A Tool Support to Merge Similar Methods
with a Cohesion Metric COB

Masakazu loka', Norihiro Yoshida?, Tomoo Masai!, Yoshiki Higo', Katsuro Inoue!
'Graduate School of Information Science and Technology, Osaka University, Japan
{m-ioka, t-masai, higo, inoue}@ist.osaka-u.ac.jp
2Graduate School of Information Science, Nara Institute of Science and Technology, Japan
yoshida@is.naist.jp

ABSTRACT

“Form Template Method” is a refactoring pattern to merge
similar Java methods with syntax differences. In this refac-
toring, developers divide target similar methods into a tem-
plate method and primitive methods corresponding to the
common part and the differences, respectively. In this pro-
posal, we present a tool to show candidates of appropriate
divisions between the common part and the differences based
on a cohesion metric COB when developers select a pair of
similar methods.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Experimentation

Keywords
Code Clone, Refactoring, Template Method Pattern

1. INTRODUCTION

Code clone is a code fragment that has identical or similar
fragments to it in the source code[3]. It is regarded as one
of factors that makes software maintenance more difficult.
When developers modify a code fragment, they have to find
code clones corresponding to modified code fragment.

Clone refactoring (i.e., merging code clones) is a disciplined
technique to reduce code clones[1]. Syntactically identical
code clones can be merged by straightforward technique
(e.g., Pull-Up Method refactoring, Extract Method refac-
toring). On the other hand, when code clones have syn-
tactic differences, it is necessary to extract those differences
as new functions (e.g., Java method, C++ function) before
merging.

"Form Template Method”[1] is a common refactoring to merge
a similar pair of Java methods with syntactic differences.

In the refactoring, developers divide similar methods into a

template method and primitive methods corresponding to

the common part and the differences, respectively.

However, it is difficult for developers to identify the common
part and the difference from similar methods, and extract
primitive methods so that each of them has a functionality
that can be given suitable method name. Therefore, tool
support is needed for desirable evolution of a pair of sim-
ilar Java methods with syntactic differences. Juillerat et
al. proposed an approach of automatic “Form Template
Method”[2]. This approach detects different subtrees by
comparing sequences of AST nodes which are generated by
using post-order traversal, and shows only a candidate of
“Form Template Method” for each pair of similar methods
regardless of satisfying developers.

In this proposal, we present a tool to show candidates of ap-
propriate divisions between the common part and the differ-
ences based on a cohesion metric Cohesion of Blocks (COB)
[5] when developers select a pair of similar methods.

2. PROPOSED TOOL

First, we explain COB. COB is a cohesion metric between
block statements in source code. It is proposed by Miyake
et al. for identification of a set of block statements suit-
able for Extract Method refactoring. Proposed tool uses
COB to see whether or not expanded fragments should be
extracted as primitive methods, and then suggests pairs of
code fragments with high COB as excellent candidates of
pairs of primitive methods. The definition of metric COB is
as follow:

11 <
COB =+~ ;u(Vj) (0< COB<1)

where:

b is the number of code blocks,

e v is the number of used variables in the method,

Vj is j-th variable used in the method,

1(V;) is the number of code blocks using variable V;.

No Inc.

Inc. RTs in an EM pair | Inc. PTs in an EM pair | Inc. RTs and PTs in an EM pair | Inc. in multiple EM pairs | No corresponding code fragment

0 [1 | 2 3 |4 [s [s [7

[s E [10 [12 [12 [13

/** {@inheritDoc}. */
public PlanarImage executeDrawOperation() {

Graphics2D graphics = (Graphics2D) bi.getGraphics();

if (Istroke.equals("transparent”)) {
BasicStroke bStroke = new BasicStroke(stroke_width);

olor(C PP

graphics.setStroke(bStroke);

Arc2D.

height, start, stop, type));

width, stroke_width, width,
¥

if (!fill.equals("transparent”)) {
graphics.setColor(ColorMapper.getColorByName(fill));
graphics.fill(new Arc2D.Double(stroke_width, stroke_width,
width, height, start, stop, type));
¥

for (int i = 0; i < instructions.size(); i++) {
ImaaeOperation instr = ((ImaaeOperation) instructions.elementAt(i)):

m

/** {@inheritDoc}. */ -

public Planarimage executeDrawOperation() {

Graphics2D graphics = (Graphics2D) bi.getGraphics();

if (!stroke.equals("transparent”)) {
BasicStroke bStroke = new BasicStroke(stroke_width);
setColor(C));
graphics.setStroke(bStroke);

Ellipse2D.

0, width, height));

mn

}

if (*fill.equals("transparent”)) {
graphics.setColor(ColorMapper.getColorByName(fill));
graphics.fill(new Ellipse2D.Double(0, 0, width, height));
1

for (inti = 0; i < instructions.size(); i++) {
ImageOperation instr = ((ImageOperation) instructions.elementAt(i));
if (instr instanceof DrawOperation) {
Planarimage img = ((DrawOperation) instr).executeDrawOperation();
araphics.dr ima.). null, 0. 0):

Figure 1: A screenshot of proposed tool

Next, we explain proposed tool. Proposed tool shows can-
didates of appropriate divisions between the common part
and the differences when developers select a pair of similar
methods.

Figure 1 shows a screenshot of proposed tool. Highlighted
code fragments represent candidates of primitive methods.
A pair of regions painted the same color means a pair of cor-
responding differences (i.e., candidates for primitive meth-
ods having the same name). Non-highlighted regions mean
code fragments have an identical fragment to it in the cor-
responding method (i.e., candidate for a template method).

The steps to derive candidates of primitive are as follows.

1. Detect code fragments corresponding differences be-
tween Abstract Syntax Trees (ASTs) of given similar
methods

2. Expand detected code fragments into code fragments
including above, below or parent statements until all
of expanded fragments are identified as extractable by
the refactoring features of Eclipse JDT

3. Rank expanded fragments based on COB metric.

3. DEMONSTRATION
We applied proposed tool to the method pair in Figure 1.

This method pair is gen Error Handler method in CppCode-
Generator class and gen Error Handler method in JavaCode-
Generator class in ANTLR 2.7.4 '. Those methods are very
similar to each other.

Figure 1 shows one of candidates for “Form Template Method”
refactoring suggested by proposed tool. This candidate is
highly ranked by COB metric with 0.86 because each dif-
ference shares values between blocks (COB of a method in-
cluding only a block always indicates 1.0). Each highlighted
code fragment has a single functionality that can be given
suitable method name. Therefore, this can be considered as

"http://antlr.org/

an excellent candidate for “Form Template Method” refac-
toring. Using proposed tool with COB based ranking, devel-
opers are possible to find appropriate candidates of “Form
Template Method” refactoring easily.

4. SUMMARY AND FUTURE WORK

We proposed a tool to show candidates of template primi-
tive methods for “Form Template Method” refactoring, and
demonstrate it. As future work, we are planning to use cohe-
sion metrics based on program slicing [4] instead of metric
COB, because we expect ranking is better using program
slicing. Also, we will implement the code transformation for
“Form Template Method” refactoring using the Language
Toolkit of Eclipse Project 2.

Acknowledgments

This work is partially supported by JSPS, Grant-in-Aid for
Scientific Research (A) (21240002) and Grant-in-Aid for Re-
search Activity start-up(22800040).

5. REFERENCES

[1] M. Fowler. Refactoring: Improving the Design of
Exzisting Code. Addison Wesley, 1999.

[2] N. Juillerat and B. Hirsbrunner. Toward an
Implementation of the “Form Template Methodi£ih
Refactoring. In Proc. of SCAM 2007, pages 81-90,
Paris, France, 2007.

[3] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system
for large scale source code. IEEE Trans. Softw. Eng.,
28(7):654-670, 2002.

[4] T. M. Meyers and D. Binkley. An empirical study of
slice-based cohesion and coupling metrics. ACM Trans.
Softw. Eng. Methodol., 17:2:1-2:27, December 2007.

[5] T. Miyake, Y. Higo, and K. Inoue. A software metric
for identifying extract method candidates. IEICE
Trans. Inf.& Syst.(Japanese Edition),
J92-D(7):1071-1073, 2009.

Zhttp://www.eclipse.org/articles/Article-LTK /1tk.html

