outgoing edges
which exist between JARP and JHotDraw. We also
check the change of component rank and components
whose metrics are sensibly changed.

3.3. Overall Results

We measure an update-evaluation metric, described in
Section 2, with general metrics such as number of classes,
LOC, and so on.

The metric represents the overall degree of changes in
component rank values. In the metric, component rank is
normalized into the value between 0 and 1, and metric cal-
culates average of component rank’s change for each com-
ponent which exists both before and after update.

We obtain component rank for Set 1, Set 2 and Set 3 re-
spectively, and calculate update-evaluation metrics among
11 versions. Table 3 is the result. For example, in the case
of version 1.1.9, the result shows that the relative rank of
each class moves up or down 6% on average. Considering
only JARP classes, the component rank of each class moves
up or down 26% on average. So we can consider that this
version is a major update for JARP. Overall, updates for ver-
sion 1.1.9, 1.1.12 and 1.1.14 increases the number of classes
and changes its component rank substantially, and can be
considered as major revisions for JARP.

Next, we focus attention on the change of component
rank of subsystems (Sets 2 and 3). In the case of Set
2(JARP), versions 1.1.9, 1.1.12 and 1.1.14 change their
component rank. These three updates change class allo-
cation drastically, so many components moved to another
package and JARP is re-organized. We can find the archi-
tecture restructured several times in these updates. For ex-
ample, in the case of version 1.1.9, functions assumed by
mainwindow class are divided into other subcomponents,
and tools package is newly produced and many functions
are implemented or moved to tools package. In addition, in
version 1.1.12, functions assumed by PetriNetImpl are also
divided into other subcomponents, and edition and simula-
tion packages appear.

In the case of Set 3(JHotDraw), version 1.1.10, version
1.1.12 and version 1.1.14 have relatively high values. This
is because the version of JHotDraw was updated in such re-
leases. Specially, in the case of version 1.1.14, the number
of classes in JHotDraw increases 290 classes with the intro-
duction of JHotDraw version 5.4.

In the case of this system, we can confirm that compo-
nent rank also changes substantially if the number of classes
increases substantially. In this way, we can detect major up-
dates by using the change of component rank, and we can
also detect which subsystems are modified substantially by
evaluating for each subsystem.

Table 3. Component rank update metrics
Versions All JARP JHotDraw

1 1.0.0 - - -
2 1.0.0.1 0 0 0
3 1.0.1 0 0 0
4 1.1.9 0.06 0.26 0.01
5 1.1.10 0.02 0.02 0.03
6 1.1.11 0.02 0.03 0.01
7 1.1.12 0.05 0.07 0.04
8 1.1.13 0.01 0.01 0
9 1.1.14 0.18 0.05 0.21
10 1.1.15 0 0 0
11 1.1.16 0 0 0

3.4. Analysis of Outgoing Edges

For each version, we count how many classes in JHot-
Draw each component in JARP uses. If a component uses
other components several times, we treat as one use rela-
tion. We also find that JARP has some classes in JHotDraw
with some modification; however, these classes are inte-
grated into an original class during construction of compo-
nent graph. Because there are some JHotDraw classes mod-
ified by JARP developers, use relations from JHotDraw to
JARP may also exist. However, external use relations that
we can confirm in 11 revisions are all from classes in JARP
to classes in JHotDraw.

Table 4 is a summary of result on outgoing edges, with
the package name of each component abbreviated. We ex-
tract 4 versions and show a top ten ranking for each ver-
sion. For example, JDrawingView in version 1.0.0 uses 17
classes. It appears from the table that the outgoing edges per
class is bounded (the values in the top rows are not steadily
increasing).

To confirm that the maximum number of outgoing edges
per class is bounded, we plot the cumulative frequency for
each version in Figure 4. We can find that the number of
classes which call the framework increases from one ver-
sion to the next; however, within a given version, the num-
ber of class reaches a plateau early (most classes have less
than 5 outgoing edges; beyond that, the cumulative number
does not increase significantly).

To explain this observation, we focus on the evolution
of components which use a lot of framework classes. In
earlier versions, such components play multiple roles that it
controls and implements an ambiguous and large feature. In
later versions, implemented codes in such components are
split into fragments of components.

We can picture a situation where a developer divides a
large class into several small classes when a size of core
class becomes too big to manage. In such a situation, usage
of the framework is also divided into these small classes.

So such component only controls the ambiguous and large
feature, and uses only the essentials. In the latter period,
classes for implementation and for handler, and so on use
many framework components.

In the development of JARP, developers managed com-
ponents not by designing precisely from the beginning, but
by breaking down components that are too big. We think
this is a better way for open source project because devel-
opers don’t know which subsystem they should focus and
develop with consideration of extensibility at the beginning
of development.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 101112 1314151617181920

Ver100

Ver1109

Ver1112

Ver1113

Ver1114

Figure 4. Cumulative frequency of outgoing
external edge

0

500

1000

1500

2000

2500

innerJHD

innerJARP

external

Figure 5. Growth of use relations

Figure 5 shows the growth of use relations over time.
The number of internal use relations in JHotDraw and
JARP, and as well as the external use relations from JARP
to JHotDraw are counted. Most of the time, the internal
use relations in JARP and the external use relations have in-
creased by similar rates. In version 1.1.9, however, only the
inner use relations in JARP increased, this is because JARP
was restructured into a model-view-controller architecture.

3.5. Analysis of Incoming Edges

As in the case of outgoing edges, we also count how
many JARP classes use each JHotDraw class. Table 5 is a

Table 4. Ranking of outgoing external use-relation (from JARP classes)
Ver 1.0.0 Ver 1.1.9 Ver 1.1.12 Ver 1.1.14

1 JDrawingView 17 JDrawingView 17 PlaceImpl 14 PlaceImpl 18
2 MainWindow 16 PetriPlaceImpl 14 TransitionImpl 12 ArcImpl 17
3 PetriPlaceImpl 11 PetriTransitionImpl 12 SelectionToolEx 12 TransitionImpl 16
4 PetriTransitionImpl 11 PetriSelectionTool 11 ArcImpl 9 DrawingPreview 13
5 PetriConnectionHandle 7 PetriNetImpl 7 PetriConnectionHandle 8 BendpointHandle 11
6 PetriSelectionTool 5 PetriConnectionHandle 7 PasteCommand 8 JDrawingView 10
7 PetriArcImpl 5 PetriDragTracker 7 CreationTool 8 WeightHandle 9
8 PetriSimulationTool 5 EditionTool 7 MainWindow 7 TokensHandle 9
9 JHDLoadTool 4 PetriArcImpl 6 JDrawingView 6 PasteCommand 8
10 PetriDragTracker 3 PetriSimulationTool 5 PetriNetImpl 5 PetriNetImpl 7

Table 5. Ranking of incoming external use-relation (to JHotDraw classes)
JH 5.1 in JARP 1.0.0 JH 5.1 in JARP 1.1.9 JH 5.3 in JARP 1.1.12 JH 5.4 in JARP 1.1.14

1 DrawingView 8 DrawingView 12 Drawing 16 Figure 26
2 Drawing 6 DrawingEditor 12 util.UndoableCommand 15 FigureAttributeConstant 25
3 util.StorableInput 5 Drawing 9 DrawingEditor 15 util.Command 23
4 Figure 5 Figure 8 DrawingView 12 DrawingView 21
5 util.StorableOutput 4 util.StorableOutput 4 Figure 10 DrawingEditor 19
6 Tool 4 util.StorableInput 4 util.StandardStorageFormat 7 util.UndoableCommand 17
7 DrawingEditor 4 Tool 4 util.Command 7 Drawing 17
8 ConnectionFigure 3 standard.AbstractFigure 4 Tool 6 FigureEnumeration 10
9 Connector 3 figures.AttributeFigure 3 standard.AlignCommand 6 util.StandardStorageFormat 9
10 standard.AbstractFigure 3 figures.TextFigure 3 standard.StandardDrawingView 6 Tool 8

summary of result about external incoming edges. We also
extract 4 versions and show a top ten ranking for each ver-
sion, with package names abbreviated. For example, Draw-
ingView in version 1.0.0 was used by 8 classes in JARP.

Classes written in boldface came from the framework
package in JHotDraw. The top ten classes are almost all in
the framework package. Others are classes for dealing a
figure and utility classes for command, input and output.

Unlike the case of outgoing edges, we observe that the
increase in maximum number of incoming edge per class
over the release history is open-ended. Figure 6 represents
a cumulative frequency for each version. We find that the
number of framework classes used by the application grad-
ually increases over time, and the point at which we find the
maximum number is getting larger for each version.

Usually, when developers need to use a feature from a
framework class, they don’t consider the number of times it
is already in use. When development undergoes evolution
and many features are implemented to the systems, such
framework classes are used by many application classes, so
such framework classes gradually become core components
in the system. On the other hand, classes which have inter-
faces in the framework do not increase so much as long as
the framework itself is not expanded or re-organized.

3.6. Analysis of Component Rank (JARP)

We extract JARP components from the overall system,
and compute component ranks for JARP classes, corre-

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Ver100-1001-101

Ver1109

Ver1112

Ver1113

Ver1114-16

Figure 6. Cumulative frequency of incoming
external edge

sponding to Set 2 in Figure 3.

Table 6 shows the top ten classes ordered by component
rank, for 4 JARP versions. In the early period, the top ten
classes are almost about implementation class of Petri net.
For example, the 1st to 6th, 8th and 9th classes in version
1.0.0 are all in a Petri package. However, in version 1.1.9,
a lot of classes are added to the system, such as GUI classes
(1st, 2nd, 5th and 8th), tool classes for XML browser (6th
and 10th), and utility classes for configure and name treat-
ment (3rd and 4th), so several kinds of classes appear in the
list. The ranks of Petri net classes move down, however,
they gradually move up again in version 1.1.12 and 1.1.14.

We can guess that features are added into such component
also in latter period.

Component rank of application classes are affected by
implementation of features. By referencing a ranking and
checking a component whose rank moves up drastically, we
can guess what kind of implementation is done.

In this development period, JARP developers upgraded
the JHotDraw framework version three times, as shown in
Table 2. To investigate the impact of framework updates
on the application, we compared JARP component ranks
before and after each framework update. Table 8, Table 9
and Table 10 are lists of JARP components which signifi-
cantly improved in component rank after these framework
updates. Components which were deleted or added in the
updated framework version are taken into account in the
calculation of component rank, however, these components
are excluded from the result for comparison.

These results shows that many tool classes appear in ev-
ery list. Main and utility classes, such as Hash, Main,
and SplashWindow, also appear in the lists. By upgrad-
ing the framework, developers change components which
access the framework, and main and utility classes also had
to be adapted. So, we must pay attention not only compo-
nents which uses the framework directly, but also main and
utility classes when framework classes are upgraded.

3.7. Analysis of Component Rank (JHot-
Draw)

As in the case of JARP, we also compute component
ranks for JHotDraw classes, corresponding to Set 3 in Fig-
ure 3.

The summary is in Table 7. Classes in boldface come
from the framework package in JHotDraw. Through the
progression of JARP versions, highly ranked components
seldom move dramatically. These classes are almost all in
the framework package, except for a few in util. Some
classes in framework package are consistently high; such
classes are recognized as core components in the frame-
work. Some classes, such as Storable, Connector, Han-
dle, FigureChangeEvent and so on, are used only a few
times by JARP or not at all, but are ranked high. These are
heavily used internally by other JHotDraw classes.

In the result of Table 7, use relations from JARP are
taken into consideration. It is noted that both JARP ver-
sions 1.0.0 and 1.1.9 use JHotDraw version 5.1, but the dif-
ferences between the two JARP versions were not enough
to affect the rank order of the top 10 JHotDraw compo-
nents. To further assess the sensitivity of JHotDraw compo-
nent ranks to the framework’s usage by application classes,
we also compute component ranks of JHotDraw by using
only internal use relations (Set 3’). The component rank
is almost same as the former one with respect to highly

Table 8. JARP Component rank’s change be-
tween ver1.1.9 and 1.1.10 (129 components)

Class ver9 ver10 diff
1 PetriNetImpl 92 62 30
2 Crc32Hash 71 59 12
3 Hash 24 17 7
3 PetriSelectionTool 80 73 7
5 25 components - - 1

Table 9. JARP Component rank’s change be-
tween ver1.1.11 and 1.1.12 (124 components)

Class ver11 ver12 diff
1 PNMLStorageFormat 107 59 48
2 FormatTool 94 54 40
3 AlignTool 94 55 39
4 EditionTool 94 60 34
5 Main 60 30 30
5 LoadTool 94 64 30
7 PrintTool 94 78 16
8 FileFilterImpl 107 93 14
9 SplashWindow 78 66 12
10 PetriNetMarking 21 13 8

Table 10. JARP Component rank’s change be-
tween ver1.1.13 and 1.1.14 (130 components)

Class ver13 ver14 diff
1 LanguageTool 107 22 85
2 ChangeNetNameTool 117 84 33
2 FindPathAnalysis 117 84 33
4 SelectionTool 104 72 32
5 Main 31 6 25
6 PetriInvariantAnalysis 77 53 24
7 CommentTool 107 84 23
7 GridTool 107 84 23
7 NewTool 107 84 23
7 NewWindowTool 107 84 23

ranked components. This result shows that component rank
of framework is mostly determined by the structure of the
framework; the application largely does not impact the com-
ponent rank measurements of the framework.

However, some lower-ranked components are affected
by the use relations from the application. Table 11 and 12
are lists of JHotDraw components whose ranks improved
drastically in version 1.1.9 and version 1.1.12 respectively.
For example, AlignCommand in version 1.1.9 moved up
38 ranks, from 133 to 95, by taking into consideration the
lone use relation from JARP.

The rightmost column represents the number of classes
in JARP that use the component. Components used by ap-
plication frequently do not appear so much because such

Table 6. Component Rank of JARP
Ver 1.0.0 Ver 1.1.9 Ver 1.1.12 Ver 1.1.14

1 PetriNet FindFilter FindFilter PetriNet
2 PetriNetEditor FindProgressCallback FindProgressCallback FindFilter
3 PetriNetComponent Config Config FindProgressCallback
4 PetriTransition Name Name PetriNetEditor
5 PetriArc EFileChooser PetriNet Tool
6 PetriPlace XmlBrowser PetriNetEditor XMLResourceBundle
7 IntHashtableEntry PetriNet EFileChooser ToolFactory
8 MainWindow FindAccessory XmlBrowser figures.Transition
9 PetriStatesEnumAnalysis PetriNetEditor AbstractJARPTool Main
10 ImageEncoder AdapterNode FindAccessory figures.Place

Table 7. Component Rank of JHotDraw
JH 5.1 in JARP 1.0.0 JH 5.1 in JARP 1.1.9 JH 5.3 in JARP 1.1.12 JH 5.4 in JARP 1.1.14

1 Figure Figure Figure Figure
2 util.Storable util.Storable FigureEnumeration DrawingView
3 Connector Connector Connector FigureEnumeration
4 FigureEnumeration FigureEnumeration Locator JHotDrawRuntimeException
5 Locator Locator FigureChangeEvent Connector
6 FigureChangeEvent FigureChangeEvent FigureChangeListener ConnectionFigure
7 FigureChangeListener FigureChangeListener util.Storable Drawing
8 util.StorableInput util.StorableInput DrawingView Handle
9 util.StorableOutput util.StorableOutput ConnectionFigure util.CollectionsFactory
10 ConnectionFigure ConnectionFigure util.StorableInput DrawingEditor

components have been already ranked high by inner use re-
lation. However, as in the case of UndoableCommand in
version 1.1.12, the rank of such component is drastically
changed if the component is not used in the framework.

Other classes are not frequently used by application.
These classes are not closely related to core components
in the framework, and perform specific functions used only
once in the application, such as command. Some classes,
such as handler or connector classes, are affected by indi-
rect use relations. Such components are also used to support
design patterns.

4. Discussion

4.1. Significance of Use Relation Analysis

By analyzing changes in use relations, we can determine
which updates are major updates. In this experiment, we
can identify them through a change of number of classes
and LOC, however, in general, some important updates are
not big in terms of changed LOC, such as maintenance ac-
tivities to core components, refactoring, re-structuring of a
software system, and so on.

The number of incoming edges is also a good metric for
understanding changes. However, if a framework function
is divided into sub-functions and implemented in several

classes in the latter periods, the result may only provide par-
tial information. On the other hand, an evaluation of com-
ponent rank takes into account indirect use relations, so we
can identify components which support designing, such as
handler and connector and so on.

From the analysis result, we can find that application
classes repeat growth and breakdown cycles in the devel-
opment. At first, implementation and control of a function
are implemented to a class at the same time, and the class
becomes bigger as one grows. However, when a size of
the class is too big, implementation is divided into smaller
classes. Component rank of application classes is affected
by an addition of function, so we can roughly estimate the
content of updates by checking a component whose rank is
significantly changed.

Ichii investigated a distribution of a number of incoming
edges and outgoing edges of component graph for a variety
of software systems[12]. He reported the distribution of a
number of outgoing edges is bounded by a size of class de-
scription, however, that of incoming edges is open-ended.
Our analysis result fits well with his result.

In this experiment, some framework classes maintain a
high component rank over time, so we can easily iden-
tify core components and core functions used by applica-
tion classes. On the other hand, a few components are not
in framework package and are not used in the framework

Table 11. JHotDraw Component rank’s
change in JARP ver1.1.9 (156 components)

Class Set3 Set3’ diff Used
1 AlignCommand 95 133 38 1
1 ToggleGridCommand 95 133 38 1
3 ChangeAttributeCommand 92 125 33 1
3 DeleteCommand 75 108 33 2
5 DragTracker 81 111 30 1
6 ConnectionHandle 67 87 20 1
7 BringToFrontCommand 114 133 19 1
7 SendToBackCommand 114 133 19 1
9 BufferedUpdateStrategy 91 108 17 1
10 CopyCommand 119 133 14 1
10 CutCommand 119 133 14 1
10 PasteCommand 119 133 14 1
13 ChopEllipseConnector 77 88 11 1
14 GroupHandle 98 107 9 0
15 PolyLineHandle 52 60 8 1
15 SelectionTool 63 71 8 2
17 Clipboard 50 56 6 1
18 RadiusHandle 93 98 5 0
18 ShortestDistanceConnector 93 98 5 0
18 DrawingEditor 13 18 5 12

classes, but its rank drastically changed because of use re-
lations from application classes. In a practical sense, such
components might be included into the framework package
because they can be considered as core components since
they are used as frequently as the components in the frame-
work. This kind of usage information represents what func-
tions and functional groups are used in actual applications.
Such knowledge can be used by framework developers in
designing future enhancements to the framework that would
simplify its usage.

4.2. Implications for Framework Upgrade

The number of incoming edges to classes in the frame-
work almost has not been reduced through the development
period as shown in Figure 5, so we can presume that ex-
isting APIs also have been firmly maintained, even as de-
velopers add new functions and APIs to the framework. In
those cases, use relations from the application depend on a
relatively small set of framework classes, though the num-
ber of relations per class may increase without bound. If
the number of framework interfaces is tightly controlled, it
is generally worth upgrading to a new framework version,
unless existing APIs change. However, other factors such as
quality and underlying defects should be taken into account
in the decision to upgrade.

In the case where component ranks in a new framework
version dramatically change, we can identify which appli-
cation classes will need closer attention and testing by lo-
cating the affected framework classes and identifying their
dependent application classes through the incoming edges.

Table 12. JHotDraw Component rank’s
change in JARP ver1.1.12 (241 components)

Class Set3 Set3’ diff Used
1 UndoableCommand 43 199 156 15
2 StorageFormatManager 48 201 153 4
3 AlignCommand 68 201 133 6
4 ChangeAttributeCommand 90 185 95 3
5 StandardDrawingView 61 147 86 6
6 UndoableTool 79 164 85 4
7 ToggleGridCommand 120 201 81 1
8 BringToFrontCommand 124 201 77 1
8 SendToBackCommand 124 201 77 1
10 RedoCommand 132 201 69 1
10 UndoCommand 132 201 69 1
12 DeleteCommand 102 167 65 1
13 CopyCommand 138 201 63 1
13 CutCommand 138 201 63 1
15 PasteCommand 159 201 42 1
16 UndoActivity 118 157 39 1
17 Alignment 55 89 34 6
18 StandardStorageFormat 49 79 30 7
19 ConnectionHandle 104 122 18 1
19 Clipboard 73 91 18 3

By knowing which application classes will likely be heav-
ily impacted, the application developers can make a rough
assessment of the work needed to upgrade to a new frame-
work.

A core framework class may also be divided into sev-
eral small classes in the process of framework evolution.
So we can consider a situation where existing APIs are re-
designed and their usages are completely changed. In such
a situation, we can assume that a number of incoming edges
to some core components in the framework decreases, as in
the case of core application classes. We cannot find any
such situation in this experiment; however, we will explore
such situations in further replications of this study.

4.3. Related Works

Previous research on analysis of software reposito-
ries have focused on understanding reasons of software
changes[5], identifying how communication delay among
developers have effects on software development[7], detect-
ing potential software changes and incomplete changes[15],
and so on. In [10], Johnson proposed an approach that auto-
matically records developer’s activities with the objective of
finding a relation between the internal characteristics (size
and time, etc.) and the external characteristics (quality and
reliability of products, etc.) rather than measuring updates.

Several researchers have also examined issues of frame-
work evolution. Most of these studies focused on how
framework or library developers can make it easier for user
applications to migrate to newer versions of the framework
by providing automated or semi-automated support, such as

capturing and replaying API refactorings[6], creating com-
patibility layers[3], and providing annotations to generate
and guide updates to applications[2, 13]. Our work com-
plements these researches by focusing on the application
developers and providing them with metrics-based guidance
for deciding when to update to a new library version.

Our method is an extension of [14], and our goal is to
understand how software evolves by analyzing use relations
between software components. In this paper, we show that
we can grasp further particulars by splitting the system be-
ing analyzed, e.g., into framework and application.

5. Conclusion

In this paper, we analyzed changes in use relations be-
tween framework and application, by using several met-
rics. We found that framework and application have several
unique features in the growth of use relation. Component
rank of application classes were affected by implementa-
tion of features, and some framework classes drastically im-
proved in rank due to use relations from application classes.
This kind of information represents what function and func-
tional group are used in actual application and is useful for
guiding future enhancements or redesigns of the framework.

As future work, we are planning to apply our method to
other software systems to verify the external validity of our
observations, and to refine the evaluation method based on
how use relations evolved. Our ultimate target is establish-
ment of the technique that can point out application compo-
nents which should be modified or carefully inspected, and
can roughly estimate the cost of upgrading to a new frame-
work version.

Acknowledgments
This work was supported by KAKENHI (19700033),

Grant-in-Aid for Young Scientists (B).

References

[1] G. Blom, L. Holst, and D. Sandell. “Problems and snap-
shots from the world of probability”. Springer, 1994.

[2] K. Chow and D. Notkin. “Semi-automatic update of applica-
tions in response to library changes”. In Proceedings of the
International Conference on Software Maintenance (ICSM
’96), pages 359–368, Monterey, California, 1996.

[3] D. Dig, S. Negara, V. Mohindra, and R. Johnson. “ReBA:
refactoring-aware binary adaptation of evolving libraries”.
In Proceedings of the International Conference on Software
Engineering (ICSE ’08), pages 441–450, Leipzig, Germany,
2008.

[4] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. “De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware”. Addison Wesley, 1995.

[5] D. German and A.Mockus. “Automating the measurement
of open source projects”. In Proceedings of the 3rd Work-
shop on Open Source Software Engineering, pages 63–67,
Portland, Oregon, 2003.

[6] J. Henkel and A. Diwan. “CatchUp!: capturing and replay-
ing refactorings to support API evolution”. In Proceedings
of the International Conference on Software Engineering
(ICSE ’05), pages 274–283, St. Louis, Missouri, 2005.

[7] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter.
“An empirical study of global software development: Dis-
tance and speed ”. In Proceedings of the 23rd international
conference on Software Engineering, pages 81–90, Toronto,
Canada, 2001.

[8] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and
S. Kusumoto. “Ranking Significance of Software Compo-
nents Based on Use Relations”. IEEE Transactions on Soft-
ware Engineering, 31(3):213–225, 2005.

[9] I. Jacobson, M. Griss, and P. Jonsson. “Software Reuse”.
Addison Wesley, 1997.

[10] P. M. Johnson, H. Kou, J. M. Agustin, Q. Zhang, A. Ka-
gawa, and T. Yamashita. “Practical automated process and
product metric collection and analysis in a classroom set-
ting: lessons learned from Hackystat- UH”. In Proceedings
of the 2004 intl. Symposium on Empirical Software Engi-
neering (ISESE2004), pages 136–144, Redondo beach, CA,
2004.

[11] C. Krueger. “Software Reuse”. ACM Computing Surveys,
24(2):131–183, 1992.

[12] M.Ichii, M. Matsusita, and K. Inoue. “An Exploration of
Power-Law in Use-Relation of Java Software Systems”. In
Proceedings of the 19th Australian Conference on Software
Engineering, pages 422–431, Perth, WA, Australia, May
2008.

[13] J. H. Perkins. “Automatically generating refactorings to sup-
port API evolution”. In Proceedings of the Workshop on Pro-
gram Analysis for Software Tools and Engineering (PASTE
’05), pages 111–114, Lisbon, Portugal, 2005.

[14] R. Yokomori, M. Noro, and K. Inoue. “Evaluation of Source
Code Updates in Software Development Based on Compo-
nent Rank”. In Proceedings of 13th Asia Pacific Software
Engineering Conference, pages 327–334, Bangalore, India,
2006.

[15] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.
“Mining version histories to guide software changes”. In
Proceedings of the 26th international conference on Soft-
ware Engineering, pages 563–572, Edinburgh, Scotland,
2004.

