
Measuring the Effects of Aspect-Oriented Refactoring on
Component Relationships: Two Case Studies

Reishi Yokomori§, Harvey Siy†, Norihiro Yoshida‡, Masami Noro§, Katsuro Inoue*
§Department of Software Engineering, Nanzan University, Japan

†Department of Computer Science, University of Nebraska at Omaha, USA
‡Graduate School of Information Science, Nara Institute of Science and Technology, Japan

*Graduate School of Information Science and Technology, Osaka University, Japan
yokomori@nanzan-u.ac.jp, hsiy@mail.unomaha.edu, yoshida@is.naist.jp,

yoshie@nanzan-u.ac.jp, inoue@ist.osaka-u.ac.jp

ABSTRACT
Aspect-oriented refactoring is a promising technique for im-
proving modularity and reducing complexity of existing soft-
ware systems through encapsulating crosscutting concerns.
As complexity of a system is often linked to the degree to
which its components (e.g., classes and aspects) are con-
nected, we investigate in this paper the impact of such refac-
toring activities on component relationships. We analyze
two aspect-refactoring projects to determine circumstances
when such activities are effective at reducing component re-
lationships and when they are not. We measure two kinds
of relationships between components, use and clone rela-
tions. We compare how these metrics changed between the
original and the refactored system. Our findings indicate
that aspect-oriented refactoring is successful in improving
the modularity and complexity of the base code. However,
we obtain mixed results when aspects are accounted for.
Based on these results, we also discuss constraints to the
technology as well as other design considerations that may
limit the effectiveness of aspect-oriented refactoring on ac-
tual systems.

Categories and Subject Descriptors: D.2.8 [Software
Engineering]:Metrics - Product metrics

General Terms: Measurement, Languages, Experimenta-
tion

Keywords: Use-relation analysis, code clone analysis, aspect-
oriented programming, refactoring, coupling

1. INTRODUCTION
Many projects have adopted an incremental approach to

software development. In such approach, readability and
maintainability can deteriorate due to the accumulation of
features, so developers perform refactoring activities to reor-
ganize code structure and to prepare for future extensions.
Refactoring[17] is a suite of activities for changing software’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’11, March 21–25, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0605-8/11/03 ...$10.00.

internal structure without modifying its existing functional-
ity, in order to improve internal quality of the software, such
as readability and complexity of source code. Refactoring
has become one of the essential activities in development of
large software systems, and there are a lot of studies, sug-
gestions, and practices for different refactoring approaches.

We focus attention on a refactoring approach based on
aspectization. A merit of aspect-oriented development[10]
is the ability to modularize crosscutting code, that is, fea-
tures implemented in a crosscutting manner would be sep-
arated from the structure of the base software source code
and moved into their own modules, known as aspects. On
the basis of these characteristics, extracting several features
as aspects from the existing system is suggested as a refac-
toring approach.

A commonality across most refactoring techniques is that
they simplify code by consolidating similar pieces of code.
We expect this effect to be even more pronounced with
aspect-oriented refactoring as it enables consolidation of cross-
cutting code in ways that would not be possible with con-
ventional refactoring techniques[13].

In this paper, we undertake an empirical study to as-
sess how this consolidation affects existing software systems.
Specifically, we investigate the following research questions:

Q1 Is aspect-oriented refactoring effective for improving mod-
ularity and complexity?

Q2 What are the characteristics of classes likely to be strongly
affected by such refactoring activities?

We address these questions with respect to the effects on
component relationships. The degree of relatedness of a
system’s components affects its modularity, which in turn
affects the complexity of maintaining it.

1.1 Overview of Methodology
We employ a multiple-case study approach to investigate

these questions. We identify several real-world projects that
have aspectized counterparts with the same functionalities.
We compare the differences in the aspectized and original
versions in terms of two classes of metrics: change in use
relations and change in clone relations.

Use relations indicate coupling between components in
terms of usage dependencies. We compute use relations
as a surrogate measure for modularity. More modular sys-
tems are expected to have fewer couplings. We conjecture
that crosscutting code that are part of the same concern are

somehow interrelated in the sense that they have usage de-
pendencies with each other or use some other common com-
ponent. By moving crosscutting code into aspects, scattered
usage dependencies between crosscutting code will now be
localized within the aspect. Also, usage dependencies with
common components will be consolidated and will originate
from the aspect rather than from multiple sources.

Clone relations indicate common code fragments shared
by two or more components. Code for many common cross-
cutting concerns such as logging and tracing are often ho-
mogeneous, that is, they share similar or nearly identical
code fragments [4]. The presence of such clones increases
the complexity of subsequent maintenance activities due to
the potential need to update multiple places to implement
a change. By refactoring them into aspects, homogeneous
crosscutting code will be factored out of the base and into
aspects, thus reducing complexity of maintenance. Clone re-
lations provide a complementary perspective for tracking the
refactoring process. While tracing use relations enables us
to trace the movement of programmatic relationships, trac-
ing clone relations enables us to trace the actual movement
of code from base to aspects.

We refine our research questions in terms of these metrics:

Q1-1 Is refactoring effective for reducing use and clone re-
lations between classes?

Q1-2 Is refactoring effective for reducing total use and clone
relations (classes and aspects)?

Q2-1 What kinds of components are likely to have fewer
use relations after refactoring?

Q2-2 What kinds of components are likely to have fewer
clone relations after refactoring?

We analyze two large software applications that have been
refactored into aspects, JHotDraw and Berkeley DB. In both
projects, Java programs were refactored and some functions
were extracted and rewritten as aspects using AspectJ. For
each project, we compare the complexity of original struc-
ture with the refactored structure, first without the aspects,
and then with aspects taken into account. By tracking the
changes to use and clone relationships, we can characterize
refactoring activities in a way that enables us to reach some
conclusions about the effectiveness of aspect-oriented refac-
toring as well as explain the observations recorded by the
original refactoring teams.

In Section 2, we introduce two types of component graphs,
which provide the conceptual model for the analysis of use
and clone relations. The results of analyzing two refactoring
projects are presented in Section 3. We discuss the effective-
ness of the refactoring by using aspects and related works in
Section 4.

2. BACKGROUND

2.1 Software Component
In general, a component is a modular part of a system

that encapsulates its content and whose manifestation is re-
placeable within its environment [11]. It represents a logical
unit in the program source code, such as a class, function, or
package, etc. In this study, we treat classes and aspects as
components. We model relationships between components

using component graphs. We introduce two types of compo-
nent graphs, one based on use relations and another based
on clone relations.

2.2 Use Relation Component Graph
The component graph based on use relations is modeled as

a directed graph. A node in the graph represents a software
component, and a directed edge from node x to y represents
a use relation meaning that component x uses component y.
By using the graph, we can easily identify the use relations
between components and count the incoming and outgoing
edges of a component.

Use relation metrics are calculated using SPARS-J[7]. SPARS-
J is a web-based Java code search engine and navigates a lot
of registered components based on use relation between com-
ponents. We use it to compute the use relations. SPARS-
J identifies use relations using static analysis, so dynamic
binding is excluded. In the graph, we treat Java classes as
components, and consider the following as use relations:

• inheritance,

• implementation of abstract class and interface,

• declaration of variables,

• creation of instances,

• method calls, and

• class attribute references.

In some analyses involving aspectized versions, we also
treat aspects as components, and take into consideration
use relations between aspects and classes to understand how
code fragments in original classes spread to aspects. We
define two kinds of use relation; those are use relations from
classes to aspects and the ones from aspects to classes.

A directed edge from aspect a to class c represents a use
relation meaning that at least one advice from a uses c in the
manners described above. A component graph with these
use relations shows how the uses of the original component
spread to advices as a result of aspect refactoring.

On the other hand, a directed edge from class c to aspect
a represents weaving relationships between c and a, mean-
ing that a has at least one advice that weaves into c. These
relations are determined by examining the pointcut specifi-
cations in a. Syntactically, the direction of the relationship
is from aspect to class, but logically, we can say that class
c uses advices from aspect a, hence the direction of the di-
rected edge is from class to aspect. This type of use relation
shows how an original class is decomposed into base class
and aspects, and how aspects are composed into the base
class by refactoring.

2.3 Clone Relation Component Graph
A code clone is a code fragment that has a similar part to

it in source code. It is pointed out that code clones make
software maintenance difficult[8, 15, 20]. The code clone
problem can become serious, especially for large scale soft-
ware. As with use relations, we model software systems
based on clone relations by using a graph. As these are
equivalence relationships, we use an undirected graph. A
node in the graph represents a software component, and an
edge between x and y represents a clone relation meaning
that both component x and component y have similar code
fragments.

Clone relation metrics are calculated using CCFinder[20].
In the graph, we treat Java files as components. Two files

have a clone relation if they have similar code fragments that
are longer than 25 tokens. In analyses involving aspectized
versions, we also take into account clone relations between
aspects and between aspects and classes(Java files) to under-
stand how existing code clones in original classes spread to
aspects or how clone relations are deleted or created newly
by aspect refactoring. In such case, an edge between aspect
x and class (or aspect) y represents a clone relation meaning
that advices(statements) in aspect x and class y(or advices
in aspect y) have similar code fragments that are longer than
25 tokens.

3. EMPIRICAL STUDY

3.1 Purpose of Study
We present case studies of two aspect refactoring projects.

In each of these projects, a large Java software system was
refactored into AspectJ aspects. By comparing the origi-
nal Java software structure and the refactored structure, we
analyze how the use and clone relation component graphs
changed during the refactoring process.

3.2 Preparation
The projects selected for this study are AJHotDraw1, which

is an aspectized version of JHotDraw2, and a refactoring
project3 for Berkeley DB Java Edition4. Each project per-
formed refactoring by extracting cross cutting features in the
original system. In both projects, aspect refactoring was
carried out in a systematic and disciplined manner, with
judicious use of available idioms and patterns. For each
project, the changes in use and clone relations are analyzed.
These metrics are calculated using SPARS-J and CCFinder
and the result is manually organized. We will provide a
brief overview of these projects and compare the original
and refactored structures.

3.3 AJHotDraw (AJHD)
JHotDraw is a Java-based GUI framework for technical

and structured graphics. The AJHotDraw project[21] was
formed to identify and evaluate template-based solutions for
refactoring object-oriented into aspect-oriented code [16]. It
branched off from JHotDraw 6.0 and released three versions,
0.2, 0.3 and 0.4. Crosscutting concerns were extracted in in-
cremental steps, and new aspects were created in each ver-
sion. The aspectization process was guided by several pat-
terns, as explained in detail in [16]. In the following sections,
we briefly outline the aspects introduced in each version and
then analyze them in terms of the change in use and clone
relations. The JHotDraw aspect refactoring work was small
enough that it was possible to use graph visualization to
illustrate how affected use and clone relations moved from
classes to aspects. As the number of affected relations in-
creased, the visualizations are supplemented by tabulating
the classes that were most impacted.

3.3.1 From Ver0.1 to Ver0.2
In version 0.2, 5 aspects were created. Each aspect weaves

persistent read and write methods to figure-related classes.

1http://swerl.tudelft.nl/bin/view/AMR/AJHotDraw
2http://www.jhotdraw.org/
3http://wwwiti.cs.uni-magdeburg.de/iti db/research/berkeley
4http://www.oracle.com/database/berkeley-db

Thus, these methods have disappeared from the base be-
cause the declaration of Storable interface was moved to the
aspects. As a result of this, use relations from such figure-
related classes to the classes handling persistent output and
input were affected by the refactoring. Figure 1 shows the
use relations that were extracted from the base.

Clone relations are also changed. Figure 2 shows the af-
fected part of the clone relation graph. From this we confirm
that some clone relations disappeared from modified Figure-
related classes. But when we take aspects into consideration,
we find that many clone relations have in fact only moved.
As shown in Figure 3, we identified clone relations between
aspects and existing classes. Specifically, 32 out of the origi-
nal 37 persistent read and write methods still remain in base
classes. Thus, only a limited part of similar code fragments
moved to the created aspects. This indicates that the ex-
tracted aspects are part of larger features still implemented
in the base classes, so these Storable classes continue to be
used by many other existing classes.

Image Figure

Attribute

Figure

Composite

Figure

Text Figure

Abstract

Figure

Storable

Output

Storable

Input

Attribute

Figure

Round Rect-

angle Figure

Rectangle

Figure

Ellipse

Figure

Ver. 0.1 -> 0.2

Figure 1: Use relations extracted in Ver. 0.2

3.3.2 From Ver0.2 to Ver0.3
In version 0.3, one empty class named GenericRole and

4 aspects were created. Aside from an aspect (CmdCheck-
ViewRef) that enforces a contract for all AbstractCommand
descendants, most aspects added here are concerned with
superimposing an observer pattern for notifying and han-
dling changes in selecting figures. GenericRole was extended
to encapsulate the observer and subject role. We compare
the refactored structure in version 0.3 with the one from ver-
sion 0.2. Incoming edges to the FigureSelectionListener class
were extracted as in Figure 4.

Changes to the clone relations are shown in Figure 5.
At first, 7 classes are strongly connected, however, we find
that this clone group is now decomposed into several smaller
clone groups after a common method-call statement was ex-
tracted. When we take into account advices in the aspects,
we identify one new clone relation, between StandardDrawing
and FigureSelectionSubjectRole.aj, resulting from the extrac-
tion of a method in StandardDrawing that has similarities
with another method in this class. Other new aspects have
no clone relations with classes in the clone group. This is
perhaps because all of classes in the group are modified at
once and the methodology of the refactoring is not based on
method extraction, but statement extraction.

Text Area

Figure
Pert

Figure

Only Classes

Ellipse Figure

Round

Rectangle

Figure

Rectangle

Figure

Text Figure

Image Figure

Composite

Figure

Arrow Trip
Draw

Application

Poly Line

Figure

not changed clone relation

removed from base code

modified components

Figure 2: Clones changed in Ver. 0.2(only classes)

Text Area

Figure
Pert

Figure

Classes and Aspects

Ellipse Figure

Round

Rectangle

Figure

Rectangle

Figure

Text Figure

Persistent

ImageFigure.aj

Composite

Figure

Arrow Trip
Draw

Application

Poly Line

Figure

not changed clone relation

clone between class and aspect

created aspects

Persistent

Text Figure.aj

Persistent

Composite

Figure.aj

Image Figure

Figure 3: Clones in Ver. 0.2(classes and aspects)

3.3.3 From Ver0.3 to Ver0.4
In version 0.4, one aspect was deleted and 22 aspects were

created. In this update, several features, such as handling IO
exception, CommandListener, undo handling, were extracted
as aspects and existing aspects were also reorganized. The
biggest extraction is undo handling; undo-related classes
were aspectized, with undo features in each class extracted
as aspects. Regarding the aspectization approach, the pat-
tern of extending GenericRole was also used as in the case of
version 0.3. Moreover, we can find other weaving patterns
in class related with CommandUndo and ToolUndo. These
details are different, but all of these aspects weave similar
methods and advices to corresponding classes.

In this version, 10 classes and 96 use relation edges are
removed and 5 edges are added compared to version 0.3.
Deleted classes are mainly UndoActivity classes that had
been inner classes for each command class. To check the
use relations that were removed, the reduction in incoming
and outgoing edges of each component on the component
graph is analyzed. Table 1 is a list of components whose
outgoing edges decreased. Decrease in outgoing edges of a
component implies that the component has stopped using
some classes. From Table 1, not only deleted inner classes,
Command-related and Tool-related classes are on the list.
This was because, in addition to undo features, other undo-
related methods in each command class were also extracted
and moved to aspects.

Table 2 is a list of components whose incoming edges de-
creased. Decrease in incoming edges of a component implies
that some classes have stopped using this component. From

Drawing View

Null

Drawing View

Standard

Drawing View

Abstract

Command

Runtime

Exception

Figure Selection

Listener

Ver. 0.2 -> 0.3

Generic Role

Created

Figure 4: Use relations extracted in Ver. 0.3

Change

Attribute

Command

Group

Command

Ver0.2 -> 0.3

Select All

Command

Send to Back

Command

Bring To Front

Command

Align

Command

Un Group

Command

not changed clone relation

removed from base code

modified components

clone between class and aspect

created aspects

Standard

Drawing

FigureSelection

SubjectRole.aj

Figure 5: Clones changed in Ver. 0.3

Table 2, undo-related classes, such as UndoableAdapter, Un-
doable are on the list, and commonly used classes such as
DrawingView, Figure, FigureEnumeration and so on are also
on the list.

Table 1: The change of outgoing edges (0.3 and 0.4)
Class 0.3 0.4 change
GroupCommand$UndoActivity 9 removed -9
CutCommand$UndoActivity 8 removed -8
UndoableCommand 8 removed -8
standard.CutCommand 11 6 -5
standard.DeleteCommand 10 5 -5
AlignCommand$UndoActivity 5 removed -5
DeleteCommand$UndoActivity 5 removed -5
PasteCommand$UndoActivity 5 removed -5
figures.ConnectedTextTool 12 8 -4
figures.TextTool 15 11 -4

The affected clone relations are shown in Figure 6. A large
number of clone relations disappeared, with all of clone re-
lations removed from some modified classes. However, when
we take into account advices in the aspects (Figure 7), we
find that most clone relations simply moved to the related
aspects as in the case of ver 0.2, and only 6 clone pairs actu-
ally disappeared. This implies that extracted undo-related
code have similarities to other fragments that remained in
the base classes. This is confirmed by an inspection of the
code from which we find 19 out of the original 26 UndoAc-
tivity classes are still in the base code.

Altogether, the number of clone relations decreased from

Table 2: The change of incoming edges (0.3 and 0.4)
Class 0.3 0.4 change
util.Undoable 48 35 -13
framework.DrawingView 131 121 -10
util.UndoableAdapter 33 24 -9
PasteCommand$UndoActivity 7 removed -7
framework.Figure 135 129 -6
framework.FigureEnumeration 73 68 -5
util.CommandListener 4 0 -4
standard.FigureTransferCommand 10 6 -4
standard.FigureEnumerator 24 21 -3
util.CollectionsFactory 47 44 -3

206 in JHotDraw to 158 in AJHotDraw, so 23% of clone re-
lations are affected by these refactorings, and 1 new clone re-
lation between class and aspect is created. Of the 48 affected
clone relations, 16 are actually removed, 29 clone relations
are now between aspects and classes, and 3 clone relations
are purely between aspects.

3.4 Aspect Refactoring of Berkeley DB (ABDB)
Berkeley DB Java Edition (BDB JE) is a software com-

ponent library that provides a high-performance embedded
database. The BDB JE refactoring project [9] set out to
investigate the use of AspectJ to implement a product line
consisting of a common base and several optional features
that can be composed together. The refactoring was carried
out by identifying several features from BDB JE and then
refactoring each into a combination of classes and associated
aspects.

We downloaded the publicly available refactored code which
consists of a base program and 28 aspectized features, con-
taining a total of 107 aspects. And then, we extracted the
set of Java classes from it, and compared the class structure
of the refactored Java code with the original BDB JE code.

For the original BDB JE, we selected, among the versions
available on the BDB website, version 2.1.30, whose class
structure and source code descriptions are most similar to
the refactored code. To give the original version a resem-
blance to the refactored version, we removed some pack-
ages, such as test, example, collection, JEC and so on, from
the original version. We also found that some packages were
renamed during refactoring project. However, if these re-
named packages have approximate counterparts in the orig-
inal version, we treat these packages as the same. In such
cases, we call such components by the name in version 2.1.30.

In what follows, we call the refactored system, ABDB,
and call the original (version 2.1.30), JBDB. We analyze
the change in use and clone relations between JBDB and
ABDB. We analyze the data by tabulating the classes that
were most impacted with respect to changes in incoming
and outgoing use relations as well as clone relations. We
also check if the differences in use relations between JBDB
and ABDB are statistically significant. Finally, we manually
inspect the impacted classes to find characteristics common
to these classes.

3.4.1 Impact on Use Relations

Reduction in outgoing edges
As in the case of AJHD, the reduction in outgoing edges is

a good indicator to assess how much of the use of other com-

Only Classes

Connection Tool

Paste

Command Border Tool

Text Tool

JHD Drag

Source Listener

Select All

Command

not changed clone relation

removed from base code

modified components

Un Group

Command

Group

CommandSend To Back

Command

Bring To Front

Command

Change Attribute

Command

Undoable Adapter

Connected

Text Tool

Cut Command

Delete Command

Pert Figure

Abstract

Command
Abstract Tool

Undoable Handle
Undoable

Command
Undoable Tool

Align Command

Text Area Tool

Composite Figure

Figure 6: Clones changed in Ver. 0.4(only classes)

Classes and Aspects

Connection Tool

Paste Command

Undo.aj Border Tool

Text Tool

JHD Drag

Source Listener

Select All

Command

Un Group

Command

Group Command

Undo.ajSend To Back

Command

Bring To Front

Command

ChangeAttribute.aj

Undoable Adapter

Connected

Text Tool

Cut Command

Undo.ajDelete Command

Undo.aj

Pert Figure

Command

Observer.aj
Abstract Tool

Undoable Handle
Undoable

Command.aj
Undoable Tool

AlignCommand

Undo.aj

Text Area Tool

Composite Figure

not changed clone relation

clone between class and aspect

created aspects

disappeared relation

Figure 7: Clones in Ver. 0.4(classes and aspects)

ponents was moved to aspects. The reduction in outgoing
edges of each component is analyzed by comparing the base
class structures of ABDB and JBDB. In terms of the compo-
nent graph for use relations, JBDB has 331 nodes and 1977
edges while the base class structure of ABDB has 336 nodes
and 1681 edges. Thus, about 15% of edges are affected by
the refactoring. Furthermore, a one-tailed paired Wilcoxon-
Mann-Whitney test5 of the distributions for outgoing edges
of ABDB and JBDB classes also reports that the distribu-
tion of outgoing edges in JBDB classes is greater than the
ones corresponding to classes in ABDB (p < 0.0001).

Figure 8 is a histogram of the outgoing edges of each class
for JBDB and ABDB, (the third item is also ABDB, but
includes outgoing edges to aspects, and is explained later).
From the graph, we can confirm that a number of com-
ponents that have no outgoing edges or have a low degree
of outgoing edges increased after the refactoring. On the
other hand, a number of components that have a high de-
gree of outgoing edges decreased slightly overall. We con-
sider these affected components are not only classes which

5The non-parametric Wilcoxon-Mann-Whitney test [19] was
used here and in subsequent statistical testing because the
distributions being compared were not normally distributed,
as confirmed by the Shapiro-Wilk test [18] for normality.

implement the extracted feature, but also local or core com-
ponents which use the extracted feature.

Table 3 is a list of components whose outgoing edges
decreased significantly. We observe that some DB-related
classes which use a lot of another classes are deleted during
refactoring. Impl and Manager classes organize and control
some major features, and Environment, Tree, and Database
classes are part of the BDB API. In JBDB, such manage-
ment and API classes used various features, which were ex-
tracted in the refactoring.

0

20

40

60

80

100

120

140

160

180

200

outgoing_JBDB

outgoing_ABDB

ABDBwithAspect

Figure 8: Distribution of number of outgoing edges

Table 3: The change of outgoing edges
Class JBDB ABDB change
dbi.DatabaseImpl 45 23 -22
utilint.DbScavenger 22 removed -22
dbi.EnvironmentImpl 54 34 -20
util.DbRunAction 18 removed -18
txn.TxnManager 18 8 -10
util.DbLoad 10 removed -10
util.DbCachesize 10 removed -10
log.FileManager 28 19 -9
tree.Tree 50 41 -9
Database 36 28 -8
Environment 28 20 -8

Reduction in incoming edges
As in the case of outgoing edges, reduction in incoming

edges of each component is analyzed by comparing the Java
class structures in ABDB and JBDB. The reduction in in-
coming edges is a good indicator to assess how much of
the usage of a component was moved to aspects. We also
performed a Wilcoxon-Mann-Whitney test on the distribu-
tions for incoming edges of ABDB and JBDB as in the case
of outgoing edges. It also reports that the distribution of
JBDB’s incoming edges is significantly greater than the one
of ABDB’s incoming edges (p < 0.0001). This shows that
the scale of the refactoring was large enough to affect the
distribution of incoming edges.

Figure 9 is a histogram of incoming edges of each class
for JBDB and ABDB (the third item is also ABDB, but
includes incoming edges from aspects, and is also explained
later). From the graph, we can confirm that a number of
components that have no outgoing edges increased through
the refactoring. On the other hand, a number of components
that have a high degree of outgoing edges also decreased
slightly overall. We consider classes whose incoming edges
are completely removed are mainly classes for implementing
extracted features, and classes whose incoming edges are

Table 4: The change of incoming edges
Class JBDB ABDB change
dbi.MemoryBudget 31 0 -31
utilint.Tracer 23 removed -23
latch.LatchSupport 24 6 -18
StatsConfig 19 1 -18
Transaction 14 0 -14
EnvironmentStats 12 0 -12
latch.Latch 15 4 -11
LockStats 11 1 -10
Environment 19 10 -9
DatabaseException 71 63 -8

slightly decreased are mainly classes used by the extracted
features.

Table 4 is a list of such components. Classes central to
extracted features, such as MemoryBudget, Latch, and Trans-
action, are on the list. In addition, classes to collect and hold
the execution information are also on the list. These compo-
nents’ features were extracted during the refactoring project,
and codes and methods which use these features were also
extracted.

0

50

100

150

200

250

300

incoming_JBDB

incoming_ABDB

ABDBwithAspect

Figure 9: Distribution of number of incoming edges

Including use relations from/to aspects
Next, we checked the impact on the component graph

when aspects are included as components. In this analysis,
we considered two types of use relations: from class to aspect
and from aspect to class.

First, we consider use relations from class to aspect, as
defined in Section 2.2, that is, weaving relations between a
class and the aspects that weave to it (as specified in the
pointcut). In object-oriented systems, to understand how a
class works, we often check how it uses other classes. Sim-
ilarly for an aspect-oriented system, we will check not only
classes used by a class, but the aspects it uses as well. We
treat this weaving relation as a use relation from class to
aspect, and we checked number of outgoing edges from each
class. This gives a rough estimation of the effort for under-
standing how the class works.

In total, we find 260 such use relations to 107 aspects in
ABDB. Table 5 is the list of classes most frequently targeted
by aspects. Implementation classes, such as EnvironmentImpl
and CursorImpl, management classes, such as FileManager
are on the list. Moreover, classes handling information on
the execution, such as Params and Stats, and main classes
for certain database helper functions, such as Cleaner and
Checkpointer are also on the list. This implies that these
classes use the features extracted by these aspects, or the

extracted features use these classes to store and handle re-
lated information.

The third item in Figure 8 is a distribution of outgoing
edges of each class for ABDB with aspects. The number
of classes who have no outgoing edges are almost same as
the original JBDB, and the Wilcoxon-Mann-Whitney test
indicates that the difference between the two distributions
is not statistically significant (p = 0.6086). Thus we can
confirm that uses of other class are completely replaced by
the aspect weaving in some classes.

Table 5: How many aspects weave to each class?
Class Aspects
dbi.EnvironmentImpl 24
Environment 15
log.FileManager 11
dbi.CursorImpl 10
config.EnvironmentParams 9
Database 8
EnvironmentStats 8
recovery.Checkpointer 7
cleaner.Cleaner 7
dbi.DatabaseImpl 7

Next, we consider use relations from aspects to classes,
counting how many aspects use each target class in their
advices. Determining how a class is used or referred to by
other classes is also an important activity to understand
how it works. In the case of aspect-oriented systems, such
information spreads also into advices in several aspects. So
we treat such use relation in advices in each aspect as use
relation from the aspect to class, and we checked the total
number of incoming edges to each class. It gives a rough
estimation of the effort for understanding how the class is
managed in the system.

Table 6: How much is each component used by as-
pects?

Class Aspects
DatabaseException 81
dbi.EnvironmentImpl 60
StatsConfig 23
dbi.DatabaseImpl 20
tree.IN 20
dbi.DbConfigManager 17
latch.LatchSupport 17
dbi.MemoryBudget 17
EnvironmentStats 16
config.EnvironmentParams 15

In this way, we identify 700 edges from 107 aspects to
classes. The third item in Figure 9 is a distribution of in-
coming edges of each class for ABDB with aspects. The
number of classes who have no incoming edges are almost
same as the original JBDB’s one, and in fact, the Wilcoxon-
Mann-Whitney test indicates that the number of incoming
use relations has increased and this increase is statistically
significant (p < 0.0001). Thus we can confirm that most of
the extracted use relations are moved to aspects and new
use relations are fanned in from multiple aspects.

Table 6 is a list of classes with the most incoming edges
from aspects. In general, methods implementing a feature
are more likely to call other methods that are also part of

Table 7: The change of incoming edges from classes
and aspects

Class JBDB ABDB cha-
Class Aspect Total nge

Tracer 23 removed -23
dbi.MemoryBudget 31 0 17 17 -14
TreeWalkerStats- 8 removed -8
Accumulator
Transaction 14 0 7 7 -7
LockStats 11 1 4 5 -6
EnvironmentConfig 16 10 1 11 -5
config.ConfigParam 16 12 0 12 -4
DbInternal 19 12 3 15 -4
DatabaseStats 6 2 2 4 -2
latch.SharedLatch 6 2 2 4 -2

Class JBDB ABDB cha-
Class Aspect Total nge

DatabaseException 71 63 81 144 73
dbi.EnvironmentImpl 95 93 60 153 58
tree.IN 45 44 20 64 19
OperationContext new 12 6 18 18
dbi.DatabaseImpl 55 53 20 73 18
tree.BIN 20 20 12 32 12
dbi.DbConfigManager 27 22 17 39 12
txn.Locker 39 38 12 50 11
dbi.CursorImpl 16 14 13 27 11
EnvironmentParams 28 24 15 39 11

that feature, thus if the feature is refactored into aspects, one
side of the use relations are moved to aspects. We find a large
number of aspects calling feature code still in base feature
classes such as LatchSupport and MemoryBudget or in classes
that handle execution information such as StatsConfig and
EnvironmentStats.

However, it is striking that 81 of 107 aspects use Database-
Exception in their advices for exception handling, and 60 as-
pects use EnvironmentImpl in their advices. EnvironmentImpl
encapsulates an entire execution, so the class is used fre-
quently as an argument passed by methods, and some of its
members are accessed in the method.

Table 7 lists the classes that have a large difference in
incoming edges when edges from aspects are accounted for.
The upper table is in ascending order. Classes for a certain
extracted feature, such as Transaction and MemoryBudget
and so on, and classes encapsulating execution information,
such as StatsConfig, EnvironmentConfig and so on, are on
the list. The use relations of such classes were reduced,
so we can confirm that refactoring into aspects managed
to successfully encapsulate the extracted features and data
structure.

The lower table is in decreasing order of difference. Im-
plementation classes such as EnvironmentImpl, DatabaseImpl,
CursorImpl and classes for the B-tree such as IN, Tree are on
the list. These components increase in number of incoming
edges after refactoring and are used frequently in argument
passing of methods. Such classes that control some major
features are used widely by both remaining classes and ex-
tracted aspects, so users of the class are scattered over the
software system.

Analyzing distribution of edges related to aspects
Next, we compare the change between edges in ABDB’s

base structure (without aspects) and the one in JBDB from
the change between edges in ABDB’s structure with aspects
and the one in JBDB.

0

50

100

150

200

250

300

The change of

outgoing edges

(Class)

The change of

outgoing edges

(Class and Aspect)

Figure 10: Distribution of the change of outgoing
edges

Figure 10 shows a distribution of the change of outgoing
edges for each class. From this graph, we can confirm the
following two things; By comparing only in the class struc-
ture (the first item), we can confirm some outgoing edges are
extracted. By comparing the total structure(with aspects),
that is the second item, we can confirm the total number of
outgoing edges are not changed so much. From a statistical
testing about distributions for outgoing edges of JBDB and
ABDB with aspect, we cannot confirm that the distribution
of JBDB’s outgoing edges is greater than the one of outgoing
edges of ABDB with aspects. The use of other classes are
moderately replaced to the weaving by aspects, and total
effort to check based on outgoing use relations would be not
changed so much.

0

50

100

150

200

250

The change of

incoming edges

(Class)

The change of

incoming edges

(Class and Aspect)

Figure 11: Distribution of the change of incoming
edges

Figure 11 shows a distribution of the change of incoming
edges for each class. From this graph, we can confirm the
following two things; By comparing only in the class struc-
ture (the first item), we can confirm some incoming edges are
extracted from a lot of classes. However, by comparing the
total structure(with aspects) from the original structure, we
can confirm the total number of incoming edges tend to in-
crease in the distribution. From a statistical testing, we can
confirm that the distribution of incoming edges of ABDB
with aspects is greater than the one of JBDB’s incoming
edges. So, there is a difference between distribution of the
change of outgoing edges and the change of incoming edges;
total effort to check based on used-by relations may increase.

Figure 12 is a distribution of changes of outgoing and in-
coming edges for each class. The x-axis plots the change be-
tween edges in ABDB’s base structure and the one in JBDB,
and the y-axis plots the change between edges in ABDB’s
structure with aspects and the one in JBDB.

We observe that many components are near the graph ori-
gin; these components were not affected by the refactoring.
Figure 12 also shows that a large majority of components are
in the left side of the y-axis, indicating that refactoring sim-

plified use relations in the base structure. Components in
the right side of the y-axis are mostly newly created. Some
components are plotted along the line of x = y, this is be-
cause there are created classes through refactoring.

We observe that many components are below the x-axis,
that is, their total edges decreased even when use relations
from aspects are taken into consideration. These include
removed components, but also for components of certain
extracted features. However, we observe that a lot of com-
ponents are above the x-axis, and especially for incoming
edges, we can confirm many components are plotted in the
upper side of the graph. It indicating that their total edges
are almost the same or increase when use relations from as-
pects are accounted for, however, incoming edges to classes
are easy to increase. Total edges are not necessarily reduced
even if developer removes a lot of use relations from the tar-
get class. This indicates that, for many components, they
got codes from aspects in response to the number of ex-
tracted features that they use, or their usage was dispersed
into several similar aspects.

-40

-20

0

20

40

60

80

-80 -60 -40 -20 0 20

The change of

outgoing /

incoming

edges

(Class)

The change of outgoing / incoming edges (Class + Aspect)

incoming edge

outgoing edge

Figure 12: The distribution of change of edges

3.4.2 Impact on Clone Relations
We also compared the clone relation graphs of JBDB and

ABDB. When considering only classes, there are 277 nodes
and 365 clone relations in the component graph of JBDB,
and 282 nodes and 158 clone relations in ABDB. During
this refactoring, 13 Java files are removed and 18 Java files
are added. Some clone relations are also removed and oth-
ers created; 218 clone relations are removed and only 11
clone relations are created, while the remaining 147 clone
relations are not affected. In this way, a large percentage
of clone relations disappear from the class structure. Ta-
ble 8 lists classes which lost the highest number of clone
relations. Central classes of certain features, such as Check-
pointer, Cleaner, DbLoad, Tracer, Evictor, and Txn, and sev-
eral Manager classes are on the list. This indicates that a
lot of similar code fragments are extracted from these files.

Next, we consider clone relations when aspects are ac-
counted for. In our analysis, we identified 81 new clone rela-
tions, 35 between class and aspect, and 46 between aspects.
Thus 218 clone relations removed from the class structure
are replaced by a much smaller set of 81 clone relations.
This indicates that over half of clone relations removed from
class structure are actually removed. We can still find some
strongly connected clone groups consisting of classes and
aspects in the graph. But overall, this refactoring was very
effective from the perspective of clone removal.

Table 8: The change of clone relations
File JBDB ABDB change
Checkpointer 34 7 -27
Cleaner 28 1 -27
RecoveryManager 31 8 -23
TxnManager 20 0 -20
DbLoad 19 removed -19
Tracer 17 removed -17
EnvironmentStats 17 0 -17
Evictor 20 16 -16
IN 26 10 -16
Txn 19 4 -15

4. DISCUSSION
We revisit our research questions from Section 1, dis-

cussing the effectiveness and characteristics of aspect-oriented
refactoring. We answer the specific questions first and then
summarize the discussion to answer the main questions.

4.1 Effectiveness of Refactoring

4.1.1 Q1-1: Is refactoring effective for reducing use
and clone relations between classes?

From Figure 12, we observe that the use relations between
classes (x-axis) are mostly reduced after refactoring. This
reduction is also confirmed to be statistically significant. At
the component level, use-relations which form coupling re-
lations were moved out of the base code as indicated by
Figures 1 and 4, so refactoring contributes to the simplifi-
cation of use relations between classes. We consider that
refactoring of features into aspects is effective if the feature
already has a localized class structure. In this case, not only
the feature itself, but also statements using the feature are
moved to aspects cleanly. In this way, such relations be-
tween classes are simplified, and refactoring contributes to
modularizing scattered information.

From the result, we also find that scattered, similar code
are extracted to aspects, so clone relations are also reduced
after refactoring, especially classes which become a core of
certain features.

4.1.2 Q1-2: Is refactoring effective for reducing to-
tal use and clone relations (classes and aspects)?

As shown in Figure 12 and Tables 6 and 7, the refactoring
may cause an increase in incoming use relations if compo-
nents are widely used in aspects and classes. In ABDB, such
components are frequently used as arguments. In general,
classes like these are a global resource of the system; the
class is used widely by both remaining classes and extracted
aspects, so use relations to the class are scattered over many
components in the system. This phenomenon may make it
more difficult to understand the global behavior of the sys-
tem when aspects are considered. The additional couplings
also make it more difficult to evolve the behavior of core
components. The BDB refactoring project [9] also reported
several limitations in refactoring using AspectJ, for exam-
ple, it was impossible to add new exceptions to the existing
methods, so they declared all throwable exceptions of all fea-
tures in the base code. As a result, numerous aspects had to
reference base classes such as DatabaseException, thus driv-
ing up the number of incoming use relations to such classes
(see Table 7).

Figure 13 shows the distribution of changes of incoming
edges from classes, and from classes and aspects for three
versions of AJHD. In the graphs, almost all of the compo-
nents are around the origin and x-axis, so use relations did
not increase significantly.

As discussed in the AJHD project [16], modifications to
the base requires an awareness of the advice that applies to
it. The ABDB project [9] also reported similar issues. In
spite of their best efforts, they were dissatisfied with the re-
sults because maintainability, fragility and code readability
became worse. We think the propagation of use relations in
aspects contributes to the dissatisfaction.

From the perspective of clone reduction, ABDB’s refac-
toring effort was quite successful. Over 100 clone relations
were actually removed, with a small number that moved
to aspects. Some clone relations between aspects were also
produced when similar code fragments were extracted into
different aspects; in many cases, this situation cannot be
avoided if feature boundaries need to be preserved.

As shown in Figure 14, a clone relation between class and
aspect forms when only one part of a clone group is ex-
tracted. This means that the scope of the classes consid-
ered for aspect extraction could have been extended so as
to include all clone fragments. If a size of the scope was
adequate, the number of clone relations would decrease or
the number of clones between aspects would increase as in
the case of ABDB.The opposite can be said for AJHD. Most
clone groups were only partially moved to aspects, implying
that perhaps other design considerations had to be taken
into account in determining the scope of extraction.

Aspect B

Class A

Class B

Code Clone

Class A’ Class B’

Aspect A

WeaveWeave

Class A’ Class B

Aspect A

Weave

Only a part of

code fragments

is extracted.

Both of code

fragments

are extracted by

different aspects.

Figure 14: Extraction of code fragments in different
classes

If developers need to modify extracted code fragments af-
ter refactoring, it may be better to modify clones from two
aspects than having to modify clones in both class and as-
pect. If there is a clone relation between class and aspect, a
developer may need two kinds of modifications, one to the
class and the other to its clone pair in the aspect. If the
aspect is not conceptually related to the class, it would be
easy to neglect to modify one or the other, particularly over
time or with new developers. On the other hand, in the
case of clone relations between aspects, we speculate that
the aspect-to-aspect symmetry as in the scenario depicted
in Figure 14 would lead developers to check similar aspects
when making updates, so clones would not be as likely to be
neglected.

4.1.3 Q1: Is aspect-oriented refactoring effective for
improving modularity and complexity?

In general, refactoring by aspects improves the base code’s

-5

-4

-3

-2

-1

0

1

2

-6 -5 -4 -3 -2 -1 0
Use relation

(Class)

Use relation (Class + Aspect)

incoming edge

outgoing edge

(a) AJHD Version 0.2

-2

-1

0

1

2

3

-4 -3 -2 -1 0

Use relation

(Class)

Use relation (Class + Aspect)

incoming edge

outgoing edge

(b) AJHD Version 0.3

-10

-8

-6

-4

-2

0

2

4

6

-15 -10 -5 0 5

Use relation (

Class)

Use relation (Class + Aspect)

incoming edge

outgoing edge

(c) AJHD Version 0.4

Figure 13: The distribution of change of incoming edges from classes and aspects for AJHotDraw

modularity by reducing the number of use relations. How-
ever, care must be taken to pay attention to the dispersing
of use relations to aspects. This hinders the maintainability
of the base as changes to classes can have an impact on the
aspects which use it. If inadequate attention is paid to use
relations from aspects, the maintenance of some components
can become more complex and error prone. To mitigate the
increase of use relations, an object-oriented refactoring of
the code may split up some of the highly used classes. An
object-oriented refactoring prior to aspect-oriented refactor-
ing was also suggested in [16]. In many cases, the increase
in use relations is unavoidable when the refactoring project
is constrained to preserve existing component interfaces and
work with some of the existing object designs.

Refactoring by aspects also simplifies the base code’s com-
plexity by factoring out clones. But from the results of two
projects, aspect refactoring may move clone relations to as-
pects. To sustain maintainability, developers should deter-
mine the scope of extraction carefully. If the scale is too
small, this will be reflected directly in the number of code
clones between class and aspect. A finer-grained approach,
based on extracting statements rather than methods, as per-
formed in AJHD ver 0.3, is also effective to minimize propa-
gation of clones. However, the granularity may be too small
to apply on a large scale. A complementary approach is to
use a clone detection tool like CCFinder [23] to guide de-
velopers in determining the proper scope by identifying all
clone relations in the code.

While we can get the desired result if the refactoring is
done perfectly, it seems that there is a very high bar to
complete it in real software systems. We need experts in
aspect refactoring as well as experts who have a global un-
derstanding of the system. Without enough preparation,
the refactoring produces suboptimal results. However, if we
can characterize classes that are suitable for aspect refac-
toring it may be possible to develop analysis tools that can
identify the best candidates for refactoring. We discuss such
characterizations next.

4.2 Classes Suitable for Aspect Refactoring

4.2.1 Q2-1: What kinds of components are likely to
have fewer use relations after refactoring?

Figures 1 and 4, and Tables 1 and 3 indicate that outgoing
edges for using the extracted features are removed from class
structure. If the extraction is conducted on a large scale, use

relations of management classes, such as Impl and Manager
classes, and API classes, are greatly simplified.

A lot of aspects weave advices to management classes and
API classes as shown in Table 5. In the advices, statements
call a lot of classes central to extracted features, as well as
stats classes holding execution information, as shown in Ta-
ble 6. Management classes and API classes are also used
in the advices and methods, often passed in as arguments.
From Table 7, such components are still used in the remain-
ing classes.

Figures 1 and 4, and Tables 2 and 4 indicate that in-
coming edges to components whose features are extracted
are removed from class structure. If the extraction is con-
ducted on a large scale, use relations to management classes
and API classes are also removed, however, the reduction in
number of incoming edges for such classes is not significant.

4.2.2 Q2-2: What kinds of components are likely to
have fewer clone relations after refactoring?

Results of AJHD (Figure 2,5, and 6) indicate a significant
reduction of clone relations between classes that implement
similar features. Clone relations completely disappear when
similar crosscutting code are extracted from all applicable
classes at the same time. Otherwise, clone relations remain
and get moved to relations between classes and aspects, like
undo related aspects in ver 0.4 (Figure 7).

Results from ABDB (Figure 8) show a large reduction in
clone relations from classes that implement similar features,
indicating a significant amount of similar code crosscutting
these classes.

4.2.3 Q2: What are the characteristics of classes
likely to be strongly affected by such refactor-
ing activities?

In general, the number of use relations between classes
decreases as a result of aspect refactoring. The reduction of
edges arises on the class around the features extracted by
aspect refactoring. If the extraction is conducted on a large
scale, not only the components which implements or uses
certain features, but also the management classes and API
classes will see a reduction in use relations.

In this study, we also confirm a reduction of clone rela-
tions mainly on the classes which implement similar features.
Similar code fragments form readily in such classes because
similar features tend to have similar code, requiring similar
behavior as well as pre- and post-processing. Through as-

pect refactoring, code for such processing can be factored
out into aspects.

4.3 Threats to Validity

4.3.1 Construct validity
Construct validity refers to how well we have measured the

qualities under study, namely modularity and complexity.
Modularity was examined from the perspective of coupling,
specifically usage dependencies; the fewer dependencies we
have, the more modular the system. It can be argued that
the use relations identified may not adequately capture all
usage dependencies, such as inherited dependencies due to
polymorphism as well as type parameter dependencies due
to generics. Inherited dependencies are an example of indi-
rect relationships. We have conducted additional analyses
using component ranking [7] which can account for such in-
direct relationships. The results when indirect relationships
were taken into account are consistent with our findings here.
Generics were not used in the versions we examined of the
two projects.

Complexity was examined from the perspective of diffi-
culty of maintenance, specifically due to clones. It can be
argued that the clones identified may not capture all clone
dependencies, especially clones with less than 25 tokens in
common. We tried several thresholds before settling on 25
tokens since, from the data, this was the typical size of an ex-
ception block, which was a commonly aspectized code frag-
ment.

4.3.2 Internal validity
Internal validity refers to the ability to make causal con-

clusions between treatments and effects, in this case, be-
tween aspect-oriented refactoring and modularity and code
consolidation. By comparing the aspect-oriented and non-
aspect-oriented version of the same project, we controlled
for differences in the application complexity. Thus, these
versions act as natural controls for making controlled ob-
servations [14]. Also, in all the analyses, we made certain
to explain the results with corroborating observations of ex-
amples from the projects. Furthermore, when possible, we
highlighted the consistency of our findings with the results
the refactoring teams also arrived at.

4.3.3 External validity
External validity refers to the ability to generalize the re-

sults of our study, in this case, whether the projects chosen
are representative of industrial systems. Unlike toy exam-
ples, both JHotDraw and BDB are relatively large projects
with a history of accommodating real-world needs. This is
attested to by the fact that they are used by a number of
other industrial applications. Obviously, they do not reflect
the wide diversity of all real-world projects. Therefore, fur-
ther replications are needed to verify if our conclusions hold
with additional data from other aspect-refactoring projects.
The consistency of results between our 2 large projects gives
us some confidence that other refactored systems will also
have the similar results.

4.4 Related Works
Our work is the first comparison study of large scale aspect-

oriented refactoring projects. Other researchers have stud-
ied impacts of object-oriented refactoring in real-world sys-

tems. For example, Du Bois, et al. [2] investigated the im-
pact of standard refactoring activities (e.g., Move Method,
Extract Class, etc.) on coupling and cohesion in Apache
Tomcat. Their results conclude that refactoring opportuni-
ties that improve coupling and cohesion are hard to find; for
many forms of refactoring, couplings just move elsewhere.
Our findings also indicate that use relations mostly do not
disappear; they just move into aspects.

Our work also complements a growing body of research
assessing the benefits that aspect-oriented systems offer to
subsequent maintenance and evolution activities [1, 3, 22].
It is our hope that our work on use and clone relation change
can provide additional quantitative information for explain-
ing the results of such studies.

Eaddy, et al. [5] proposed a set of concern metrics for
precisely measuring scattering and tangling. While their
work is mostly predictive in nature and useful for detect-
ing crosscutting code, our work is retrospective, studying
crosscutting code that is already in aspects. This suggests
a future thread of investigation studying how much of the
crosscutting code suggested by such concern metrics were
actually refactored into aspects.

Our empirical study approach is similar to Kulesza, et al.
[12], which investigated the effectiveness of designing based
on aspect oriented languages. In their experiments, they
compared aspect-oriented and object-oriented implementa-
tions of the same system using several general metrics. They
also analyzed a refactored structure without the aspects, as
we did here. While their results were mostly in favor of
the aspect-oriented implementation, we note that the system
was smaller, which was adequate for the purpose of their ex-
periments comparing the performance of maintenance tasks
on both implementations. We also note that the aspect-
oriented implementation was designed from the ground up,
following the same principles as the object-oriented design
but not constrained to preserve specific component inter-
faces or subsystem boundaries of the object-oriented imple-
mentation.

Our work on clone relation analysis is also similar to Yoshida,
et al. [23], where CCFinder was used to detect sets of clones
in order to inform the refactoring process. Case studies were
conducted to detect such clones in large systems such as
ANTLR, Apache Tomcat and JBoss. We extend their re-
sults by examining how detected clone groups are actually
reflected in aspects after refactoring.

5. CONCLUSION
In this paper, we examined the effectiveness of aspect-

oriented refactoring in improving code modularity and com-
plexity through factoring out crosscutting code from existing
non-aspect-oriented systems. We conducted a multiple-case
study on two large projects. For each project, we compared
an original Java software structure and the refactored struc-
ture with respect to changes in use and clone relations. Even
though these projects had different purposes, they reached
similar conclusions regarding the benefits and limitations of
aspect-oriented refactoring. Our analysis adds to their con-
tributions by providing quantitative confirmation of their
evaluation results.

We confirmed that refactoring causes propagation of use
relations for a certain set of classes. In general, such classes
are global resources of the software system, used widely by
remaining classes and extracted aspects. Hence, use rela-

tions to such classes are scattered all over the software sys-
tem. Thus, while the overall modularity of the base Java
code appears to improve, coupling increases when account-
ing for use relations from aspects. On the other hand, we
also confirmed the number of clone relations between class
and aspect increases if only one part of a clone group is
extracted. These hinder the maintainability of the base as
changes to classes can have a negative impact on the classes
and aspects which use it. Some of the problems may be
attributed to the limitations of AspectJ, as pointed out by
the developers of AJHD and ABDB. We also attribute these
difficulties to the scope of the original code considered for
each extraction. In many cases though, this is unavoidable,
especially when the refactoring project is constrained to pre-
serve existing component interfaces and to work with some
of the existing object designs.

As future work, we plan to apply our analysis to other
aspect refactoring projects. In addition to component rela-
tionships, other types of metrics related to cohesion and con-
cern diffusion similar to those used by Garcia, et al. [6] will
be studied as well. We would also like to analyze whether
certain types of object-oriented refactoring can prepare a
system for aspect-oriented refactoring. Finally, we also plan
to investigate the link between aspect refactoring patterns
and patterns of change in relations.

6. REFERENCES
[1] M. Bartsch and R. Harrison. “An exploratory study of

the effect of aspect-oriented programming on
maintainability”. Software Quality Journal,
16(1):23–44, 2008.

[2] B. D. Bois, S. Demeyer, and J. Verelst. “Refactoring -
Improving Coupling and Cohesion of Existing Code”.
In Proceedings of the 11th Working Conference on
Reverse Engineering, pages 144–151, 2004.

[3] Y. Coady and G. Kiczales. “Back to the Future: A
Retroactive Study of Aspect Evolution in Operating
System Code”. In Proceedings of the 2nd international
conference on Aspect-oriented software development,
pages 50–59, Boston, MA, USA, 2003.

[4] A. Colyer and A. Clement. “Large-scale AOSD for
Middleware”. In Proceedings of the 3rd international
Conference on Aspect-Oriented Software Development,
Lancaster, UK, 2004.

[5] M. Eaddy, A. Aho, and G. C. Murphy. “Identifying,
Assigning, and Quantifying Crosscutting Concerns”.
In Proc. of the First International Workshop on
Assessment of Contemporary Modularization
Techniques, page 2, Washington, DC, USA, 2007.

[6] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza,
C. Lucena, and A. von Staa. “Modularizing design
patterns with aspects: a quantitative study”. In
Proceedings of the 4th international Conference on
Aspect-Oriented Software Development, Chicago,
Illinois, USA, 2005.

[7] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita,
and S. Kusumoto. “Ranking Significance of Software
Components Based on Use Relations”. IEEE
Transactions on Software Engineering, 31(3):213–225,
2005.

[8] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
“DECKARD: Scalable and Accurate Tree-Based

Detection of Code Clones”. In Proceedings of the 29th
international conference on Software Engineering,
pages 96–105, 2007.

[9] C. Kastner, S. Apel, and D. Batory. “A Case Study
Implementing Features Using AspectJ”. In Proceedings
of the 11th International Software Product Line
Conference, pages 223–232, Kyoto, Japan, 2007.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lope, J.-M. Loingtier, and J. Irwin.
“Aspect-Oriented Programming”. In Proceedings of
ECOOP ’97, pages 220–242, 1997.

[11] C. Krueger. “Software Reuse”. ACM Computing
Surveys, 24(2):131–183, 1992.

[12] U. Kulesza, C. Sant’Anna, A. Garcia, R. Coelho,
A. von Staa, and C. Lucena. “Quantifying the Effects
of Aspect-Oriented Programming: A Maintenance
Study”. In Proceedings of the 22nd IEEE International
Conference on Software Maintenance (ICSM06), pages
223–233, Philadelphia, PA, USA, 2006.

[13] R. Laddad. “Aspect-oriented Refactoring: Taking
Refactoring to a New Level. ”. In Tutorial at the
International Conference on Aspect-Oriented Software
Development (AOSD2005), Chicago, USA, 2005.

[14] A. S. Lee. “A scientific methodology for MIS case
studies”. MIS Quarterly, 13(1):33–50, 1989.

[15] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. “CP-Miner:
Finding Copy-Paste and Related Bugs in Large-Scale
Software Code”. IEEE Transactions on Software
Engineering, 32(3):176–192, 2006.

[16] M. Marin, A. Deursen, L. Moonen, and R. Rijst. “An
integrated crosscutting concern migration strategy and
its semi-automated application to JHotDraw”.
Automated Software Engineering, 16(2):323–356, 2009.

[17] W. F. Opdyke. “Refactoring object-oriented
frameworks”. PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

[18] S. Shapiro and M. Wilk. “An analysis of variance test
for normality (complete samples)”. Biometrika,
52(3-4):591–611, 1965.

[19] S. Siegel and J. Castellan. “Nonparametric Statistics
for The Behavioral Sciences”. McGraw-Hill, 1988.

[20] T.Kamiya, S.Kusumoto, and K.Inoue. “CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code”. IEEE Transactions
on Software Engineering, 28(7):654–670, 2002.

[21] A. van Deursen, M. Marin, and L. Moonen.
“AJHotDraw: A showcase for refactoring to aspects”.
In Proceedings of the Workshop on Linking Aspects
and Evolution. 4th International Conference on
Aspect-Oriented Programming, Chicago, USA, 2005.

[22] R. Walker, E. L. A. Baniassad, and G. C. Murphy. “An
Initial Assessment of Aspect-oriented Programming”.
In Proc. of the 21st International Conference on
Software Engineering, pages 120–130, 1999.

[23] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and
K. Inoue. “On Refactoring Support Based on Code
Clone Dependency Relation”. In Proceedings of the
11th IEEE International Software Metrics Symposium,
page 16(10 pages), Como, Italy, 2005.

