
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

Finding Code Clones for Refactoring with Clone Metrics :

A Case Study of Open Source Software

Eunjong CHOI†, Norihiro YOSHIDA††, Takashi ISHIO†, Katsuro INOUE†, and Tateki SANO†††

† Graduate School of Information Science and Technology, Osaka University

1–5 Yamadaoka, Suita-shi, Osaka, 565–0871 Japan

†† Graduate School of Information Science, Nara Institute of Science and Technology

8916–5 Takayama-cho, Ikoma-shi, Nara, 630–0192 Japan

††† Software Process Innovation and Standardization Division, NEC Corporation

5–7–1 Shiba, Minato-ku, Tokyo, 108–8001 Japan

E-mail: †{ejchoi,ishio,inoue}@ist.osaka-u.ac.jp, ††yoshida@is.naist.jp, †††t-sano@cp.jp.nec.com

Abstract A code clone is a code fragment that has identical or similar code fragments to it in the source code.

Code clone has been regarded as one of the factors that makes software maintenance more difficult. Therefore, to

refactor code clones into one method is promising way to reduce maintenance cost in the future. In our previous

study, we proposed a method to extract code clones for refactoring using clone metrics. We had conducted an

empirical study on Java application developed by NEC Corporation. It turned out that our proposed method is

effective to extract refactoring candidate code clones. In this paper, we show the result of applying our proposed

method into open source software systems.

Key words code clone, refactoring, open source software

1. Introduction

Code clone is similar or identical code fragments in source

code. The presence of code clones has been regarded as in-

dication of low maintainability of software because if a bug

is found in a code clone, the other code clone have to be

checked for defect detection.

Refactoring [5] is the process of changing a software system

in such a way that it does not alter the external behavior

of the code yet improves its internal structure. Refactoring

code clones (e.g., merge code clones into a single method in

Java program) is an effective way to reduce code clones in a

software system.

However, all code clones detected by a code clone detec-

tion tool are not appropriate for refactoring. For example,

language-dependent code clones [6] (i.e. code clones that in-

dispensably exist in a source code due to the specifications of

used program language) are clearly inappropriate for refac-

toring. Although, numerous techniques and tools have been

proposed for code clone detection [8], [11], only little has been

known about which detected code clones are appropriate for

refactoring and how to extract code clones for refactoring.

Our previous study [4] proposed method to extract code

clones for refactoring using clone metrics. We showed the

usefulness of our proposed method with a survey to a de-

veloper in NEC Corporation. According to the feedback, it

turned out that our proposed method using combined clone

metrics is effective method to extract code clones for refac-

toring.

However, due to the time limitation, we conducted on a

single system in previous study. Therefore, although we

could validate our method in previous study, our method

may not generalize to other software systems.

In this study, we apply our proposed method to open

source software and discuss its results. The rest of this paper

is organized as follows: We first expalin the background of

our study in Section 2 and then describe a case study and its

results in Section 3. Section 4 discusses threats to validity.

Section 5 surveys related work, and Section 6 concludes our

paper.

2. Background

In this section, we explain about clone metrics and our

previous method based on them.

2. 1 Clone Metrics

Our research group have developed and proposed a token-

— 1 —



based code clone detection tool CCFinder [11] and a code

clone analysis environment Gemini [13] which visualizes the

code clone information from CCFinder. Gemini supports

clone metrics LEN(S), POP(S) and RNR(S) [6], [13]. Each

of them characterize a clone set (i.e. an equivalent of code

clones) S:

• LEN(S) − The average number of token sequence of

code clones in a clone set S.

• POP(S) − The number of code clones in a clone set

S.

• RNR(S) − The ratio of non-repeated token sequence

of code clone in a clone set S.

The definition of RNR(S) metric is described in Equa-

tion (1). If clone set S includes n code clones, c1, c2 . . . , cn,

LOSwhole(fi) is the Length Of the whole token Sequence of

code clone ci. LOSnon−repeated(fi) is the Length Of non-

repeated token Sequence of code clone ci, then,

RNR(S) =

n∑
i=1

LOSnon−repeated(ci)

n∑
i=1

LOSwhole(ci)

× 100 (1)

2. 2 Features of Clone Sets Whose Each Clone

Metric is Higher

Gemini characterizes code clones using clone metrics. Our

research group has analyzed clone sets in numerous software

systems for several proposes (e.g., refactoring, defect-check)

using Gemini. The followings are the characteristics of clone

sets extracted by each clone metric [6].

• Clone sets whose LEN(S) is higher than others −
Clone sets whose LEN(S) is higher than other clone sets

means that each code clone in a clone set S consists of longer

token sequences than others clone sets. According to our

observation, many of them include many consecutive if (or

if-else) blocks that involve similar but different conditional

expressions.

• Clone sets whose RNR(S) is higher than others −
Clone sets whose RNR(S) is higher than other clone sets

means that each code clone in a clone set S consists of more

non-repeated code. According to our observation, because

clone metric RNR(S) distinguishes only “non-repeated” to-

ken sequences from “repeated” token sequences of code

clones, many of them do not organize a single semantic unit

(i.e., many instructions forming a single functionality)

• Clone sets whose POP(S) is higher than others −
Clone sets whose POP(S) is higher than other clone sets

means that code clones in a clone set S appear more fre-

quently in the system. According to our observation, those

clone sets include many small size code clones. Moreover,

these clone sets include a lot of language-dependent code

clones.

2. 3 Combinations of Clone Metrics

Our research group have suggested code clones for refac-

toring to industrial software developers.

However, according to their opinion, many of code clones

that are extracted using just high single clone metric are in-

appropriate for refactoring due to the weakness described in

Section 2. 2. In order to improve the weakness of single-

metric-based extraction, we proposed a method based on

“combination of clone metrics”. The followings are the de-

tails about the conducted case study in previous study for

validating the our proposed method that using combined

clone metrics.

2. 3. 1 Target Clone Sets

The target of the case study was a Java software developed

by NEC corporation. It is 110KLOC across 296 files. From

736 clone sets that are detected by CCFinder, we selected

62 clone sets using a single clone metric value, and combined

clone metrics values. We used 30 tokens as the minimum

length of token sequence of a code clone to CCFinder.

The following are the details of subject clone sets:

• SLEN − Clone sets whose LEN(S) value are top 10

high.

• SRNR − Clone sets whose RNR(S) value are top 10

high.

• SPOP − Clone sets whose POP(S) value are top 10

high.

• SLEN·RNR − 15 clone sets whose LEN(S) and RNR(S)

values are high rank in the top 15.

• SLEN·POP − 7 clone sets whose LEN(S) and POP(S)

values are high rank in the top 15.

• SRNR·POP − 18 clone sets whose RNR(S) and POP(S)

values are high rank in the top 15.

• SLEN·RNR·POP − 1 clone set whose LEN(S), RNR(S)

and POP(S) values are high rank in the top 15.

2. 3. 2 Results

We conducted a case study according to the following

steps:

（ 1） Selected clone sets (details about these clone sets

are described in Section 2. 3. 1) from CCFinder’s output us-

ing clone metrics in Gemini.

（ 2） Conduct a survey about these clone sets and got

feedback from a developer. The developer is a project man-

ager with 10 years of development experiences with Java.

（ 3） Analyze the result of conducted survey.

We use Precision to analyses results of the survey. It can

be used to investigate the question “How many clone sets

were accepted as refactorable clone sets by a developer?”

Equation (2) describes Precision. Let SAll represent all clone

— 2 —



Table 1 Precisions in the survey conducted in previous study

Clone Sets #Selected Clone Sets #Refactoring Precision

SLEN 10 7 0.70

SRNR 10 4 0.40

SPOP 10 3 0.30

SLEN·RNR 15 13 0.87

SLEN·POP 7 6 0.86

SRNR·POP 18 14 0.78

SLEN·RNR·POP 1 1 1.00

Table 2 Results of clone sets detected by a single clone metric, and combined metrics in

the survey

Filtering Method #Selected Clone Sets #Refactoring Precision

Single Clone Metric 30 14 0.47

Combined Clone Metrics 41 34 0.83

sets that are selected by each method, SARC represents clone

sets accepted as refactorable clone sets by a developer.

Precision =
|SARC |
|SAll|

(2)

Tables 1 and 2 describe the result of the survey. In Tables

1 and 2, column Clone Sets shows name of target clone sets.

#Selected Clone Sets and #Refactoring show the number

of selected clones from CCFinder‘s output and the number of

clone sets that selected as refactorable clone sets in a survey

respectively.

As shown in the column “Precision” in Table 1, precisions

of SRNR, SPOP are smaller than 0.50. This means that

those clone sets were accepted by a developer as inappro-

priate clone sets for refactoring.

However, precisions of SLEN , SLEN·RNR, SLEN·POP ,

SRNR·POP , and SLEN·RNR·POP are more than 0.70. This

means that they were accepted by a developer as appro-

priate clone sets for refactoring. It is clear that all clone

sets that are extracted using combined clone metrics values

(SLEN·RNR, SLEN·POP , SRNR·POP , and SLEN·RNR·POP )

are more than 0.70 (They are shown in bold in column “Pre-

cision” in Table 1) are accepted as refactorable clone sets.

As shown in Table 2, Precision of clone sets that are ex-

tracted using combined clone metrics values are higher than

clone sets than using each single clone metric. Therefore, we

found code clones that extracted using combined clone met-

rics is more frequently accepted as refactorable clone sets

than using each single clone metric.

3. Case Study of Open Source Software

3. 1 Target Systems

In this study, we use two open source Java projects:

Apache Ant [2] and JBoss [1], as our target systems. We use

code clone detection tool, CCFinder and set 30 tokens as the

minimum token length of a code clone because of its use and

setting in previous study. The followings are the details of

each subject system.

• Apache Ant − It is 198KLOC across 778 files. we

selected 87 clone sets from 998 clone sets detected by

CCFinder.

• JBoss − It is 633KLOC across 3, 344 files. we selected

299 clone sets from 730 clone sets detected by CCFinder.

3. 2 Result

Table 3 shows the precisions of clone sets in each software

system. The precisions are little different from the previ-

ous study. The precisions of both SRNR, both SLEN·RNR,

SLEN·POP in Apache Ant, SRNR·POP , and SLEN·RNR·POP

in JBoss are more than 0.50 (They are shown in bold in col-

umn “Precision” in Table 3). The followings are our analysis

on the results.

• SLEN (The precisions are 0.00 and 0.20 in Apache Ant

and JBoss respectively) − Code clones in those clone sets

consist many consecutive if (or if-else) blocks. Consecutive if

(or if-else) blocks are difficult to perform refactoring, gener-

ally. However, in previous study, just 2 types of parameters

are included in consecutive if (or if-else) blocks. Therefore, a

developer selected many clone sets whose LEN(S) value are

top 10 high as refactorable clone sets. On the contrary, due

to various types of parameters are included in consecutive if

(or if-else) blocks, it is inappropriate for refactoring of clone

sets in both Apache Ant and JBoss.

• SRNR (The precisions are 0.70 and 0.80 in Apache Ant

and JBoss respectively) − The size of many code clones in

those clone sets are short. Several clone sets in Apache Ant

and JBoss include insufficient scale code clones to organize

semantic units..

• SPOP (The precisions are 0.00 and 0.00 in Apache

Ant and JBoss respectively) − Code clones in clone sets

whose POP(S) are higher than other clone sets appear more

frequently in the system. Many of them in both Apache

— 3 —



Table 3 Results of each target system

Clone Sets Target System #Selected Clone Sets #Refactoring Precision

SLEN Apache Ant 10 0 0.00

JBoss 10 2 0.20

SRNR Apache Ant 10 7 0.70

JBoss 10 8 0.80

SPOP Apache Ant 10 0 0.00

JBoss 10 0 0.00

SLEN·RNR Apache Ant 8 6 0.75

JBoss 63 37 0.59

SLEN·POP Apache Ant 18 10 0.56

JBoss 104 3 0.03

SRNR·POP Apache Ant 34 16 0.47

JBoss 129 32 0.25

SLEN·RNR·POP Apache Ant - - -

JBoss 2 2 1.00

Ant and JBoss appear frequently in the system because they

are language-dependent code clones and language-dependent

code clones are not appropriate refactoring.

• SLEN·RNR (The precisions are 0.75 and 0.59 in Apache

Ant and JBoss respectively) − Due to various parameter

types between code clones in clone sets in both Apache Ant

and JBoss, several of them could not be merged into a single

program unit.

• SLEN·POP (The precisions are 0.56 and 0.03 in Apache

Ant and JBoss respectively) − Several of thoses clone sets in-

clude many language-dependent code clones in both Apache

Ant and JBoss. Therefore, many of them are inappropriate

for refactoring.

• SRNR·POP (The precisions are 0.47 and 0.25 in Apache

Ant and JBoss respectively) − Several of thoses clone sets

do not consist of a single functionality in both Apache Ant

and Jboss. Even though they include many instructions, in-

structions do not consist of a single functionality.

• SLEN·RNR·POP (The precisions are 0.00 and 1.00 in

Apache Ant and JBoss respectively) − Those clone sets are

appropriate for refactoring compared to the other combina-

tion of clone metrics.

4. Threats to Validity

Due to the limited time and effort, we only evaluate pre-

cision of our method. We believe that precision is a good

enough criterion for validating our method.

Moreover, because we use only 3 clone metrics in our stud-

ies, it may not good enough to reveal the all characteristic of

appropriate code clones for refactoring. We are planning to

use other clone metrics and source code metrics (e.g., com-

plexity metrics).

Finally, because our case study is conducted on Java soft-

ware system, our method may not work on other language

software(e.g., C/C++, Python). In order to improve the

generality of our research, we need to investigate the useful-

ness of our method for source code written in without Java.

5. Related Work

Jiang et al. [9] and Kapser et al. [12] pointed out that code

clone detection tools using parameterized matching detected

a lot of false positives. Jiang et al. [9] used textual filtering

techniques to remove false positives from CCFinder’s output.

They removed code clones whose textual similarity falls be-

low a certain threshold. Kapser et al. [12] proposed the fol-

lowing techniques to remove false positives from the output

of their token-based clone detection tool.

• Identifier names outside functions (e.g., Java methods,

C functions) are not parameterized. For example, declara-

tions of field variables in Java programs and external vari-

ables in C programs are often duplicated but most of them

are false positives.

• Simple method calls are matched only if Levenshtein

Disitance of those method names is small.

• Logical structures (e.g., switch statements, if (or if-

else) blocks) are matched if 50% of tokens in these structures

are identical.

There is the possibility to make our method more effective

by applying the filtering techniques proposed by Jiang et al.

and Kapser et al. as the preprocessor or the postprocessor

of our method.

CCFinderX [10] developed by Kamiya provides the metric

TKS(S) that means the number of token types in code clones

belonging clone set S. The metric TKS is effective to remove

clone sets not in need of developer’s investigation (e.g., con-

secutive variable declarations) because those clones tend to

have small numbers of token types. This means that there is

the possibility of improving the effectiveness of our method

— 4 —



by use of the metric TKS in addition to the use of the met-

ric RNR. However, clone sets with low RNR value include a

lot of consecutive parts. They tend to have small number of

token types and low TKS value. This correlation means that

the use of both TKS and RNR is not significantly effective.

Balazinska [3] et al. and Higo [7] et al. characterize clone

sets according to the ease of refactoring. Balazinska et al.

characterize clone sets by analyzing the following informa-

tion:

• Differences among the code clones belonging to a clone

set

• Dependencies between the code clone belonging to a

clone set and its surrounding code

Higo [7] et al. proposed two metrics to represent the aver-

age number of the externally defined variables respectively

referenced and assigned in the code clones belonging to a

clone set. The combination of our method and the tech-

niques focusing on the ease of refactoring has the possibility

to improve the effectiveness of clone set filtering.

6. Summary and Future Work

In this paper, we conducted a case study of open source

software systems and discuss its result. We found that that

reasons why several clone sets are inappropriate for refactor-

ing.

As future work, we are planning to perform case studies of

software systems written without using Java. Moreover, we

would like to investigate recall and more metrics.

Acknowledgments

We express our great thanks to Ms. Fusako Mitsuhashi and

Mr. Shin’ichi Iwasaki of NEC Corporation for data collec-

tion. This work is being conducted as a part of Stage Project.

Also, this work is partially supported by JSPS, Grant-in-Aid

for Scientic Research (A) (21240002) and Grant-in-Aid for

Research Activity start-up(22800040).

References

[1] JBoss Application Server. http://www.jboss.org.

[2] The Apache Ant Project. http://ant.apache.org/.

[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and

K. Kontogiannis. Advanced clone-analysis to support

object-oriented system refactoring. In Proc. of WCRE 2000,

pages 98–107, 2000.

[4] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano. Ex-

tracting code clones for refactoring using combinations of

clone metrics. In Proc. of the IWSC 2011, pages 7–13, 2011.

[5] M. Fowler. Refactoring: improving the design of existing

code. Addison Wesley, 1999.

[6] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method

and Implementation for Investigating Code Clones in a Soft-

ware System. Information and Software Technology, 49(9-

10):985–998, 2007.

[7] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based ap-

proach to identifying refactoring opportunities for merging

code clones in a Java software system. J. Softw. Maint.

Evol.: Res. Pract., 20:435–461, 2008.

[8] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD:

Scalable and accurate tree-based detection of code clones.

In Proc. of ICSE 2007, pages 96–105, 2007.

[9] Z. M. Jiang and A. E. Hassan. A framework for studying

clones in large software systems. In Proc. of SCAM 2007,

pages 203–212, 2007.

[10] T. Kaimiya. Tutorial of CLI Tool ccfx, 2008. http:

//www.ccfinder.net/doc/10.2/en/tutorial-ccfx.html.

[11] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A

multilinguistic token-based code clone detection system

for large scale source code. IEEE Trans. Softw. Eng.,

28(7):654–670, 2002.

[12] C. J. Kapser and M. W. Godfrey. “Cloning considered

harmful” considered harmful: patterns of cloning in soft-

ware. Empir Software Eng, 13:645–692, 2008.

[13] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gem-

ini: Maintenance support environment based on code clone

analysis. In Proc. of METRICS 2002, pages 67–76, 2002.

— 5 —


