
An investigation into the impact of software licenses
on copy-and-paste reuse among OSS projects

Yu Kashima∗, Yasuhiro Hayase†, Norihiro Yoshida‡, Yuki Manabe∗, Katsuro Inoue∗
∗ Graduate School of Information Science and Technology, Osaka University

Email: {y-kasima,y-manabe,inoue}@ist.osaka-u.ac.jp
† Deptartment of Computer Science, Graduate School of SIE, University of Tsukuba

Email: hayase@cs.tsukuba.ac.jp
‡ Graduate School of Information Science, Nara Institute of Science and Technology

Email: yoshida@is.naist.jp

Abstract—Because licensing an open source software (OSS)
product restricts its reuse, the developer of the product has to
consider the impact on reuse when choosing the license. However,
to the best of our knowledge, there are no quantitative studies
on the impact of software licenses on software reuse. To identify
the impact, this paper presents a quantitative investigation into
the relationship between the software license and copy-and-paste
reuse on actual OSS products. The results show that the license
of a product affects the frequency of reuse. On the other hand,
copy-and-paste reuse occurs mostly in the source files distributed
under the same license.

Keywords-Software License; Open Source Software; Reuse;
Copy and Paste

I. INTRODUCTION

The source code of open source software (OSS) is available
to anyone to modify or redistribute. Considering the growth
in OSS development [1], software developers today have a
huge amount of OSS source code available for reuse. Copy
and paste (CnP) of code snippets is recognized as a simple
and most casual reuse method which is performed frequently.

For various intents of OSS developers, there are many
open-source licenses1, which affect the usage frequency and
situation of OSS products. Software reuse is also affected by
the licenses since reuse is just another form of use.

When reusing existing software, the restrictions of both the
license of the product being reused and that of the product
being developed must be adhere to. In case the two licenses
are incompatible, both cannot be satisfied simultaneously. For
example, Apache license 2.0 (Apachev2) products cannot be
incorporated into GNU General Public License version 2
(GPLv2) products, since several requirements in Apachev2
conflict with a clause in GPLv2.2 Furthermore, even if the
licenses do not conflict, an OSS product cannot be reused if
the license of the product being developed cannot be changed.
For example, GPLv2 source code cannot be incorporated into
a 3-clause BSD license (BSD3) product. In contrast, BSD3
source code can be incorporated into a GPLv2 product because

1the Open Source Initiative has officially approved 67 licenses. http://www.
opensource.org/licenses (accessed Jan 2011)

2http://www.gnu.org/licenses/license-list.html (accessed Jan 2011)

BSD3 GPL

CnP

CnP

Fig. 1. Reusing source code in a different licensed product

the restrictions of BSD3 are included in those of GPLv2 (Fig.
1).

Since switching the software license is complex and time
consuming task, developers should pay attention also to the
reuse frequency and situation when determining the license of
a product. Especially, if an OSS project accepts the source
code from many developers, it is very difficult to obtain
consent of the all developers for the switching.

However, to the best of our knowledge, there is no quanti-
tative study on CnP reuse from the point of view of software
licenses. Developers currently determine the license without
any underlying quantitative foundation. This paper presents
the results of a large scale quantitative study on the relation
between software licenses and CnP reuses based on the
following two research questions.

• RQ1 Is source code distributed under a permissive license
reused more frequently than that distributed under a
restrictive license?

• RQ2 Which type of licensed source code more frequently
imports source code of other OSS products?

The rest of this paper is organized as follows. Section
II discusses the design and results of the two experiments,
with an interpretation thereof. Finally, Section III presents our
conclusions and future work.

II. EXPERIMENT

The goal of this study is to clarify the impact of software
licenses on CnP reuse. In our previous study [2], we per-
formed a preliminary investigation on the impact on a small
Java source file set. To confirm the findings obtained from
the previous study, this paper presents two experiments on
large-scale file set: counting CnPs according to licenses, and
statistical examination of the impact.



Source Files

Use Ninka Use CCFinderX Based on RNR

Elimination of 

Duplicated 

files

License 

detection

Code clone 

detection

Elimination of 

language-

dependent 

clones

Elimination of 

including 

clones

License A License B

Clone Sets

Fig. 2. Overview of the process for detecting licenses and CnPs

The outline of the two experiments is as follows. First,
source files of OSS products are collected. Then, these source
files are analyzed to detect instances of CnP. Finally, the
instances are counted and assessed according to a certain
criteria.

The following subsections describe design intent and pro-
cedure of detecting CnPs, analyzed code, and detail and result
of the two experiments.

A. Detecting CnP – Design and Implementation

To clarify the impact of software licenses on CnP reuse, the
license of the files and CnPs in the files must be detected. We
designed the detection process as Fig. 2.

The detection process employs Ninka [3] for license de-
tection and CCFinderX [4] for CnP detection. Ninka is em-
ployed since Ninka effectively and precisely detect the license
automatically. CCFinderX is employed since CCFinder, the
predecessor of CCFinderX, was used for CnP detection in
previous studies[5][6]. Therefore, code clones detected by
CCFinderX can be considered as code clones generated by
CnP.

However, clones are not always suitable for counting
CnPs, therefore, unsuitable code clones are removed from
the counting. The clones which are not suitable for counting
CnP is mostly classified into language-dependent code clones
or including code clones. Examples of language-dependent
code clones are consecutive if blocks, case entries of switch
statements, and consecutive variable declarations. Language-
dependent clones are usually generated not by CnP. With
respect to the detail of language-dependent code clone, please
refer to [7]. Including code clone is a code clone whose proper
sub-fragment is a code clone. If including code clones are
taken into counting, CnP is overcounted.

Detail of the five phases in the detection process (Fig. 2) is
described below.

1) Elimination of Duplicated files: Eliminate identical
files in target collection of source files except for one
of them, because the experiment focuses on only copy-
and-paste reuse of code fragments rather than reuse of
entire files.

2) License detection: Identify the license of each file in the
output of phase 1 using Ninka. The files that include no
license description recognized by Ninka are eliminated
and never passed to next phase.

3) Code clone detection: Identify the location of code
clones using CCFinderX from the collection of source
files delivered from phase 2.

4) Elimination of language-dependent clones: To elim-
inate language-dependent code clones, eliminate code
clones which RNR (Ratio of Non-Repeated tokens)
metric [7] is higher than 0.5 in the code clones detected
in phase 3.

5) Elimination of including clones: Eliminate overlapped
code clones which are included in other clones from the
input from phase 4.

B. Analyzed Code

Two set of source files are analyzed in the experiments.
The first data set (DS1) contains all the C/C++ files in

packages of main section in Debian/GNU Linux 5.0.2 lenny
[8]. DS1 contains 776,289 files (286MLOC) obtained from
6,472 packages. DS1 is composed of common and widely-
used OSS products.

The second data set (DS2) contains C/C++ source files
sampled from SourceForge.net [9]. The sampled files are
contained in 1,070 packages selected randomly which are
developed in C/C++ and whose subversion repository has 10
or more commits. Selecting only packages whose repository
has 10 or more commit is to exclude packages which have
been seldom developed. As a result, DS2 contains 425,830
files (121MLOC). DS2 is designed as being representative of
all the OSS products in the world.

DS1 and DS2 contain 41 same packages. These same
packages do not spoil independencies of the two data sets,
since the 41 packages are only 0.6% of DS1 and 4% of DS2.

From the obtained source files, the clones and licenses
are detected. A brief summary of detection is shown in the
Table II. The product license is explained using abbreviations
of the license name for simplicity. Table I shows the basic
abbreviations of the main licenses. “v” and the number imme-
diately after a basic abbreviation denotes the license version.
Additionally, a plus (+) sign immediately after the version
number means “or any later”. If a product is distributed under
a composite license such as dual-license or exception-clause,
multiple license names are concatenated with commas and
used as the license name of the product.

C. Experiment 1: counting clones for each license

Experiment 1 counts the number of code clones grouped
by their license for both data sets. Through probing the dif-
ferences between the counts, we try to reveal the relationship
between CnP reuse and software licenses.



TABLE I
REPRESENTATIVE ABBREVIATIONS OF LICENSE NAMES

Abbreviation Name
Apache Apache Public License
BSD3 Original BSD minus advertisement clause
GPL General Public License
LesserGPL Lesser General Public License
LibraryGPL Library General Public License
MX11 MIT License/X11License
MPL Mozilla Public License
subversion Subversion License

TABLE II
TOP 15 FREQUENT LICENSES

(a) DS1
License #Files

3 GPLv2+ 178,174
LibraryGPLv2+ 28,000
LesserGPLv2.1+ 24,540
GPLv2 22,840
GPLv3+ 18,372
GPLv2or

LGPLv2.1,
MPLv1 1 15,897

3 BSD3 11,933
3 MX11 11,715

LesserGPLv2+ 10,537
boostV1 9,275
GPLnoVersion 5,354

3 Apachev2 4,297
LibraryGPLv2 4,187
BSD2 4,123
LesserGPLv2.1 3,709

(b) DS2
License #Files

3 GPLv2+ 44,558
boostV1 13,461
GPLv3+ 12,037
LesserGPLv2.1+ 8,765
LibraryGPLv2+ 6,705
GPLv2 6,674

3 Apachev2 6,220
3 BSD3 4,784

LesserGPLv2+ 3,543
LesserGPLv2.1 2,943

3 MX11 2,478
BSD2 2,408
LesserGPLv3+ 1,227
FreeType 961
subversion+ 868

1) Method:
The following procedure is iterated until there are no further

interesting licenses.
1) Manually select an arbitrary interesting license (the

pivot license).
2) Extract the clone sets which include the pivot license

clone.
3) Count the code clones in the extracted clone sets

grouped by license (the peripheral license).
Fig. 3 illustrates an example of this step. There are three files
together with their licenses. Boxes in the files denote clones,
and these clones are connected by lines to compose clone sets.
Let us assume BSD3 is the pivot license. Since the upper two
clone sets include BSD3 clones, these sets are extracted. Then,
the clones in the sets are counted grouped by license.

2) Results:
Distinguishing licenses are selected as pivot licenses from

top popular licenses. (In Table II, pivot licenses are marked at
the right of the name). Except the same type of license, four
representative licenses are selected based on its popularity.
Ultimately, pivot licenses are GPLv2+, MX11, BSD3 and
Apachev2.

Tables III and IV show the counts for DS1 and DS2 with
each pivot license. Each table shows peripheral licenses and
number of clones.

In all the resulting counts, the files distributed under
GPLv2+ contain most of the clones. In the result of DS1, the
pivot license is generally second highest except in the case of

License #CodeClones

BSD3 2

GPLv2+ 1

MX11 2

#CodeClones in Extracted Clone Sets 

Extracted 

Clone Sets

BSD3 GPLv2+ MX11

Pivot 

License

Fig. 3. Example of the Counting Code Clones in Experiment 1

TABLE III
#CLONES WITH PIVOT LICENSE IN DS1

(a) with Apachev2
License #Clones

GPLv2+ 38,520
Apachev2 15,618
GPLv2 5,261
LibraryGPLv2+ 5,040
LesserGPLv2.1+ 4,491
Others 25,814

(b) with BSD3
License #Clones

GPLv2+ 94,301
BSD3 66,271
GPLv2 13,066
LibraryGPLv2+ 12,602
LesserGPLv2.1+ 12,269
Others 71,851

(c) with GPLv2+
License #Clones

GPLv2+ 794,569
GPLv3+ 114,476
LibraryGPLv2+ 70,804
LesserGPLv2.1+ 56,802
GPLv2 50,658
Others 245,805

(d) with MX11
License #Clones

GPLv2+ 104,542
MX11 84,482
LibraryGPLv2+ 13,830
GPLv2orLGPLv2.1,

MPLv1 1 13,738
GPLv2 13,639
Others 79,950

GPLv2+. Similarly, in the result of DS2, the pivot license and
GPLv2+ ranks at first and second in the all counting results.

Meanwhile, number of source files strongly affects number
of clones. To exclude the affection, the number of counted
clones is normalized by dividing by the number of pivot
license files and peripheral license files. The normalized value
means the expected number of the clones in a peripheral
license file when there are only one pivot license file and one
peripheral license file. Table V shows the normalized values.
If the value is higher, the cell has deeper color.

Table V shows that the expected number of clones is highest
when the peripheral license is same to the pivot license in the
case of Apachev2, MX11 and BSD3.

Table VI shows number of clones per one pivot license file.
These numbers suggest the tendency to be reused of each
pivot license. The case of DS1 indicates that MX11, BSD3
or Apachev2 files tend to be reused frequently compared to
GPLv2+ files. Similarly, the case of DS2 indicates that MX11,
BSD3 files tends to be reused frequently compared to GPLv2+.

D. Experiment 2: statistical examination of licenses

The result of experiment 1 indicates the relationships be-
tween licenses and frequency of CnP reuse. For more detailed
investigation, we statistically examine the impact of the license
on CnP count using the same data set.

1) Method:
This experiment confirms whether the licenses affect to the

number of CnP reuse even if the other factors which affect



TABLE IV
#CLONES WITH PIVOT LICENSE IN DS2

(a) with Apachev2
License #Clones

Apachev2 9,336
GPLv2+ 5,903
GPLv2 1,590
GPLv3+ 1,466
LesserGPLv2.1+ 1,016
Others 4,793

(b) with BSD3
License #Clones

BSD3 8,686
GPLv2+ 7,394
GPLv3+ 1,667
LibraryGPLv2+ 1,479
GPLv2 1,457
Others 7,002

(c) with GPLv2+
License #Clones

GPLv2+ 71,569
GPLv3+ 6,643
LesserGPLv2.1+ 6,143
GPLv2 5,360
LibraryGPLv2+ 4,489
Others 24,418

(d) with MX11
License #Clones

GPLv2+ 6,985
MX11 5,086
LesserGPLv2.1+ 1,276
GPLv3+ 1,136
LibraryGPLv2+ 1,128
Others 5,764

TABLE V
NORMALIZED VALUES FOR #CLONES(DEEPER COLORED CELLS DEPICT

HIGH VALUES)

(a) DS1

Apachev2 BSD3 GPLv2+ MX11

Apachev2 8.46E-04 3.30E-05 8.27E-06 3.72E-05

BSD3 4.28E-05 4.65E-04 1.11E-05 5.13E-05

GPLv2+ 5.03E-05 4.44E-05 2.50E-05 5.01E-05

MX11 5.91E-05 5.90E-05 1.42E-05 6.16E-04

Pivot License

(b) DS2

Apachev2 BSD3 GPLv2+ MX11

Apachev2 2.41E-04 3.23E-05 1.06E-05 4.00E-05

BSD3 2.09E-05 3.80E-04 1.32E-05 3.88E-05

GPLv2+ 2.13E-05 3.47E-05 3.60E-05 6.33E-05

MX11 1.64E-05 2.82E-05 1.49E-05 8.28E-04

Pivot License

the reusability are removed. For the confirmation, two type of
regression models are compared from the perspective of the
fitness; One type of the models is only based on the factors
which previous studies propose as reusability metrics, and the
another type is based on both of license information and the
reusability factors.

The response variable of the all regression models is the
number of clones which relate to a certain file and which in
an outside of a product. The counting rule is explained using
the example in Fig. 4. There is a clone set between three
products. Assume the case counting the number of related

Product CProduct A Product B

Fig. 4. Counting clones related to a certain file

TABLE VI
NUMBER OF CLONES FOR ONE SOURCE FILE DISTRIBUTED UNDER A

PIVOT LICENSE

(a) in DS1
#Clones #Files (#Clones) / (#Files)

Apachev2 94,744 4,297 22.04887
BSD3 270,360 11,933 22.6565
GPLv2+ 1,333,114 178,174 7.482091
MX11 310,181 11,715 26.47725

(b) in DS2
#Clones #Files (#Clones) / (#Files)

Apachev2 24,104 6,220 3.875241
BSD3 27,685 4,784 5.786998
GPLv2+ 118,622 44,558 2.662193
MX11 21,375 2,478 8.625908

TABLE VII
THE METRICS FOR A FILE USED IN EXPERIMENT 2

Poulin’s
classification Employed metrics

Complexity LOC: lines of code excluding comment
MCC: sum of McCabe’s cyclomatic complexity

Documentation COM: lines of comment
External EXF: num of called functions defined in external
dependencies EXV: num of used variables defined in external
Proven reliability AGE: elapsed seconds since the file was created

clones focusing on leftmost file in product A. All clone sets
that contains a clone in the focusing file are collected. The
response variable is the number of clones in the collected
clone sets excluding the product that have the focusing file.
The clones in the same product are out of count because CnP
in a same product rarely causes license problem.

Explanatory variables are licenses and the metrics which
seems to relate to reusability. Table VII shows the 6 metrics
employed as explanatory variables. The metrics are selected
for covering Poulin’s classification of reusability attributes
[10]. Unfortunately, metric AGE is only applicable for DS2
since the repository of DS1 (Debian lenny) does not contain
created time of the files.

Since license information is a nominal scale, license in-
formation must be transformed into indicator variables. Top
15 licenses shown in Table II are selected for the indicator
variables for each data set.

Three regression models for each data set are made of
abovementioned variables. The regression models are de-
scribed below. Both the response variable and the metric values
are logarithmically converted.

log(number of related clones + 1) =

ϵ+
∑
m∈M

αi log(m+ 1) (M1)

ϵ+
∑
m∈M

αi log(m+ 1) +
∑
l∈L

βil (M2)

ϵ+
∑
m∈M

αi log(m+ 1) +
∑
l∈L

βil +
∑
m∈M

∑
l∈L

γij l log(m+ 1)

(M3)



TABLE VIII
ADJUSTED COEFFICIENT OF DETERMINATION VALUES

(a) for DS1
Model R2

DS1-M1 0.5021
DS1-M2 0.5047
DS1-M3 0.5133

(b) for DS2
Model R2

DS2-M1 0.3396
DS2-M2 0.3522
DS2-M3 0.3692

where M is a set of metrics, and L is set of indicator variables
of Licenses.

The last clause of M3 means the interactions between the
metrics and licenses. If the licenses affect CnP frequency,
models M2 and M3 fit the data better than M1. The result
of regression analysis is identified by the combination of data
set and model names, e.g. DS2-M3 means the result of model
M3 using dataset DS2.

As described above, the models are not straightforward lin-
ear expression but logarithmically converted. Straightforward
linear models are discarded since they show far low fitness
comparing to converted ones in our preliminary experiment.
Generally, logarithmic conversion improves the fitness of re-
gression models in many case of software repository analysis.

Finally, fitness of the model is compared. Difference be-
tween residual of the models are verified using ANOVA. If
the significant differences are exist, adjusted coefficients of
determination R2 for the models are compared. If significant
difference exists between two models, a model which has
lager R2 value fits to the data significantly better than another
model.

2) Result:
First of all, differences between fitness of the models are

tested by ANOVA. Tested pairs are <DS1-M1, DS1-M2>,
<DS1-M2, DS1-M3>, <DS2-M1, DS2-M2>, and <DS2-
M2, DS2-M3>. The comparison confirms that there are sig-
nificant differences (p <2.2e-16) in the all pairs.

Since difference of the fitness is confirmed, the degree of
fitness can be compared by coefficients of determination R2.
Table VIII shows that the R2 value for each models. The R2

values increase in order of M1 to M3 for both data sets. This
result confirms that the license of a file has clear impact for
CnP reuse even if the impacts of other factors are eliminated.

E. Revisiting Research Questions

1) RQ1: The experiment 1 show that GPLv2+ code was
distinctly less often reused than code with other license.
Also, this result is supported by the significant impact of the
license confirmed in the experiment 2. According to those
results, we can conclude that the source code distributed
under a permissive license is more frequently reused than that
distributed under a restrictive license.

2) RQ2: In all 8 investigations on the two data sets in
the experiment 1, files distributed under a particular pivot
license are most often imported into files distributed under
the same pivot license. Furthermore, Table V shows that the
probability of CnP is highest when a pivot and target licenses
are the same, except for GPLv2+. Therefore we can conclude

that source files that are distributed under a license are the
most frequently imported into ones distributed under the same
license. On the other hand, GPLv2+ was ranked as first or
second in raw count, respectively. However, Table V does not
support that GPLv2+ files frequently import source code from
other files. According to those results, we can conclude that
GPLv2+ files have a substantial impact on the reuse count
because of available huge number of GPLv2+ files.

III. CONCLUSION AND FUTURE WORK

This paper documents our study on the impact of soft-
ware licenses on CnP reuse in C/C++ files. The results of
the experiment show that CnP mostly occurs within source
code distributed under the same license. On the other hand,
substantial amount of reused code fragments are appeared in
GPLv2+ source code because the number of GPLv2+ files is
very large. Furthermore, the results confirms that non-copyleft
files tends to be reused more than copyleft ones.

This paper focused on clone sets created by CnP. Hence, the
direction of copying is not identified. For evaluating precisely
the impact of the license on CnP, it is preferable for origin
analysis to be performed to clarify the direction.

There are other methods for software reuse, such as library
linking or file import. The relationship between software
license and other reuse methods should be investigated, since
these methods also cause license problems.

ACKNOWLEDGMENT

This work was supported by KAKENHI(21700031,
22800040, and 21240002).

REFERENCES

[1] W. Scacchi, “Free/open source software development: recent research re-
sults and emerging opportunities,” in Proc. of ESEC/FSE (Companion),
2007, pp. 459–468.

[2] Y. Kashima, Y. Hayase, N. Yoshida, Y. Manabe, and K. Inoue, “A
preliminary study on impact of software licenses on copy-and-paste
reuse,” in Proc. of IWESEP, 2010, pp. 47–52.

[3] D. M. German, Y. Manabe, and K. Inoue, “A sentence-matching method
for automatic license identification of source code files,” in Proc. of ASE,
2010, pp. 437–446.

[4] T. Kamiya, “CCFinder Official Site,” http://www.ccfinder.net/ccfinderx.
html.

[5] D. M. German, M. D. Penta, Y.-G. Gueheneuc, and G. Antoniol, “Code
siblings: Technical and legal implications of copying code between
applications,” in Proc. of MSR, 2009, pp. 81–90.

[6] H.-F. Chang and A. Mockus, “Evaluation of source code copy detection
methods on freebsd,” in Proc. of MSR, 2008, pp. 61–66.

[7] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Method and
implementation for investigating code clones in a software system,”
Information & Software Technology, vol. 49, no. 9-10, pp. 985–998,
2007.

[8] Debian Project, “Debian GNU/Linux,” http://www.debian.org/ Accessed
Jan 2011.

[9] “SourceForge.net,” http://sourceforge.net/.
[10] J. Poulin, “The search for a general reusability metric,” in Proc. of the

Workshop on Reuse and the NASA Software Strategic Plan, 1996.


