
Extracting Code Clones for Refactoring
Using Combinations of Clone Metrics

Eunjong Choi1, Norihiro Yoshida2, Takashi Ishio1, Katsuro Inoue1, Tateki Sano3

1Graduate School of Information Science and Technology, Osaka University, Japan
{ejchoi, ishio, inoue}@ist.osaka-u.ac.jp

2Graduate School of Information Science, Nara Institute of Science and Technology, Japan
yoshida@is.naist.jp

3Software Process Innovation and Standardization Division, NEC Corporation, Japan
t-sano@cp.jp.nec.com

ABSTRACT
Code clone detection tools may report a large number of
code clones, while software developers are interested in only
a subset of code clones that are relevant to software devel-
opment tasks such as refactoring. Our research group has
supported many software developers with the code clone de-
tection tool CCFinder and its GUI front-end Gemini. Gem-
ini shows clone sets (i.e., a set of code clones identical or
similar to each other) with several clone metrics including
their length and the number of code clones; however, it is
not clear how to use those metrics to extract interesting code
clones for developers. In this paper, we propose a method
combining clone metrics to extract code clones for refactor-
ing activity. We have conducted an empirical study on a web
application developed by a Japanese software company. The
result indicates that combinations of simple clone metric is
more effective to extract refactoring candidates in detected
code clones than individual clone metric.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering ; D.2.8 [Software Engineering]: Metrics—
Product metrics

General Terms
Experimentation

Keywords
Code clone, Refactoring, Industrial case study

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWSC 2011 May 23, 2011, Waikiki, Hawaii, USA
Copyright 2011 ACM 978-1-4503-0588-4/11/05 ...$10.00.

1. INTRODUCTION
Many code clone detection tools[5, 6, 8] have been pro-

posed to capture various aspects of source code similar-
ity[11]. A code clone detection tool generally finds all source
code clones that match its own definition of code clone;
therefore, a tool may report a large number of code clones
for large scale software. On the other hand, software devel-
opers are interested in only the subset of code clones that
are relevant to their activities.

Refactoring[2] is one promising activity to improve the
maintainability of code clones. Code clone is not always ap-
propriate for refactoring because developers sometimes have
to repeatedly write code clones that cannot be merged due
to language limitations[4, 9, 10]. However, a clone set (i.e.,
a set of code clones identical or similar to each other) in-
dicates considerable opportunities for developers to merge
code clones into one or a few program units(e.g., Java meth-
ods) by refactoring[4, 9, 10].

In this research, we focus on code clones that should be
checked for refactoring before a software system is released.
Although code clones are not always appropriate for refac-
toring, developers would like to find and modularize com-
mon functionalities in an important system because such a
system will be maintained in next 10 years as a part of the
infrastructure of a company. Due to the limited develop-
ment time and cost, it is not acceptable for developers to
manually check all the code clones detected by a tool. We
propose a filtering approach to extracting code clones for
refactoring from a large amount of code clones.

Our research group has developed a code clone analysis
tool named Gemini[3, 12]. Gemini is a GUI front-end for
CCFinder[8]; it takes as input a list of code clones generated
by CCFinder and shows developers quantitative information
on clone sets by clone metrics. Its clone metrics include LEN
(the average LENgth of token sequences of code clones in a
clone set[3]), POP (the POPulation of code clones in a clone
set), and RNR (the Ratio of Non-Repeated token sequences
of code clones in a clone set). Using these metrics, devel-
opers can extract a subset of code clones for their purpose.
However, little is known about how using these metrics when
developers extract interesting code clones for refactoring ac-
tivity.

We have analyzed many industrial software and received
feedback from the developers. From these experiences, we
recognized that clone sets extracted by a combination of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWSC’11, May 23, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0588-4/11/05 ...$10.00

7

multiple clone metrics are more appropriate for refactoring
than clone sets extracted by extremely higher values of indi-
vidual clone metric. However, we have not evaluated what
makes them relevant for refactoring. In this study, we eval-
uate clone sets extracted by a combination of clone metrics.
The contributions of this study are as follows.

• Using clone metrics, we propose a method to extract
refactoring candidate code clones from CCFinder’s out-
put.

• We confirm the effectiveness of our method with a sur-
vey in the form of a questionnaire for a software devel-
oper in a company.

The rest of paper is organized as follows: Section 2 pro-
vides a brief description of Gemini. In Section 3, we describe
our proposed method. In Section 4, we describe a case study
and its results, and discuss threats to validity. In Section 5,
we present some related work. Section 6 concludes our paper
with final remarks and indications about our future work.

2. BACKGROUND

2.1 Code Clone Visualization Tool: Gemini
We have developed a GUI front-end for CCFinder[8], Gem-

ini[3, 12]. CCFinder and Gemini are distributed to hundreds
of Japanese and international companies and universities.
Also, we have often analyzed industrial code clones with
Gemini through industry-university collaborations.

CCFinder detects a large number of code clones in large
scale systems. To support code clone analysis, Gemini has
several functionalities to extract clone sets from CCFinder’s
output. One major functionality of Gemini is the Metric
Graph. The Metric Graph visualizes the clone metrics and
enables the user to select a part of the clone sets using clone
metrics. For example, POP(S) is a clone metric representing
the number of code clones in clone set S. If a user is inter-
ested in clone sets that appear in more than 5 locations, he
or she can select the clone sets using a filter “POP(S) ≥ 5”.

Gemini supports clone metrics including LEN(S), RNR(S)
and POP(S).

LEN(S)[3, 12] : LEN(S) is the average length of token
sequences of code clones in clone set S. Higher LEN(S)
values mean that each code clone in a clone set S con-
sists of more token sequences. Contrary to this, lower
LEN(S) values mean that each code clone in a clone
set S consists of less token sequences, and the size of
code fragments are smaller.

RNR(S)[3] : RNR(S) is the ratio of non-repeated token
sequences of code clones in clone set S.
We assume that the clone set S includes n code clones,
c1, c2 . . . , cn, LOSwhole(fi) represents the Length Of
the whole token Sequence of code clone ci, and
LOSrepeated(fi) represents the Length Of repeated to-
ken Sequence of code clone ci, then,

RNR(S) =

0
BBBB@
1−

nX
i=1

LOSrepeated(ci)

nX
i=1

LOSwhole(ci)

1
CCCCA
× 100

Here, we give an example of the compute RNR(S)
value. We assume that we detect code clones from
three source files(F1, F2, F3). Each source file consists
of following five tokens. (Superscript * indicated that
the token is in a repeated token sequence.)

F1 : a b c a b

F2 : c c∗ c∗ a b

F3 : c c∗ a b c

Here, we assume that at least two tokens are needed
to be identified as a code clone. With this assump-
tion, the following two clone sets are detected from
the source files. We use label C(Fi, j, k) to represent
a fragment. Fragment label C(Fi, j, k) starts at the
j th token and ends at the kth token in source file Fi

(j must be less than k).)

S1 : C(F1, 1, 2), C(F1, 4, 5), C(F2, 4, 5), C(F3, 3, 4)

S2 : C(F2, 1, 2), C(F2, 2, 3), C(F3, 1, 2)

In this case, RNR(S) values are computed as following:

RNR(S1) = (1− 0 + 0 + 0 + 0

2 + 2 + 2 + 2
)× 100 = 100

RNR(S2) = (1− 1 + 2 + 1

2 + 2 + 2
)× 100 = 30

Here, we exaplain the clone sets whose RNR is higher,
and lower with Figure 1. 1

Higher RNR(S) values mean that each code clone in
a clone set S consists of more non-repeated token se-
quences(Figure 1(a)). Contrary to this, lower RNR(S)
values means that each code clone in a clone set S con-
sists of more repeated token sequences(Figure 1(b)).
In most cases, repeated code sequences are involved in
language-dependent code clones (e.g., code clones that
involve consecutive if (or if-else) blocks, case entries of
switch statements, consecutive variable declarations).

POP(S)[3, 12] : POP(S) is the number of code clones in
a clone set S. Higher POP(S) values mean that code
clones in a clone set appear more frequently in the
system. Contrary to this, lower POP(S) values mean
that code clones in a clone set appear in fewer places
is the system.

The Metric Graph in Gemini is designed to enable the
users to quantitatively select clone sets. Here, we explain
the Metric Graph using Figure 2. In the Metric Graph,
each clone metric has a parallel coordinate axis. The clone
set is shown by a polygonal line connecting clone metric val-
ues. Two lines for clone sets S1 and S2 show that LEN(S1)
and RNR(S1) are higher than LEN(S2) and RNR(S2), re-
spectively, while POP(S1) is lower than POP(S2).

Users can specify the upper and lower limits of each clone
metric. The grey area shows the range bounded by clone
metrics upper and lower limits. In Figure 2(a), all the clone

1The examples in Figure 1 are picked from Ant 1.7.0 since
the the subject source code used in Section 4. The source
code clones are similar to these examples.

8

��������	
���������

�����������
�����������
����

������� ���
������ ����������

������!��"
���#�$���

��!���
�%�����

&

����
'�%��� (���� ���

��!�%%)'�%����
'�%�����

&

��!���
�%�� ���������

��!���
�%������
������

(a) Code fragment in a clone set whose RNR(S) is 97, the
highest RNR(S) value in Ant 1.7.0.

���������	��
���������
�	���������������������

���������	��
���������
�	�������������������������

���������	��
���������
�	������������������� ��!��

���������	��
���������
�	��������������������������

���������	��
���������
�	����������������������

���������	��
���������
�	����������������������

���������	��
���������
�	���������������������������

���������	��
���������
�	����"���������������

(b) Code fragment in a clone set whose RNR(S) is 2, the
lowest RNR(S) value in Ant 1.7.0.

Figure 1: Example of code fragments in clone set
whose RNR(S) is the highest, and lowest

metric values are included in the grey part. As such, all clone
sets are selected. In Figure 2(b), the values of LEN(S2) is
smaller than the lower limit of LEN, S2 is not selected. This
means that we can get “long” code clones by changing the
lower limit of LEN. Thus the Metric Graph enables users
to choose arbitrary clone sets based on clone metric values
with AND operators.

The Metric Graph of Gemini provides clone sets which
satisfy clone metrics values in the range specified by devel-
opers. However, research has not been done on the appro-
priate combinations of clone metric values range for effective
clone sets filtering. Consequently, it is difficult for develop-
ers to give Gemini appropriate clone metric-value ranges for
effective filtering.

2.2 Filtering Clone Sets Using Individual Clone
Metric

Using Gemini, we have suggested to industrial software
developers code clones that should be checked for refactoring
and received significant feedback. According to their opin-
ion, many clone sets whose individual clone metric value is
high are inappropriate for refactoring. Based on the feed-
back, we have analyzed the clone sets whose individual clone
metric value is high. Here is features of clone sets whose
individual clone metric value is high that we observed and
the obstacles that we recognized to perform refactoring with
Figure 3 2.

2The examples in Figure 3 are picked from Ant 1.7.0 since
the the subject source code used in Section 4. The source
code clones are similar to these examples.

LEN RNR POP

S1

S2

(a) before

LEN RNR POP

S1

S2

(b) after

Figure 2: Filtering clone sets using the Metric
Graph

Clone sets whose LEN(S) is higher than others
As described in Section 2.1, clone sets whose LEN(S)
is higher than other clone sets(Figure 3(a)) means that
each code clone in a clone set S consists of more token
sequences. However, in our observation, these clone
sets include many consecutive if (or if-else) blocks that
involve similar but different conditional expressions.
Therefore, it takes effort to perform refactoring these
code clones.

Clone sets whose RNR(S) is higher than others
As described in Section 2.1, clone sets whose RNR(S)
is higher than other clone sets(Figure 3(b)) means that
each code clone in a clone set S consists of more non-
repeated code sequences. However, in our observa-
tion, clone metric RNR(S) distinguishes only “non-
repeated” token sequences from “repeated” token se-
quences of code clones. The clone sets whose RNR(R)
is higher have the tendency of including a procedure
corresponding to a semantic unit. (e.g., just only a
few lines of code clones, if (or if-else) blocks with a few
lines)

Clone sets whose POP(S) is higher than others
As described in Section 2.1, clone sets whose POP(S)
is higher than other clone sets(Figure 3(c)) means that
code clones in a clone set S appear more frequently in
the system. However, in our observation, these clone
sets include many small size code clones. It takes more
effort to perform refactoring the smaller code clones
than longer code clones. Moreover, these clone sets in-
clude a lot of language-dependent code clones. There-
fore, it is inefficient to perform refactoring theses clone
sets.

Therefore, we also recognized the following characteristic.

• It was observed that if a clone set whose one clone
metric value is high, the other clone metrics values
are low. Therefore, we might conjecture that using
combined clone metrics can be a feasible method to get
refactoring candidate code clones than using individual
clone metric .

• Combining clone metrics might cover defects of clone
sets whose individual clone metric value is high.

9

����������	
���	�
����	
���	�
�����
��	
�	������������������������

���������� �����	�
�
��	������

!!��������
� "�#	�����	��	

����������	
���	�
����	
���	�
�����
��	
�	�����""	�
���������������

�����""	�
� �����	�
�
��	������

����������	
���	�
����	
���	�
�����
��	
�	�����"���
��������������

�����"���
 �����	�
�
��	������

���������	��
�	����

(a) Code fragment in a clone set whose LEN(S) is 455, the
highest LEN(S) value in Ant 1.7.0.

�

��������

���	��
����	��	���	��
��������

�	�	�� �	�	�� ����	�	�����	�	������
��	����

	����	�	�� ����������

�	�	�� �������	�	����	����

�	�	�����
��	�����	�	����

�

�	��
�� ��
������	�	�����
��
������ ����!�"���

	�����
���#���������

��
�����	�	�����
$��
%
���"���
����

(b) Code fragment in a clone set whose RNR(S) is 97, the
second highest RNR(S) value in Ant 1.7.0.

�������	�
�����������������
���

�������	�
�������

�������	�
�������

�������	�
�������

�������	��	
�� !���

�������	��	
����

�������	��	
������"������������

�������	��	
������������#����������"$ %"���"�$���

�������	��	
�����������	�&���������'$����%(�)*"(�$���

�������	��	
������������+����������'$����%"���"�$���

�������	��	
������������	��,,������'$����%"���"�$���

�������	��	
�����������#���	#,�����'$����%"���"�$���

(c) Code fragment in a clone set whose POP(S) is 21, the
highest POP(S) value in Ant 1.7.0.

Figure 3: Examples of code fragments in clone set
in Ant 1.7.0

3. PROPOSED METHOD
Based on observation described in Section 2.2, we propose

a method for extracting code clones using combinations of
clone metrics in this study.

The details regarding the proposed method and its advan-
tages that we expect are the followings:

1. Clone sets whose LEN(S) and RNR(S) are higher than
other clone sets

• Clone metric RNR(S) eliminates types of if (or
if-else) blocks detected by higher LEN(S) values.

• Clone Metric LEN(S) eliminates small size code
clones detected by higher RNR(S) values.

2. Clone sets whose LEN(S) and POP(S) are higher than
other clone sets

• Only if code clones in a clone set have similar
or same constructs of token sequence, the clone
metric POP(S) value increases. Therefore, clone
metric POP(S) eliminates consecutive if blocks
detected by higher LEN(S) values.

• Clone metric LEN(S) eliminates small size clone
sets detected by higher POP(S) values.

3. Clone sets whose RNR(S) and POP(S) are higher than
other clone sets

• Clone metric RNR(S) eliminates language depen-
dent code clones detected by higher POP(S) val-
ues. Therefore, It is highly possible that these
clone sets include specific logics, because consec-
utive if (or if-else) blocks, case entries of switch
statements, consecutive variable declarations are
not included.

• higher POP(S) values mean code clones in a clone
set appear more frequently in software. There-
fore, it improves the maintainability to perform
refactoring to these clone sets.

4. Clone sets whose LEN(S), RNR(S), and POP(S) are
higher than other clone sets

• Clone metric RNR(S) eliminates language depen-
dent code clones.

• Clone sets whose higher POP(S) apply good mo-
tivation for refactoring to developers because to
perform refactoring to code clones in a clone set
appear more frequently in software improves the
maintainability.

• Clone metric LEN(S) eliminates small size clone
sets.

4. INDUSTRIAL CASE STUDY
To validate our proposal method, we performed a case

study. Our case study subject is an industrial software
that was developed by NEC, a Japanese multinational IT
company. This section describes the study steps and study
subjects. Results of case study are then reported. Finally,
threats to validity are discussed.

4.1 Study Steps
The steps of the case study and its explanation are the

following:

1. Gemini extracted clone sets from CCFinder’s output.

The input of CCFinder was software developed by
NEC. NEC plans to maintain the software for
the next 10 years. Developers wanted to perform
refactoring of this software for maintenance effi-
ciency. Therefore, it was adequate software to
extract clone sets for refactoring.

2. We selected clone sets from Gemini’s output using clone
metrics.

• Based on following assumptions, we selected met-
rics LEN(S), RNR(S), and POP(S).

10

– To perform refactoring small size clone sets,
and a few code clones is more ineffective than
long size clone sets, and numerous number of
code clones.

– It is ineffective to check language-dependent
code clones for refactoring.

• We selected clone sets detected by higher com-
bined clone metrics values. To compare a result
of these clone sets, clone sets whose individual
clone metric value is higher are also selected.

3. We conducted a survey about these clone sets and got
feedback from a developer.

• The developer is a project manager with 10 years
of development experiences with Java.

• We asked him to fill out surveys considering feasi-
bility of performing refactoring and cost in main-
tenance.

• The survey includes a list of selected code clones
and a question for each clone set. The question
asks whether developers would perform refactor-
ing or not. The developer answered using the
following options:

– Perform refactoring.

– Write comments about code clones, but don’t
perform refactoring.

– Change nothing.

– Others.

4. We analyzed the result of survey.

• If clone sets were marked as “Write comments
about code clones, but don’t perform refactor-
ing”or“Change nothing”or“Others”, we regarded
those clone sets as inappropriate clone sets for
refactoring.

• If clone sets detected by higher combined clone
metrics were more marked as “Perform refactor-
ing” than clone sets detected by higher individ-
ual clone metric value, we can say our proposed
method successfully to selected the clone sets for
refactoring.

4.2 Study Subject
The subject of this case study was a web-application soft-

ware implemented in Java. It is 110KLOC across 296 files.
In this study, we set 30 tokens as the minimum token length
of a code clone. As CCFiner’s output, 736 clone sets are de-
tected. Due to the limitation of time and effort, we selected
each 62 clone sets detected by higher individual clone metric
value, and combined clone metrics values. The following are
details of subject clone sets:

SLEN : Clone sets whose LEN(S) value are top 10 high.

SRNR : Clone sets whose RNR(S) value are top 10 high.

SPOP : Clone sets whose POP(S) value are top 10 high.

SLEN·RNR : 15 clone sets whose LEN(S) and RNR(S) val-
ues are high rank in the top 15.

SLEN·POP : 7 clone sets whose LEN(S) and POP(S) values
are high rank in the top 15.

Table 1: Correlation between clone metrics LEN,
RNR, and POP

LEN RNR POP

LEN -
RNR −0.02 -
POP −0.20 −0.12 -

SRNR·POP : 18 clone sets whose RNR(S) and POP(S) val-
ues are high rank in the top 15.

SLEN·RNR·POP : 1 clone set whose LEN(S), RNR(S) · POP(S)
value are high rank in the top 15.

Note that the intersection of the set SLEN ∪SPOP ∪SRNR

and the set SLEN·RNR ∪ SLEN·POP ∪ SRNR·POP is only 5
in all of 62 surveyed clone sets.

Here, we determined the correlation between metrics LEN,
RNR, and POP To confirm our proposal method. Table 1
describes Spearman correlation coefficient. As shown in Ta-
ble 1, all correlations were smaller than 0.50 Therefore, there
is no significant relationship among the clone metrics LEN,
RNR and POP.

4.3 Result of Survey
To analyze the result, we use precision and average preci-

sion. Here, purpose of using precision and average precision
are described below:

Precision : To investigate the question “How many refac-
toring candidates were accepted by developer?”

Average precision : To investigate the question“Are refac-
toring candidates shown in high rank?”. It takes value
0 and 1, with higher values indicating that clone sets of
higher metrics values are more accepted as refactoring
candidates.

Let SAll represent ALL clone sets that are selected by each
method, SARC represents clone sets Accepted as Refactoring
Candidates by a developer.

Precision =
|SARC |
|SAll|

Additionally, let |SARC | = N , Precision(r) represents the
Precision of a clone set who accepted as a refactoring can-
didate at rank r.

AveragePrecision =

NX
i=1

Precision(r)

N

Table 2 and Table 3 describe the result of the survey. 3

In Table 2 and Table 3, column Clone Sets shows name of
subject clone sets. #Selected Clone Sets and #Refactoring

shows the number of selected clones and the number of clone
sets marked as “Perform refactoring” respectively.

3In Table 2, LEN(S), and LEN(S) · POP(S) have two marks
“Perform refactoring” and “Write comments” since those
clone sets comprise two parts: one is a refactoring target
and another should be commented. They were counted as
“Perform refactoring.”

11

Table 2: Results, precision, and average precision of each clone set in the survey

Clone Sets #Selected Clone Sets #Refactoring Precision Average Precision
SLEN 10 7 0.70 0.57
SRNR 10 4 0.40 0.32
SPOP 10 3 0.30 0.26
SLEN·RNR 15 13 0.87 0.95
SLEN·POP 7 6 0.86 0.92
SRNR·POP 18 14 0.78 0.97
SLEN·RNR·POP 1 1 1.00 1.00

Table 3: Results of clone sets detected by higer individual clone metric, and combined metrics in the survey

Filtering Method #Selected Clone Sets #Refactoring Precision
Individual Clone Metric 30 14 0.47
Combined Clone Metrics 41 34 0.83

As shown in the column“Precision” in Table 2, a clone set
who has the lowest precision(0.30) is SPOP , and a clone set
who has the highest precision(1.00) is SLEN·RNR·POP . This
means using metrics LEN(S), RNR(S), and POP(S) are the
most acceptable for refactoring, and using metric RNR is
unacceptable to extract clone sets for refactoring. However,
number of LEN(S) · RNR(S) · POP(S) are only one, we
need a further investigation that these clone sets are really
the most the most appropriate clone sets for refactoring.

The details of precision are the followings. The precisions
of SRNR, SPOP are smaller than 0.50. This means that
these clone sets are appropriate for refactoring. However,
the precisions of SLEN , SLEN·RNR, SLEN·POP , SRNR·POP ,
and SLEN·RNR·POP are more than 0.70 (They are shown in
bold in column“Precision” in table 2), this means that these
clone sets are inappropriate for refactoring.

Nevertheless, we had a strong concern that SLEN are re-
ally appropriate clone sets for refactoring. Therefore, we in-
troduced average precision to confirm that using clone met-
ric LEN(S) is really acceptable to extract clone sets for refac-
toring. As shown in Table 2, average precision of SLEN is
0.57. Contrary to this, the average precisions of all clone
sets detected by higher combined clone metrics are over
0.90(They are shown in bold in column “Average Precision”
in table 2). Clone sets who has higher average precisions
mean that clone sets detected by higher clone metric values
are more appropriate for refactoring than clone sets detected
by lower clone metric values . In fact, top 2 clone sets of
SLEN were not marked as “Perform refactoring” in the sur-
vey. However, top 2 clone sets of all clone sets detected
by high combined clone metrics were marked as “Perform
refactoring” by a developer. Hence, to extract refactoring
candidate clone sets, using clone metric LEN(S) is unac-
ceptable.

Moreover, as shown in Table 3, Precision of clone sets
detected by higher combined clone metrics (They are shown
in bold in column “Precision” in table 3) are higher than
precision of clone sets detected by higher individual clone
metric. In conclusion, using higher combined clone metrics
is more appropriate to extract clone sets for refactoring than
using each individual clone metric.

4.4 Threats to Validity
Because of the limitation of developer’s time and effort,

the survey included 10 clone sets for higher individual clone
metric, and 41 clone sets selected by the combinations of
higher clone metrics. If we selected all clone sets in software
for survey, we might get different results. In addition, It is
highly possible to lost relevant clone sets for refactoring due
to filtering. However, as we mentioned Section 4.3, clone sets
whose combined clone metrics values are higher were more
accepted as refactoring candidates in the survey. Thus, we
believe that the result of survey dose not significantly change
if we checked all code clone sets in software.

Moreover, our case study is conducted on a single system
and got feedback from one developer. Therefore, although
we could successfully validate our method in this study, our
method may not generalize to other software. To improve
generality, we need to investigate other software. We are
planning to assess our method with open source software
based on their changed history, investigate recall. However,
there is a small chance to analyze industrial software in a
refactoring phase prior to its release.

5. RELATED WORK
Jiang et al.[6] and Kapser et al.[9] pointed out that code

clone detection tools using parameterized matching detected
a lot of false positives. Jiang et al.[6] used textual filtering
techniques to remove false positives from CCFinder’s out-
put. They removed code clones whose textual similarity
falls below a certain threshold. Kapser et al.[9] proposed
the following techniques to remove false positives from the
output of their token-based clone detection tool.

• Identifier names outside functions (e.g., Java methods,
C functions) are not parameterized. For example, dec-
larations of field variables in Java programs and exter-
nal variables in C programs are often duplicated but
most of them are false positives.

• Simple method calls are matched only if Levenshtein
Disitance of those method names is small.

• Logical structures (e.g., switch statements, if (or if-
else) blocks) are matched if 50% of tokens in these
structures are identical.

12

There is the possibility to make our method more effective
by applying the filtering techniques proposed by Jiang et al.
and Kapser et al. as the preprocessor or the postprocessor
of our method.

CCFinderX[7] developed by Kamiya provides the metric
TKS(S) that means the number of token types in code clones
belonging clone set S. The metric TKS is effective to remove
clone sets not in need of developer’s investigation (e.g., con-
secutive variable declarations) because those clones tend to
have small numbers of token types. This means that there is
the possibility of improving the effectiveness of our method
by use of the metric TKS in addition to the use of the metric
RNR. However, clone sets with low RNR value include a lot
of consecutive parts. They tend to have small number of to-
ken types and low TKS value. This correlation means that
the use of both TKS and RNR are not significantly effective.

Balazinska [1] et al. and Higo [4] et al. characterize clone
sets according to the ease of refactoring. Balazinska et al.
characterize clone sets by analyzing the following informa-
tion:

• Differences among the code clones belonging to a clone
set

• Dependencies between the code clone belonging to a
clone set and its surrounding code

Higo [4] et al. proposed two metrics to represent the aver-
age number of the externally defined variables respectively
referenced and assigned in the code clones belonging to a
clone set. The combination of our method and the tech-
niques focusing on the ease of refactoring has the possibility
to improve the effectiveness of clone set filtering.

Here, we summarize the main originality of our work.

• To remove false positives, we propose a method that
combines multiple metrics. Those metrics are cate-
gorized into two types. LEN(S) and POP(S) metrics
focus on the amount of code duplication. On the other
hand, RNR(S) metric focuses onwhether or not code
clones belonging to a clone set are language-dependent
code.

• In the case studies, our method extracted a lot of clone
sets that are evaluated as refactoring candidates by a
NEC developer.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a method to extract appropri-

ate clone sets for refactoring from the output of CCFinder.
Also, we showed the usefulness of the proposed method with
an industrial case study using the source code developed by
NEC. The case study indicates the proposed method is more
efficient than using individual clone metric to extract clone
sets for refactoring.

As future work, we are planning to perform case stud-
ies of open source software and investigate the usefulness
of proposed method. Moreover, we would like to improve
our proposed method by taking previous filtering and clone
metrics described in 5 section to proposed method. Finally,
we would like to check the following factors, for the reason
that these factors mainly influence the estimated trade off
between effort for clone removal and estimated savings due
to better future maintainability.

• Number and type of differences between code clones

• Location of the code clones in the software

• Ownership issues

• Test coverage

Acknowledgments
We express our great thanks to Ms. Fusako Mitsuhashi and
Mr. Shin’ichi Iwasaki of NEC Corporation for data collec-
tion, and Dr. Daniel German of the University of Victoria
for helpful comments on earlier revisions of this paper. We
also thank Dr. Simone Livieri of Osaka University for proof-
reading this paper. This work is being conducted as a part
of Stage Project. Also, this work is partially supported by
JSPS, Grant-in-Aid for Scientific Research (A) (21240002)
and Grant-in-Aid for Research Activity start-up(22800040).

7. REFERENCES
[1] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and

K. Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In Proc. of WCRE
2000, pages 98–107, 2000.

[2] M. Fowler. Refactoring: improving the design of
existing code. Addison Wesley, 1999.

[3] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Method and Implementation for Investigating Code
Clones in a Software System. Information and
Software Technology, 49(9-10):985–998, 2007.

[4] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based
approach to identifying refactoring opportunities for
merging code clones in a Java software system. J.
Softw. Maint. Evol.: Res. Pract., 20:435–461, 2008.

[5] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
DECKARD: Scalable and accurate tree-based
detection of code clones. In Proc. of ICSE 2007, pages
96–105, 2007.

[6] Z. M. Jiang and A. E. Hassan. A framework for
studying clones in large software systems. In Proc. of
SCAM 2007, pages 203–212, 2007.

[7] T. Kaimiya. Tutorial of CLI Tool ccfx, 2008.
http://www.ccfinder.net/doc/10.2/en/

tutorial-ccfx.html.

[8] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw.
Eng., 28(7):654–670, 2002.

[9] C. J. Kapser and M. W. Godfrey. “Cloning considered
harmful” considered harmful: patterns of cloning in
software. Empir Software Eng, 13:645–692, 2008.

[10] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. In Proc. of
ESEC/FSE 2005, pages 187–196, 2005.

[11] C. Roy and J. Cordy. Scenario-based comparison of
clone detection techniques. In Proc. of ICPC 2008,
pages 153–162, 2008.

[12] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue.
Gemini: Maintenance support environment based on
code clone analysis. In Proc. of METRICS 2002, pages
67–76, 2002.

13

