
1

日本ソフトウェア科学会第 28 回大会 (2011 年度) 講演論文集

ModiChecker : Accessibility Excessiveness Analysis

Tool for Java Program

Dotri Quoc　Kazuo Kobori　Norihiro Yoshida　

Yoshiki Higo　Katsuro Inoue

In object-oriented programs, access modifiers are used to control the accessibility of fields and methods from other ob-
jects. Choosing appropriate access modifiers is one of the key factors for highly secure and easily maintainable programming.
In this paper, we propose a novel analysis method named Accessibility Excessiveness (AE) for each field and method in Java
program, which is discrepancy between the access modifier declaration and its real usage. We have developed an AE an-
alyzer - ModiChecker which analyzes each field or method of the input Java programs, and reports the excessiveness. We
have applied ModiChecker to various Java programs, including several OSS, and have found that this tool is very useful to
detect fields and methods with the excessive access modifiers.

1 Introduction

To realize good encapsulation in Java programs, we

have to choose appropriate access modifiers of methods

and fields in a class, which may be possibly accessed by

other objects. However, inexperienced developers tend

to set all of the access modifiers public or none as

ModiChecker :Java プログラムのアクセス修飾子過剰性分
析ツール

Dotri Quoc,大阪大学大学院情報科学研究科コンピュータ
サイエンス専攻, Department of Computer Science, Grad-
uate School of Information Science and Technology, Osaka
University.
小堀 一雄, 大阪大学大学院情報科学研究科コンピュータ
サイエンス専攻, Department of Computer Science, Grad-
uate School of Information Science and Technology, Osaka
University.
吉田則裕,奈良先端科学技術大学院大学情報科学研究科,

Graduate School of Information Science, Nara Institute of
Science and Technology.
肥後 芳樹, 大阪大学大学院情報科学研究科コンピュータ
サイエンス専攻, Department of Computer Science, Grad-
uate School of Information Science and Technology, Osaka
University.
井上 克郎, 大阪大学大学院情報科学研究科コンピュータ
サイエンス専攻, Department of Computer Science, Grad-
uate School of Information Science and Technology, Osaka
University.

default indiscriminately.

For example, Figure 1 is a case of bad access modifier

setting. Suppose that we have 2 methods: Method A and

Method B in class X. Method A keeps an initialization

process for Method B. It means Method A must be called

before Method B is called. Otherwise, Method B can not

work properly. In this case, Method B should be always

called via Method A, and the access modifier of Method

B should be set private. However, a novice developer

might set that access modifier public without thinking

seriously. In a meanwhile, other developer would want to

use Method B and he/she can directly call it since the ac-

cess modifier of Method B allows direct access to it. This

may cause a fault due to lack of the initialization process

performed by Method A.

In this example, the access modifier of Method B is

public, but the current program accesses Method B

from private method (Method A only in this case) and

the access modifier of method B should be private.

Such discrepancy between declared accessibility and ac-

tual usage of each method and field is called Accessibility

Excessiveness(AE) here.

An AE would cause an unwilling access to a method or

2 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

Figure 1 Example of Wrong Access Modifier Declaration

field which should not be accessed by other objects in a

latter development or maintenance phase as shown in the

example. Also, existence of AE would be an indicator of

immaturity of the developer.

Checking AE by hand for each method and field is not

a easy task since collecting actual usage of methods and

fields from other objects requires a lot of effort.

In this paper, we propose an AE analysis tool named

ModiChecker, which takes a Java program as input,

then analyzes and reports the excessiveness of each

access modifier declared for each method and field.

ModiChecker is based on static program analysis frame-

work MASU[3,4,5], which allows a flexible composition

of various analysis tools very easily.

Using ModiChecker, we have analyzed several open

source software(OSS) such as Ant and jEdit. Also,

MASU itself has been analyzed by ModiChecker. The

analysis results show that some OSS contain many AE

methods and fields, which should be set to more restric-

tive access modifiers.

There are little works related to ours. Tai Cohen stud-

ied the distribution of the number of each Java access

modifier in some sample methods[1].

In the following, we will define AE in Section 2, Sec-

tion 3 describes ModiChecker and MASU. In Section 4,

we will show our experimental results of ModiChecker.

Section 5 will conclude our discussions with a few future

works.

2 Accessibility Excessiveness Map

Table 1 is called Accessibility Excessiveness Map(AE

map), which lists all the cases where an AE happens.

The vertical column shows the declaration of an access

modifier for a method or field in the source code. The

horizontal row shows its actual usage from other objects.

Each element in AE map is an AE Identifier(AE id) which

identifies each AE case. For example, if a method has

public as the declaration of the access modifier, and it

is accessed only by the objects of same class, the AE id

is “pub3” meaning it could be set to private. Note that

“default(none)” means the case that there is no ex-

plicit declaration of the access modifier and it is the same

as package.

An AE id “ok-xxx” means that there is no discrep-

ancy between the declaration and actual usage, and it is

an ideal way of secure and quality programming. An AE

id “x” means that these cases are detected as error at the

compilation time and they are out of the scope of the AE

analysis. An AE id in shaded cells means that the decla-

ration is excessive one from the actual usage of the access

modifier.

Purpose of the AE analysis is to identify an AE id for

each method and field in the input source code. Also, we

are interested in the statistic measures of AE ids for the

input program, which would be important clues of pro-

gram quality.

3 AE Analysis Tool ModiChecker

3. 1 Approach to AE Analysis

To perform the AE analysis, we need to know the dec-

laration of the access modifiers of each method and field

of the input program. This is easily done by parsing the

program. Also, we have to investigate into the actual us-

age of each method and field. For this work, we employ a

static source-code analysis, which identifies other classes

that may possibly access the target method or field. For

these purposes, we have used a Java program analysis

framework MASU[3,4,5].

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 3

Table 1 Accessibility Excessiveness Map
XXXXXXXXXXXXXDeclaration

Actual Usage
Public Protected Default(None) Private

Public ok-pub0 pub1 pub2 pub3

Protected x ok-pro0 pro1 pro2

Default(None) x x ok-def0 def1

Private x x x ok-pri0

MASU has been originally designed to implement

pluggable multi-purpose metrics infrastructure, but it

is very useful as a Java program analysis framework.

MASU transforms the input Java program into an Ab-

stract Syntax Tree (AST), and then it analyzes AST for

actual usage of the methods and fields in the input pro-

gram.

3. 2 Overview of ModiChecker Architecture

Figure 2 Architecture of ModiChecker

Figure 2 shows the architecture of ModiChecker.

Firstly, Modichecker reads source program and all of the

required library (normally, the library files are often in

.jar files) in Java. The source code is transformed to an

AST associated with various static code analysis results.

After analyzing source, we get the access modifier dec-

laration and also usage of each field and method. From

the AST database, we can easily know which class may

access that method/field.

By comparing the declaration of the access modifier

and real usage of the field and method, ModiChecker re-

ports AE for each field and method.

ModiChecker treats some special cases as follow

• ModiChecker does not give any report for meth-

ods of abstract classes or interfaces because they are

overridden by the method of other classes. One more

reason is that an abstract class or interface does not

generate any object so that its methods will never be

called and those access modifiers do not affect main-

tenance processes.

• In the case of a method overriding an other method,

the overriding method in a subclass must have an ac-

cess modifier with an equal or more permissive level

to the access modifier of the overridden method.

ModiChecker detects such an overriding method and

reports an AE id between the access modifier of the

overridden method and its actual usage. For exam-

ple, in Figure 3, assume that we have two classes

Class A and Class B with Method A.C and Method

B.C of access modifier public for both. Method

B.C overrides Method A.C so ModiChecker do not

report private for Method B.C even if Method B.C

is actually used inside Class B only.

4 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

Figure 3 Example of Access Modifier of Overriding

Method

4 Experiment and Discussion

4. 1 Overview

We have conducted case studies with some open-

source code projects to evaluate the AE analysis. In the

evaluation, we have focused on the following points.

• The total number of each AE id is measured to eval-

uate how program is well designed.

• Based on the above result, we have closely investi-

gated the reasons of setting the access modifiers ex-

cessively. Sometime an access modifier would be

intentionally set excessively by the developers for

the future purpose, or sometime they would be set

excessively by automatic code generator.

The target software products are the following Java

programs.

• MASU itself with 519 source files and 102,000

LOC (41,000 LOC are automatically generated code

by ANTLR.)

• Ant 1.8.2 with 1,141 source files and 127,235 LOC.

• jEedit 4.4.1 with 546 source files and 109,479 LOC.

4. 2 Experiment Result

4. 2. 1 MASU

By analyzing MASU, we got the number of detected

AE ids for methods and fields as shown in Table 2 and

Table 3.

We have found 280 fields with the excessive access

modifiers. Out of these 280 fields, 255 fields were

identified as automatically generated code by our hand-

analysis. We have interviewed the developer of MASU

and asked the reason of the excessiveness of other fields.

20 fields have been found that they are intentionally set

excessively for future uses. Finally, 5 fields have been

identified actually excessive and those access modifiers

have been changed to proper ones.

We have also found 253 methods with the excessive

access modifier. And by our hand-analysis, 6 methods

were found to be automatically generated code. Out of

those 253 methods, 181 methods are intentionally set ex-

cessively for future uses. Finally, 66 methods have been

identified actually excessive and those access modifiers

have been changed to proper ones.

4. 2. 2 Ant 1.8.2

We have investigated into the newest version of Ant

1.8.2 and got the number of detected AE ids for methods

and fields as shown in Table 4 and Table 5.

We have found 611 fields and 1520 methods with the

excessive access modifiers. By our hand-analysis, we

were unable to find any field with excessive access mod-

ifier generated by some automatic code generator.

Looking at the ratio of excessive access modifier, the

ratio of excessive fields is 18.9%(shown in the shaded

cells in Table 4) while ratio of excessive methods is

35.5%(shown in shaded cells in Table 5). Since a stan-

dard design strategy might be to make all fields pri-

vate and to provide public getter/setter methods for them,

methods has more probability to be set excessively for

future use than fields. That would be the reason why the

ratio of excessive methods is higher than ratio of exces-

sive fields.

4. 2. 3 jEdit 4.4.1

The result of detected AE ids for methods and fields

for jEdit 4.4.1 is shown in Table 6 and Table 7

We have found 604 fields and 981 methods with the

excessive access modifiers. We were unable to find any

field or method with excessive access modifier generated

by some automatic code generator by our hand-analysis.

For jEdit 4.4.1, the ratio of excessive fields is

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 5

Table 2 Number of Detected AE ids for Fields in MASU(Ratio to the Total)
XXXXXXXXXXXXXDeclaration

Actual Usage
Public Protected Default(None) Private

Public 16(6.4%) 0 3(0.4%) 259(33.0%)

Protected x 0 1(0.1%) 14(1.8%)

Default(None) x x 0 3(0.4%)

Private x x x 488(62.2%)

Total fields : 784　　　　　　 Total fields in shaded cells : 280(35.7%)

Table 3 Number of Detected AE ids for Methods in MASU(Ratio to the Total)
XXXXXXXXXXXXXDeclaration

Actual Usage
Public Protected Default(None) Private

Public 471(26.9%) 3(0.2%) 90(5.1%) 124(7.1%)

Protected x 19(1.1%) 0 35(2.0%)

Default(None) x x 4(0.2%) 1(0.1%)

Private x x x 1006(57.4%)

Total fields : 1753　　　　　　 Total fields in shaded cells : 253(14.43%)

Table 4 Number of Detected AE ids for Fields in Ant 1.8.2 (Ratio to the Total)
XXXXXXXXXXXXXDeclaration

Actual Usage
Public Protected Default(None) Private

Public 157(4.9%) 22(0.7%) 64(2.0%) 285(8.9%)

Protected x 54(1.7%) 47(1.5%) 135(4.2%)

Default(None) x x 21(0.7%) 58(1.8%)

Private x x x 2395(73.8%)

Total fields : 3238　　　　　　 Total fields in shaded cells : 611(18.9%)
Total fields in shaded cells : 611

Table 5 Number of Detected AE ids for Methods in Ant 1.8.2 (Ratio to the Total)
XXXXXXXXXXXXXDeclaration

Actual Usage
Public Protected Default(None) Private

Public 1576(36.8%) 100(2.3%) 609(14.2) 454(10.6%)

Protected x 103(2.4%) 117(2.7%) 217(5.1%)

Default(None) x x 52(1.2%) 23(0.5%)

Private x x x 1034(24.1%)

Total fields : 4284　　　　　　 Total fields in shaded cells : 1519(35.5%)

6 日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集

Table 6 Number of Detected AE ids for Fields in jEdit 4.4.1 (Ratio to the Total)
XXXXXXXXXXXXXDeclaration

Actual Usage
Public Protected Default(None) Private

Public 228(9.1%) 10(0.4%) 111(4.4%) 163(6.5%)

Protected x 23(0.9%) 15(0.6%) 51(2.0%)

Default(None) x x 126(5.0%) 254(10.1%)

Private x x x 1529(60.9%)

Total fields : 2510　　　　　　 Total fields in shaded cells : 604(24.1%)

Table 7 Number of Detected AE ids for Methods in jEdit 4.4.1 (Ratio to the Total)
XXXXXXXXXXXXXDeclaration

Actual Usage
Public Protected Default(None) Private

Public 1224(34.5%) 77(2.4%) 544(16.7) 237(7.3%)

Protected x 44(1.4%) 14(0.4%) 23(0.7%)

Default(None) x x 233(7.2%) 86(2.6%)

Private x x x 874(26.8%)

Total methods : 3223　　　　　　 Total fields in shaded cells : 981(30.4%)

24.5%(shown in the shaded cells in Table 6) while the

ratio of excessive methods is 30.4%(shown in the shaded

cells in Table 7). Like the case of Ant 1.8.2 shown above,

the ratio of excessive fields is lower than the ratio of ex-

cessive methods.

4. 3 Discussion

To validate the analysis result of ModiChecker, we

have changed all the excessive access modifiers of above

three programs to suggested access modifiers. All the

modified programs have been compiled and executed

without any error. This indicates that the output report

of ModiChecker is proper one in the sense that the re-

ported excessive access modifiers can be changed to more

restrictive access modifiers without causing any error.

However, as mentioned before, some fields/methods are

intentionally set excessive for future uses. Thus, we need

a tool by which a developer can select the excessive ac-

cess modifiers to change to more restrictive ones.

By using AE analysis, we could propose a quality met-

rics in the following two ways.

• We set a value called AE index for each AE id and

sum up each AE index as metrics value.

• We set a value for each method and field based on

the number of other classes accessing those fields

and methods. Those values for each method/field

are accumulated as this metrics value.

The idea of using access modifier metrics would be re-

lated to our previous work[2]. In that paper, the number

of each Java access modifier is used as one of the metrics

for checking the similarity between Java source codes.

5 Conclusion

In this paper, we have proposed an analysis method

named AE for each field and method in Java program,

which is discrepancy between an access modifier decla-

ration and the real usage of the field and method. We

have also introduced AE Map which lists all of the cases

where an AE happens.

We have developed a tool named ModiChecker, which

日本ソフトウェア科学会第 28回大会 (2011年度)講演論文集 7

finds excessive method/field and reports AE id of each

excessive method/field. We have also used ModiChecker

to analyzed several OSS such as MASU, Ant, jEdit, and

found that our system is quite useful to detect fields and

methods with the excessive access modifiers.

Since there is no refactoring tool or automatic code

generating tool for detecting and optimizing the access

modifiers as discussed here, we think ModiChecker will

be an important tool to support secure and quality pro-

gramming in Java.

Currently we are analyzing other Java programs in-

cluding industrial systems, and are trying to identify the

relation between the AE analysis results and other pro-

gram quality indicators such as bug frequency.

Acknowledgements This work is supported by ISPS,

Grant-in-Aid for Scientific Research (A) (No.21240002)

and Grant-in-Aid for Exploratory Research (No.23650015).

This is also supported by MEXT Stage Project, the De-

velopment of Next Generation IT Infrastructure.

References

[1] Tal Cohen, “Self-Calibration of Metrics of Java Methods
Towards the Discovery of the Common Programming Prac-
tice”, The Senate of the Technion, Israel Institute of Tech-
nology, Kislev 5762, Haifa, 2001.

[2] K. Kobori, T. Yamamoto, M. Matsushita , and K. In-
oue, “Java Program Similarity Measurement Method Using
Token Structure and Execution Control Structure”, Transac-
tions of IEICE , Vol.J90-D No.4 pp. 1158–1160, 2007.

[3] Y.Higo, A. Saito, G. Yamada, T. Miyake, S. Kusumoto,
and K. Inoue, “A Pluggable Tool for Measuring Software
Metrics from Source Code”, accepted by The Joint Confer-
ence of the 21th International Workshop on Software Mea-
surement and the 6th International Conference on Software
Process and Product Measurement, Nov. 2011 (to appear).

[4] A. Saito, G. Yamada , T. Miyake, Y. Higo, S. Kusumoto,
K.Inoue, “Development of Plug-in Platform for Met-
rics Measurement”, International Symposium on Empirical
Software Engineering and Measurement, Poster Presenta-
tion, Lake Buena Vista, 2009.

[5] MASU, http://sourceforge.net/projects/masu/
[6] ANTLR, http://antlr.org
[7] Ant, http://ant.apache.org
[8] jEdit, http://jedit.org

