
Where Does This Code Come from and Where Does It Go?
- Integrated Code History Tracker for Open Source Systems -

Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe
Osaka University

Osaka, Japan
{inoue, peixia, y-manabe}@ist.osaka-u.ac.jp

Abstract—When we reuse a code fragment in an open source
system, it is very important to know the history of the code,
such as the code origin and evolution. In this paper, we propose
an integrated approach to code history tracking for open source
repositories. This approach takes a query code fragment as
its input, and returns the code fragments containing the code
clones with the query code. It utilizes publicly available code
search engines as external resources. Based on this model, we
have designed and implemented a prototype system named
Ichi Tracker. Using Ichi Tracker, we have conducted three case
studies. These case studies show the ancestors and descendents
of the code, and we can recognize their evolution history.

Keywords-Code Search; Software Evolution; Open Source
System

I. INTRODUCTION

Open source systems are extremely useful resources for
the construction of current software systems. Even software
systems in the industry increasingly use open source systems
due to their reliability and cost benefits [25].

One of usages of the open source systems is to reuse the
source code of the open source systems for other projects.
We can easily get the source code files of various projects
from the repositories on the Internet, such as SourceForge
[29] and Maven Central [26]. Those source code files are
copied and modified if necessary, and they are built into a
new system. Repeating such inter-project copies of files and
code fragments makes a lot of code clones among the open
source projects, and the interdependency of those projects is
becoming very complex [22].

Consider a case that there is an open source code file used
by a system, but we do not know much about the original
project. We are wondering if we could safely and effectively
reuse that source code file for a new project.

In such a situation, it is very important to identify the
origin of the source code. By identifying the original project,
we would understand various characteristics of the project,
such as developers, copyrights, licenses, created dates, and
so on. Also, we would like to know the evolution of the
source code, since the reuse and maintenance information of
the source code by many other projects is a very important
clue for the software developers to make a decision to reuse
the source code.

Current software engineering tools do not provide suf-
ficient support to explore code history. To know the code
origin, we have to specify project names and/or URLs. Also,
to know the code evolution, we have to understand the
interrelations of open source projects.

Code search engines such as Google Code Search [10]
and Koders [3] are very useful tools to explore open source
repositories for the origin and evolution of code. However,
current code search engines only allows to get keywords
and/or code attributes as their inputs, and they return source
code files which contains those keywords and attributes.
Selecting appropriate inputs for those search engines is not
easy task for general users.

In this paper, we will propose an integrated approach to
code history tracking for open source repositories. Also,
we will present its prototype system named Ichi Tracker
(Integrated Code History Tracker). Ichi Tracker takes a code
fragment as its query input, and returns a set of cloned
code fragments which can be found by popular source code
search engines such as SPARS/R [30], Google Code Search
[10], and Koders [3]. Ichi Tracker helps us to understand the
backward and forward history of the query code fragment.

Using Ichi Tracker, we have performed various case
studies. In this paper, we will show three examples of
tracking code, texture.java, kern_malloc.c, and
SSHTools.

Contributions of this paper are as follows.

• We have proposed and implemented an integrated code
history tracking model to find similar code fragments
using code search engines. This model is very effective
to identify the evolution of code. Also, it would be
useful to find plagiarism or illegal reuse of code.

• An analysis method of code history using a similarity
metric (called cover ratio) and the last modified time
has been proposed and used for the case studies.

• Using these techniques, the code histories of three case
studies have been presented.

In this paper, we will first describe the tracking model in
Section II. In Section III, detailed processes of Ichi Tracker
will be explained. Section IV will show our case studies.
Section V will discuss our approach and Section VI will

Input Query Q

Integrated Code

History Tracker

Ichi Tracker

Output Results R

Code

Fragment

r1c

r1a

r2c

r2a

rnc

rna

Internet

Code

Fragment

with Clone

Search

Query SQ

Search

Results SR

Code

Attribute

(Optional)

Code

Attribute

attribute 1: ...
attribute 2: ...
 ...

attribute 1: ...
attribute 2: ...
 ...

attribute 1: ...
attribute 2: ...
 ...

attribute 1: ...
attribute 2: ...
 ...

qa

qc r1

r2

rn

Open Source Repositories

Code Search Engines

SPARS/R Koders
Google
Code
Search

Figure 1. Integrated Model for Code History Tracking with Ichi Tracker

show the related works. In Section VII, we will conclude
our discussions with some future works.

II. INTEGRATED CODE HISTORY TRACKING MODEL

A. Overview

Fig. 1 shows our model for the integrated code history
tracking. The core of this model is Ichi Tracker, which takes
an input query Q and replies an output result set R. The
details will be described in Section III.

Input query Q is composed of code fragment qc and code
attribute qa. qc may be a complete source code file or a
part of a source code file, which is in question. qa is a set
of associated information characterizing qc, such as the file
name, project name, URL of repository, created time, last
modified time, and so on. qa is optional and could be added
to improve the quality of the output results.

Output result R is composed of results r1, r2, ..., rn, and
each result ri is composed of a code fragment ric and its
code attribute ria. Both qc and ric contain at least one pair
of Type 2 code clones1. This means that each ric contains
a clone of the whole or a part of qc.

Attribute qa of query Q is optional in the sense that
the file name and project name might help to improve the
search quality. Attribute ria of result ri contains valuable

1Type 2 clones are syntactically identical fragments except for variations
in identifiers, literals, types, whitespace, layout and comments [27]. In this
paper, we assume that clones are Type 2 unless explicitly stated otherwise.

information to know the characteristics of the cloned code
fragment ric. The last-modified time could be used to
identify the ancestor or descendant relations. The project
name and URL would be indicators of prevalence and
popularity of the query code among the open source projects.
Sometimes those attributes might not be obtained easily. We
will discuss this issue in Section V-B-3).

In order to track a code history of open source systems,
we would need to have a huge repository containing various
open source systems and their historical versions. In addition
to using our code search engine SPARS/R [30], we use
external search engines Google Code Search [10]2, and
Koders [3]3, assuming that those engines collect and contain
sufficiently enough open source systems.

Google Code Search and Koders are very popular search
engines, since they provide a lot of useful information for
open source systems. Google Code Search provides search
features with keywords associated with optional attributes
such as package names, languages, and licenses. Koders
provides the keyword search feature with language names
and license types. These engines contain huge source code
repositories behind them, and those repositories are kept
updated by their crawling activities and also the user’s con-

2Google has terminated its service for Google Code Search on Jan. 15,
2012. All the discussion and data here are based on the service when it
was available.

3Since Koders does not allow to send automated queries, we have
manually sent it the keywords obtained by our system.

Clone Pair

Result ric Query qc

x x

Cover Ratio： di = |x| / |qc|

(a) Case of Single Clone Pair

Clone Pairs

Result ric Query qc

y

Cover Ratio： di = (|y|+|z|-|y ∩ z|) / |qc|

(b) Case of Two Clone Pairs

y

z

z

Figure 2. Definitions of Cover Ratios

tributions. SPARS/R is our Java component search engine
with the keyword input and component rank mechanism
[12]. The Java class repository is kept updated by our
research group.

Ichi Tracker gives the search query SQ to those code
search engines, and gets the search result SR from those
engines.

B. Cover Ratio

Assume that the query code fragment qc and a result code
fragment ric share code clone x as shown in Fig. 2 (a). The
cover ratio di of ric for qc is defined as follows.

di = |x| / |qc|

Here, |x| means the size (token length) of x. If there are
multiple clone pairs between qc and ric, then we add those
clone sizes excluding their overlapping area and divide it by
the query code size |qc|, as shown in the case of two clone
pairs of Fig. 2 (b).

If the cover ratio is 1.0, then the result fragment contains
the overall of the query code qc, and if it is 0.0 then the
result does not contain any part of qc. Note that each result
r1c, r2c ... may have different cover ratio d1, d2, ... , since
they may share different clones with qc. The cover ratio can
be an important attribute of each result, which indicates how
close the result code is to the query code.

Input

Query Q

Output

Results R

1) Word
Extraction

2) Keyword
Selection

7) Result
Forming

Search

Query SQ
Search

Results SR

6) Code
Clone

Filtering

3) Query
Generation

5) Search
Result

Analysis

yes
no

Control and
 Data Flow

4) Results
OK?

Figure 3. Processes of Ichi Tracker

III. PROCESSES OF ICHI TRACKER

Fig. 3 shows an overview of the processes of Ichi Tracker.
For the simplicity, here we present only one strategy we have
taken to choose keywords for the code search engines, but
we could consider many variations of different strategies,
algorithms, and parameter settings, some of which will be
discussed in Section V-B.

1) Word Extraction: At the beginning, code fragment qc
in input query Q is tokenized, and the words from
source code part only are extracted. A single word of
Camel Case or Snake Case is not decomposed into
multiple words. If code attribute qa is additionally
given, those are also extracted.

2) Keyword Selection: Next, the keywords used for the
following query generation are selected from the ex-
tracted words. Initially, the reserved words of the
source code language are removed. Also, short-length
words less than 5 characters are deleted. Then we
apply a simple word-selection strategy that n most
frequently-used words are chosen from the source
code part. Finally, we obtain n popular words which
are not language’s keywords and whose length are 5
or more.

3) Query Generation: Using the selected keywords, a
search query SQ for the code search engines is cre-
ated. As the search engines, we use SPARS/R, Google
Code Search, and Koders, because of their availability
and flexibility. All of these search engines accept a
keyword sequence as their query input, so we use the
sequence of n most frequently used words as SQ.
If the additional input attribute qa is accepted by the

search engines, it is also given to the search engines.
4) Result OK?: The header lists of the results of each

search engine are received. If the length m of each
list is greater than the predetermined maximum limit
mmax, then the system retries from Step 2) with n+1
most frequently used words, assuming that the search
query SQ was too broad. This means that we add
one word to the previous keyword list, and we expect
narrower results than the previous try. As the default
setting, we start with n = 1 and mmax is 50.

5) Search Result Analysis: Using the header lists, each
source code sr1, sr2, . . . , sri, . . . is downloaded from
each search engine. The downloaded files might be
complex html forms consisting of not only source
code but other information such as frame window,
line number, highlighted keyword, file name, project
name, language, license, and so on. From such results,
the pure code parts and their associated comments are
extracted as the resulting code. Also, useful informa-
tion for the code attributes such as file name, project
name, license, URL, and others are extracted if those
are available.

6) Code Clone Filtering: The code clones between the
input query code fragment qc and each source code sri
obtained in Step 5) are computed. If sri does not share
a clone with qc, then we delete sri from the result list.
We have used a code clone detection tool CCFinder
[15], with its parameter setting for the minimum token
length 10.
This step works as a filtering out process of SR. In
general, code search engines reply many false positive
results, and we have to elaborate to choose appropriate
query keywords or to structure queries to get better
precision [11]. On the other hand, by using this code
clone filter, we can easily remove unrelated code, and
so we can simply use code search engines without
such elaboration of the input query.

7) Result Forming: All the remaining code in Step 6) and
their code attributes are combined and packed as the
output result R of this system.

In our current implementation, all result code fragments
r1c, r2c, ... in R are not a part of files, but they are complete
files returned from each search engine.

IV. EXPERIMENTS

We have conducted several case studies to explore the
applicability of Ichi Tracker. All these experiments have
been performed under PC Workstation with dual Xeon
X5550 2.66GHz processors and 24GB memory between
Feb. 2011 and May 2011.

A. Case Study 1: texture.java

texture.java is a 1,600 LOC Java file to define a
graphic texture object in game programs. It was developed

Table I
NUMBER OF OUTPUT RESULTS |R| AND SEARCH RESULTS |SR| FOR

texture.java AS QUERY CODE FRAGMENT qc

(1-A) Case of No File-Name Attribute
|R|/|SR|

Iteration GCS* Koders SPARS/R Subtotal Keywords in SQ

1 -/3847+ -/1145 -/503 -/5495 “capsule”
2 -/776+ -/67 1/9 1/852 1+“image”
3 -/571+ 7/50 1/8 8/629 2+“write”
4 9/56 7/24 1/6 17/86 3+“readint”
5 21/29 4/4 0/0 25/33 4+“memreq”
6 7/7 4/4 0/0 11/11 5+“mipmapstate”
7 7/7 4/4 0/0 11/11 6+“filter”
8 7/7 4/4 0/0 11/11 7+“apply”

* GCS: Google Code Search
+ These are the numbers of different files. The actual |SR| is much larger.
- No code clone filtering had been done due to long download time.

(1-B) Case of File Name as Input Attribute
|R|/|SR|

Iteration GCS* Koders SPARS/R Subtotal Keywords in SQ

1 -/600 -/127 -/405 -/1132 Texture**
2 21/29 4/4 1/23 26/56 1+“capsule”
3 21/29 4/4 1/9 26/42 2+“image”
4 21/29 4/4 1/8 26/41 3+“write”
5 21/29 4/4 1/6 26/39 4+“readint”
6 21/29 4/4 0/0 25/33 5+“memreq”
7 7/7 4/4 0/0 11/11 6+“mipmapstate”
8 7/7 4/4 0/0 11/11 7+“filter”

** Texture.java is used for the file specifier of Google Code Search
and Koders, and “Texture” is used for a search keyword for SPARS/R.

by a game engine project jMonkeyEngine [14]. This file is
popularly used by many 3D games.

We have given Ichi Tracker the overall source code of
this file as the input query code fragment qc. As an optional
attribute, the file name texture.java is associated when
it is needed.

Table I shows the number of the output results, |R|, and
also the number of the search results |SR|, classified by
each search engine. (1-A) is the case where no file name
or other attributes is given. (1-B) is the case where the file
name “Texture” is given as an input attribute. Iteration
means the trial process of Ichi Tracker as shown in Fig. 3
Here, we show the details of possible iterations from 1 to
8. This does not mean that Ichi Tracker always tries all of
these iterations. It performs the search result analysis (Step
5) and the code clone filtering (Step 6) at a specific iteration
only. By default of |SR| ≤ 50 for each search engine, it
stops and performs full processes at iteration 5 (GCS), 3
(Koders), and 2 (SPARS/R) for Case (1-A). For Case (1-B),
it stops at iteration 2 for all search engines.

Keywords are the list of keywords given to each code
search engine. In the Case (1-B), Google Code Search and
Koders allow to input the file name, so we use the full file
name as their input. SPARS/R does not accept the file name,
so we give word “Texture” as one of its input keywords.
In both cases, the output results share the code clones with

Texture.java whose cover ratio are 0.4 or higher.
As we can see these tables, the iteration converges fairly

fast, and we get the output results. It is very clear that search
results SR from three search engines initially contain many
false positives, i.e., files containing no clones which will
be filtered out by the code clone filtering. This situation is
exemplified more clearly by the Case (1-A) where no file
name is specified, since the file name is very important clue
to get the same code fragment. However, even without the
file name, we would get sufficient cloned results if we give
an adequate keyword set. An interesting observation of Case
(1-A) is, that the number of the output results (obtained from
Google Code Search and remained after the code clone filter-
ing) first increases along with the iteration, then it decreases.
This is because an appropriate number of keywords recalls
many possible candidates, but too many ones narrow the
search results and eliminate possible candidates files with
low cover ratios.

The total execution time for Case (1-A) was about 4
min. and Case (1-B) 1 min. Note that the manual overhead
time for Koders is not included here. Most of the time
was to search and download the source code files from 3
search engines. For example, in Case (1-B), the time for
the word extraction and the code clone filtering was only 1
sec. and 4 sec., respectively. The rest was for searching and
downloading.

The execution time is strongly affected by the response
time of the code search engines and the network perfor-
mance, and the total execution time varies time to time
significantly.

Fig. 4 shows the distribution of 26 output results of Case
(1-B) at Iteration 2. This figure is plotted by two attributes,
the last modified time as x axis and the cover ratio as y axis.
Project names of all 26 source code files including qc have
been investigated manually and listed on the right-hand side
of the figure. They are sorted by the last modified time.

We have found four versions of jMonkeyEngine (#1, 4,
12, and 14-15). The evolution of those four versions is linked
by the arrows in the figure. The circles are clusters of similar
files which are exactly or 99% of lines are the same.

From this figure, we can observe the following.
• Texture.java code evolves along with the project

progress. This is seen by the change of cover ratios
over the versions. Only an exception is Revision 4490
(#14 and #15) which is almost the same as Revision
4099 (#12) (only 3 line difference).

• Each version of Texture.java is copied to many
other projects, which are easily identified as similar files
in Clusters A, B, and C.

• In the case of Cluster C, there are 6 files exactly the
same as the query code qc, which are lined up on
the line of cover ratio 1.0. Five of those have been
duplicated just after qc was created. There is one outlier
project #25, which was copied from jMonkeyEngine

Table II
NUMBER OF OUTPUT RESULTS |R| AND SEARCH RESULTS |SR| FOR

kern_malloc.c AS QUERY CODE FRAGMENT qc

(2-A) Case of No File-Name Attribute
|R|/|SR|

Iteration GCS* Koders Subtotal Keywords in SQ
1 -/429000+ -/4793 -/433793 “freep”
2 -/2221+ -/93 -/2314 1+“caddr_t”
3 -/114+ 20/28 20/142 2+“freelist”
4 47/47 20/20 67/67 3+“kb_next”
5 47/47 20/20 67/67 4+“WEIRD_ADDR”

* GCS: Google Code Search
+ These are the numbers of different files. The actual |SR| is much larger.
- No code clone filtering had been done due to long download time.

(2-B) Case of File Name as Input Attribute
|R|/|SR|

Iteration GCS* Koders Subtotal Keywords in SQ
1 55/74 22/25 77/99 “kern_malloc.c”**
2 53/53 21/21 74/74 1+“freep”
3 51/51 20/20 71/71 2+“caddr_t”
4 47/47 20/20 67/67 3+“freelist”
5 47/47 20/20 67/67 4+“kb_next”

** kern_malloc is used for the file specifier.

Revision 3800 fairly later after the new version Revi-
sion 4490 (#14 and #15) has been created.

In addition to these attributes, we have extracted the
licenses of the input query code and the output results.
The input query code is under New BSD License (3-clause
BSD License) [4], and the output results are also New BSD
License except for two projects (#11 and #20) of zlib-libpng
License [37].

Using Ichi Tracker, we are able to find many code clones
for the input query code fragment. By analyzing those found
files (fragments) and their attributes, we can easily and
effectively identify evolution and propagation of the query
code fragment.

B. Case Study 2: kern_malloc.c

kern_malloc.c is a C function, which allocates a
specified-size memory block in the kernel address space.
We have taken an old code from Lites project where Unix-
like operating system had been developed [21]. This source
code itself and its file name were used as the input query of
Ichi Tracker.

The reason of using this file for the input query is that
it was developed based on major Unix systems, 4.4 BSD
and Mach microkernel. Also, it is fairly old, and it has been
taken over and maintained by many other various projects.

We have executed Ichi Tracker in two cases with and
without the file name kern_malloc.c associated. In this
case study, only Google Code Search and Koders are used
as the code search engines, since SPARS/R does not contain
C files in its repository. Table II shows the output results and
the search results. In the same manner as the previous case

: Evolution of jMonkeyEngine Project

: Cluster of Same or Similar Files

: File in New BSD License

: File in zib-libpng License

0.4

0.5

0.6

0.7

0.8

0.9

1

2006/10/10 2007/04/28 2007/11/14 2008/06/01 2008/12/18 2009/07/06 2010/01/22 2010/08/10 2011/02/26

C
o

ve
r

R
at

io

Last Modify Time

18

1617

4 8

1

14

12

10

11

19 21

3

7

2

23 2422 262015

65 9 25

13

A

B

C

1 Jmonkeyengine r3448 (K)

2 Simplexe (G)

3 Simplexe (K)

4 Jmonkeyengine r3800 (G)

5 The-project08 (G)

6 Tank Combat Game (K)

7 wrathofthetaboos (G)

8 wrathofthetaboos (K)

9 Lasthaven (G)

10 Jme-cotk (G)

11 Ardor3D (G)

12 Jmonkeyengine r4099 (G)

13 Fairytale-soulfire (G)

14 Jmonkeyengine r4490 (G)

15 Jmonkeyengine r4490 (S)

16 Xenogeddon (G)

17 Deathsquadrendezvous (G)

18 Partiendolapana (G)

19 Tholos (G)

20 Ardor3D (G)

21 Cosmic-engine (G)

22 Fregatclient3d (G)

23 Footballmanagerdesia (G)

24 Multiplicity (G)

25 Jmerefactoring (G)

26 Java3dfh (G)

Figure 4. Distribution of Output Results of Case (1-B) at Iteration 2 (Texture.java with File Name)

study (Case Study 1), the iteration of the processes converges
fairly fast even without the file name attribute specified as the
query input. Also, the converged search results contains no
false positive answer. This might suggest that the code clone
filtering would not be needed if we give sufficient number
of keywords and have the iteration converged. However, if
we wait for the convergence, the search results become too
narrow, and we might lose some cloned results (e.g., in Case
(1-B), Google Code Search initially outputs 21 results, but
it is reduced to 7 after the convergence).

The execution time was about 2 min. for Case (2-A)
and also 2 min. for Case (2-B), where most of the time
was occupied by searching and downloading from the code
search engines, as described in Case Study 1.

Fig. 5 shows the distribution of 67 output results of Case
(2-A) at Iteration 4 for Google Code Search and Iteration
3 for Koders, where no file name had been specified. From
this figure, we observe the following.

• The cover ratio of the output results diverges along
the time scale. Some of those remain very close to the
query code qc, but others get away from the query code.

• Unlike Case Study 1, there is no clear cluster of

similar results. There are many variations of different
code fragments, meaning there are many small changes
among the projects.

All of these results are under BSD License (either Original
BSD License (4-clause BSD License) or New BSD License
(3-clause BSD License)). By using Ichi Tracker, we could
easily overview the evolution of a core part of the Unix OS
kernel code.

C. Case Study 3: SSHTools

SSHTools is a suite of Java SSH applications providing
a Java SSH API, terminal, and so on [31]. Ignoring some
tiny sized files, we have selected 339 files of the latest
version 0.2.9 (last modified time is 6-23-2007), and made
the tracking with those files as the input code fragments and
file names. In this case study, we have set up a threshold
of the cover ratio 0.4, and the resulting files with more than
the threshold are considered as similar files.

Fig. 6 shows the number of similar files found for each
query of the 339 SSHTool’s files. We observe that 305 out
of the 339 files contains code clones with other projects.
275 of them have less than 10 similar files for each, several

0.4

0.5

0.6

0.7

0.8

0.9

1

1993/01/31 1995/10/28 1998/07/24 2001/04/19 2004/01/14 2006/10/10 2009/07/06 2012/04/01

C
o

ve
r

R
at

io

Last modified time

26

2

49

50

47

48

1 3 4

5 6

7

8

10

9

11

12

13

14

15

16

17

18

19

24

25

27

28-33

34

36

37-46

20-23

35

51

52 53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

1 Lites 1.0
(G)

28-33 Kame
(G)

2
Kernel Source
Archive - CMU Mach
3.0 (K)

34-36 SimOS
(K)

3 Lites 1.1.u3
(G)

27-46 Kame
(G)

4 Lites 1.1-950808
(G)

47 Netnice
(G)

5
The Rio (RAM I/O)
Project (K)

48 Kame
(G)

6
ftp in The University
of Edinburgh (G)

49-50 Psumip
(G)

7 Mip-summer98
(G)

51 Netnice
(G)

8 freeBSD/SPARC
(G)

52 Reflexprotocol
(G)

9-12
ftp in Stockholm
University (G)

53 Netnice
(G)

13 freeBSD-cam2.1.5R
(G)

54 NetBSD v1.105
(K)

14-15 SonicOSX
(K)

55 OpenBSD PV Xen
(G)

16
Labyrinth
BSD(labyrinthos) (K)

56 OpenBSD v1.73
(K)

17 Oskit
(G)

57 Pmon
(G)

18 Psumip

(G)

58-62
Proyecto A.T.L.D.
GNU/hurd(extremeli
nux) (K)

19 Mach
(G)

63 OpenBSD v1.74
(K)

20-22 Savannah
(G)

64 Pmon
(G)

23
Unofficial OSKit
source (K)

65 774
(G)

24-26
Unofficial OSKit
source(oskit) (K)

66 Chord-ns3
(G)

27
ftp in Stockholm
University (G)

67
Openbsd-loongson-
vc (G)

Results by G(Google Code Search)
and K(Koders)

: File in Original BSD License

: File in New BSD License

𝐪
𝐜

Figure 5. Distribution of Output Results of Case (2-A) at Iteration 4 (GCS) and 3 (Koders)(kern_malloc.c without File Name)

Table III
SEARCH RESULTS FOR SEVERAL FILES IN SSHTOOLS

Query File in SSHTools Project Name Cover Ratio License Copyright Last Modified
of Found File of Found File Time

SocketProxySocket.java CVS client interface in Java 0.88 GPL 2 1998-99 Mindbright Technology AB 2001/11/12
Sftp.java Apache Ant 0.62 Apache 1.1 2000-2002 Apache Software Foundation 2002/4/15
StringScanner.java Programmer’s Friend 4.1 0.81 CPL 1.0 2000-2003 Manfred Duchrow 2002/9/29
GeneralUtil.java Gruntspud CVS Client 0.73 GPL 2 2002 Brett Smith 2003/11/12
Base64.java Base64 notation 0.62 Public Domain No copyright 2004/1/6
CharBuffer.java Java Telnet daemon 0.81 GPL 2 2000 Dieter Wimberge 2004/1/16

All license and copyright of the query code files in SSHTools are in GPL 2 and “2002-2003 Lee David Painter and Contributors”, respectively.

files have 10-30 similar files, and one file has more than 30
similar files.

We have also investigated the different licenses appeared
in each similar file. SSHTools is under GPL 2 license;
however, 298 files out of 339 files have similar files with
different licenses from GPL 2. 10 files out of the 298 files
have similar files with 2 different licenses, and 1 file has
similar files with 3 different licenses.

Table III shows a part of the detailed analysis results.
In this table, we present the oldest ancestor project for the
query code. As seen in this table, there are many different

ancestor projects. This means that SSHTools is a collection
of various tools developed by several different projects. For
each query file, there are similar files with the high cover
ratios in those projects.

An intriguing observation would be evolution of licenses
and copyrights of those files. Those found files had different
licenses and copyrights, but they have been unified into
GPL version 2 and “2002-2003 Lee David Painter and
Contributors”, respectively. This would suggest that those
codes in different projects had been donated, and that their
licenses and copyrights had been modified.

34

143

132

16

10

1 2 1

0

20

40

60

80

100

120

140

160

0 1-4 5-9 10-14 15-19 20-24 25-29 >30

#
I
n

p
u

t

F

i
l
e

s

#Similar Files Found by Ichi Tracker

Figure 6. Histogram of Similar Files Found for Each Query File in
SSHTools

V. DISCUSSIONS

A. Application of Integrated Code History Tracking

As shown in the case studies, Ichi Tracker provides an
overview history and evolution of a query source code. It
spots the projects in which the query code locates, and it
identifies the cloned code fragments in the same or different
projects, which describe the evolution history of the original
project.

This is a very important and needed feature when we reuse
the source code at our hand. In Case (1-B) shown in Fig.
4, we can understand that the code qc had been reused by
other projects around late 2007 through early 2008 except
for project #25. On the other hand, more than a half part of
qc has been reused by projects #12-#24 and #26 in Cluster B.
This would suggest that we would prefer to reuse the newer
and recently-created code rather than the older code qc or its
similar ones. If the newer code would provide the sufficient
functionalities, we might choose to copy from project #26
rather than #4 (i.e., qc).

In Case (2-A) in Fig. 5, various projects with different
cover ratios are currently active, so we could choose an
appropriate new one based on their functionalities.

One important application of using Ichi Tracker is to
check license evolution. In our case studies, the licenses had
evolved from New BSD License to Zlib-libpng License in
Case (1-B), and from Original BSD License to New BSD
License in Case (2-A). Those evolutions would be consistent
and cause no trouble to reuse them. However, if we would
find inconsistent licenses such as BSD License and GPL
License in evolution, we have to care about reusing those
codes. Ichi Tracker can easily check such inconsistency.
In such sense, this system is very effective to identify
plagiarism or illegal use of open source systems.

B. Approach and Processes of Ichi Tracker

1) Code Search Engines: In this implementation of Ichi
Tracker, we have used 3 engines, Google Code Search,

Koders, and SPARS/R. Our system might be seen as a
meta code search system over these three search engines.
However, the pre and post processes used here are not simple
nor straightforward ones as usual meta search systems.

The output results of our case studies show that Google
Code Search replies more output results than other engines.
However, those output results do not always cover the output
results of other engines, so the output results of other engines
are still important. We can extend the external search engines
for better results, but we need to create the interface program
for each new search engine.

We may think that using the Internet search systems such
as Google or Bing is more effective, rather than using the
code search engines. We can easily try our case studies to
those Internet search systems. We have tried those keywords
listed in Table I and II with Google and Bing. The results
contain various kinds of output, including search results
from Google Code Search and Koders, raw source code files
in open source repositories, compound source code forms
with various extra explanations, e-mail archives, document
files related to the query code, and many other unrelated
files. Those might contain source code fragments which
cannot be found by the code search engines, but extracting
useful code parts from those various kinds of files would be
an excessive challenge here.

2) Keyword Selection: As described in Section III, we
have taken a strategy of selecting keywords for the code
search engines, such that we choose n most frequently used
keyword in the query code fragment, and n is initially 1
and is incremented by one until the search results become
less than 50 for each engine. We could consider many other
different algorithms and different parameter settings for the
keyword selection.

At the beginning of the development of Ichi Tracker, we
took another algorithm, which starts with n keywords (say
n = 20) and decrements n by one for each loop until a
sufficient number of results is obtained. In many cases, this
strategy might eventually reach to the same results as the
current implementation; however, choosing the initial value
of n is not easy. Also, since we get sufficient results with 3–6
keywords in many cases, starting from one and incrementing
n are faster than decreasing from 20.

We have investigated a strategy of using keywords only in
the comment parts of the query code fragment. The output
results heavily depend on the query source code, but a
general tendency is that the search engines return many non-
cloned source code files for a few keywords as their input.
If we give more keywords in comments, those non-cloned
files could be eliminated, but the number of the output results
become less.

Also, we have investigated keywords from the source
code part, which are used less frequently in that file. In
such case, the output results heavily depend on the selection
of the keywords whose frequency is only one. Most less

frequent keywords appear only once, and if we do not
choose appropriate keywords specific to the query code, the
query results from code search engines become fairly broad
ones which contain many unrelated and non-cloned code
fragments.

As an extreme strategy, we have tried randomly selected
keywords from the code part. The result also heavily depends
on the selected keywords, but a general tendency would
be that in many cases, we get weaker search results by
the random strategy in the sense that the results contain
less cloned code fragments than the strategy of using most-
frequently used keywords.

We have used keywords equal to or longer than 5 char-
acters. Our investigation has indicated that including 4 or
shorter keywords generates many unrelated search results
from the code search engines. Also, breaking into smaller
keywords from the camel case keywords (e.g., Camel-
Case → Camel and Case) and snake case keywords (e.g.,
snake case →snake and case) would eliminate the character-
istics of the query code and might increase unrelated results.

3) Input and Output Attributes: Current implementation
of Ichi Tracker uses the file name as only an input attribute
associated with source code fragment. This attribute is
passed to Google Code Search and Koders. Those search
engines allow other attributes as their extra input such as
language and license. If we would extend our system to
accept those attributes, then the search results might be
refined. However, we have to elaborate individual interface
and to tune other parameters for better performance with
those attributes.

As the attributes of the output results, we have mainly
used the cover ratio and the last modified time. The cover
ratio is computed automatically by the query code fragment
and the code clone filtering results under the current im-
plementation. The last modified time is obtained manually
through the repositories whose location is presented by the
code search engines. This extraction might be performed au-
tomatically, but there are many different types of repositories
so that the implementation would not be simple.

Other output attributes such as license, developer, and
project name are also important information to understand
the code history and evolution more deeply. An approach
of analyzing comments in the source code, similar to an
automatic license detection method [8], will help to extract
those attributes automatically.

C. Performance Issue

The case studies described in Section IV showed that Ichi
Tracker required about 1 to 4 min. to get the output results.
These response times might be slow as an interactive tool.
However, the current implementation of Ichi Tracker is a
prototype to validate our approach to the integrated code
history tracker, so the performance of Ichi Tracker is not
our main focus now.

There is room for a significant improvement of the perfor-
mance. Currently, Ichi Tracker sequentially downloads the
source code files after it receives the header lists of the
search results from the code search engines. This process
could be parallelized and speed up by using multiple down-
load threads. However, the overall performance might be
bounded by the performance of the code search engines and
the network environment.

D. Quality of Search Result
It is not straightforward to evaluate the quality of the

search result of Ichi Tracker, since this tool heavily depends
on external search engines whose detailed insides are not
known to us. Especially, the source code repositories for
those external engines should be investigated for the recall
computation of our tool, but we cannot do it.

We would consider the ratio |R|/|SR| is an indicator of
the precision of the external search engines. For example,
as shown in Table I-A, 25/33 at iteration 5 gives 0.76. This
does not indicate that we will have 24% false positive results
in the final output. The code clone filter will remove those
false positive results, so that the remaining final results will
always contain code clones for the input query qc.

E. Threats to Validity
The empirical studies we have conducted have several

threats to validity.
First, we have selected three targets for the case studies. If

we had chosen different targets, then we might have different
consequences. We have several other trials with different
target files, and have found no significant differences from
those case studies. However, we would need to accumulate
the experiences of various kinds of targets.

We have used CCFinder as a code clone detector for
filtering out the unrelated query results, and it may report
false positives, as mentioned before. We would assume the
ratio of the false positive is fairly low, but we might need
to check with different code clone detectors.

VI. RELATED WORKS

A. Origin and Evolution of Code
There are many research studies on analyzing and tracing

code origin, provenance, evolution, genealogy, and so on
through code clone analysis [9], [16], [17], [19], [24], [32].
Duala-Ekoko et. al propose Clone Tracker to trace and
manage code clone history [7]. They have developed a
tool for supporting clone tracking, with an abstract clone
information named clone region descriptor. Davies et. al.
propose Software Bertillonage for determining the origin of
code entities with anchored signature matching method [6].

These researches are closely related to our work. However,
their objectives are different from ours in the sense that
they analyze various characteristics of code fragment in their
local repositories. In our case, we analyze the origin and
evolution of the query code in Internet repositories.

B. Code Search Engines

Code search is not only a very emerging research area,
but also a very useful resource for software engineers these
days [1]. We have used Google Code Search, Koders, and
SPARS/R as the code search engines here. In addition to
these ordinary keyword-based search engines, many com-
plicated search mechanisms have been proposed. Javacio
is a meta search engine for source code, JAR files, and
documents, which executes a query for a keyword set and
returns search results using Google Code Search, Koders and
others [13]. Exemplar is a code search engine which expands
the user’s query keywords to API calls by a dictionary
made by help documents [11]. CodeBroker is an interactive
development tool to support code completion by searching
and providing useful code fragments in the repository, which
flexibly extracts various information from a partial code
fragment on edit, and finds appropriate artifacts [35]. There
are many other approaches to code search, and Grechanik
el. al. have well summarized and classified those engines
in [11]. However, none of these engines have features of
accepting code fragments as their inputs or filtering out non-
clone search results.

PARSEWeb is similar to our system in the sense they use
code search engines for collecting source code [33]. It uses
a type matching query such as Source → Destination,
and generates method invocation sequences as the output.
Also, PARSEWeb performs a code analysis to extract the
method invocation sequences. Our approach uses the code
search engines as the resource of code collection too, but
the query input is a code fragment, and the resulting output
is the code fragments containing code clones with the query
code fragment. Also, we use the code clone filter for the
elimination of unrelated code fragments returned from the
code search engines.

LChecker takes a similar approach to the license com-
pliance of the target source code file [36]. It tokenizes the
input source file, and makes a query to Google Code Search.
The resulting license information is compared to the query
file. This system targets only the license compliance without
tracking overall history of code.

There are various different code search engines with
different types of query inputs and search mechanisms, but
none of those provides the code search features with both
the code fragment query input and the code clone filter.

C. Open Source Repositories

There are many useful open source repositories on the
Internet. One example is SourceForge [29], in which we
can find thousands of very active open source development
projects. However, it does not provide a precise code search
feature but it shows the overall project information. Schwarz
et. al. proposes an idea of linking method of clones across
repositories [28], without actual implementation. Sourcerer

is a large-scale software repository with keyword and finger-
print based search features [23]. These repositories will be
very important and useful resources of the open code clone
search if they would provide sufficient features to locate the
specific source code fragments.

D. Code Clone Detection and Management

There are many active researches on code clone detection
and analysis [5], [27]. Among those, there are works focus-
ing on code clone search with scalability and performance
for the large scale repositories. Lee et. al. proposes a clone
indexing method for detecting similar code fragment in
a large repository [20]. Keivanloo et. al. also proposes a
hybrid approach to real-time and scalable code clone search
using two types of indexing [18]. Those are important and
useful techniques for the code clone search for the local
repositories; however, to explore code history of open source
systems, we have to collect a huge amount of code and to
keep updated everyday by ourselves. Our approach does not
require such overhead.

VII. CONCLUSION

In this paper, we have proposed an integrated model to
code history tracking, and presented the detailed processes of
Ichi Tracker which is a prototype system for the model. We
have conducted experiments with several case studies, which
show the applicability and effectiveness of our approach.

There are several future works. One is to improve the
performance and usability of the current prototype imple-
mentation of Ichi Tracker, by which users can use the system
interactively. Another would be to explore a unified approach
of local repositories and Internet repositories, by which we
might get more better recall with sufficient performance.

One interesting idea to extend the history tracking is to use
the search results as the new search queries. Repeated tries
of this loop would change the queries gradually from the
original code, and might produce morphed code. Tracking
such code chain will be a new challenge.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their
useful comments. Our colleagues, Yoshiki Higo, Norihiro
Yoshida, and Takashi Ishio, have contributed to this work
for their valuable suggestions and supports. This work has
been partially supported by Japan Society for the Promo-
tion of Science, Grant-in-Aid for Scientific Research (A)
(No.21240002), Exploratory Research (No. 23650015), and
Global COE Program (Founding Ambient Information So-
ciety Infrastructure), and also by Mext for the Development
of Next Generation IT Infrastructure (the Stage Project).

REFERENCES

[1] S. Bajracharya, A. Kuhn, and Y. Ye (ed.), “Workshop on
Search-driven Development: Users, Infrastructure, Tools and
Evaluation”, Cape Town, South Africa, May 2010.

[2] S. Bellon, R. Koschke, G. Antiniol, J. Krinke, E. Merlo,
“Comparison and Evaluation of Clone Detection Tools”, IEEE
Trans. on Software Engineering, Vol. 33, No. 9, pp. 577-591,
Sep. 2007.

[3] Black Duck Koders, http://www.koders.com/.
[4] The BSD License, http://www.opensource.org/licenses/bsd-

license.
[5] J. Cordy, K. Inoue, R. Koschke, and S. Jarzabek (ed.), “5th

International Workshop on Software Clones (IWSC 2011)”,
Honolulu, Hawaii, May 2011.

[6] J. Davies, D. M. German, and M. W. Godfrey, “Software
Bertillonage: Finding the Provenance of an Entity”, Proc. of
Working Conference on Mining Software Repositories (MSR
2011), pp. 183-192, Honolulu, Hawaii, May 2011.

[7] E. Duala-Ekoko, M. P. Robillard, “Clone Region Descriptors:
Representing and Tracking Duplication in Source Code”, ACM
Tran. on Software Engineering, Vol. 20, No. 1, Article 3, pp.
3.1-3.31, Jun. 2010.

[8] D. German, Y. Manabe, and K. Inoue, “A Sentence-Matching
Method for Automatic License Identification of Source Code
Files”, Proc. of Automatic Software Engineering, Antwerp,
Belgium, pp.437-446, Sep. 2010.

[9] M. Godfrey, and L. Zou, “Using Origin Analysis to Detect
Merging and Splitting of Source Code Entities”, IEEE Tran.
on Software Engineering, Vol. 31, No. 2, Feb. 2005.

[10] Google Code Search, http://www.google.com/codesearch.
[11] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk,

and C. M. Cumby, “A Search Engine for Finding Highly
Relevant Applications”, Proc. of 32th International Conference
on Software Engineering (ICSE 2010), pp. 475-484, Cape
Town, South Africa, May 2010.

[12] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and
S. Kusumoto, “Ranking Significance of Software Components
Based on Use Relations”, IEEE Trans. on Software Engineer-
ing, Vol. 31, No. 3, pp. 213-225, Mar. 2005.

[13] javacio.us, http://javacio.us/.
[14] jMonkeyEngine 3.0, http://jmonkeyengine.com/.
[15] T. Kamiya, S. Kusumoto, K. Inoue: “CCFinder: A Multilin-

guistic Token-Based Code Clone Detection System for Large
Scale Source Code”, IEEE Trans. on Software Engineering,
Vol. 28, No. 7, pp. 654-670, July 2002.

[16] C. Kapser, and M. W. Godfrey, “’Cloning considered harmful’
considered harmful: Patterns of cloning in software”, Empirical
Software Engineering, Vol. 13, No. 6, pp. 645-692, 2008.

[17] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue,
“MUDABlue: An Automatic Categorization System for Open
Source Repositories”, J. of Systems and Software Vol. 79, No.
7, pp.939-953, 2006.

[18] I. Keivanloo, J. Rilling, and P. Charland, “SeClone - A Hybrid
Approach to Internet-Scale Real-Time Code Clone Search”,
Proc. of 19th International Conf. on Program Comprehension,
pp. 223-224, Kingstion, Canada, June, 2011.

[19] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empir-
ical study of code clone genealogies,” Proc. of Foundations of
Software Engineering (ESEC/FSE 2005), Vol. 30, No. 5, pp.
187-196, Lisbon, Portugal, Sep. 2005.

[20] M. Lee, J. Roh, S. Hwang, and S. Kim, “Instant Code
Clone Search”, Proc. of 18th International Symposium on
Foundations of Software Engineering, pp. 167-176, Santa Fe,
NM, Nov. 2010.

[21] Utah Lites Release 1.1.u3,
http://www.cs.utah.edu/flux/lites/html/.

[22] S. Livieri, Y. Higo, M. Matsushita, K. Inoue, “Very-Large
Scale Code Clone Analysis and Visualization of Open Source
Programs Using Distributed CCFinder: D-CCFinder”, Proc. of
29th International Conference on Software Engineering (ICSE
2007), pp.106-115, Minneapolis, MN, May 2007.

[23] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and
P. Baldi,”Sourcerer: Mining and Searching Internet-scale Soft-
ware Repositories”,Data Mining and Knowledge Discovery,
Vol. 18, No. 2, pp. 300-336, April 2009.

[24] A. Lozano, M. Wermelinger, B. Nuseibeh, “Evaluating the
Harmfulness of Cloning: A Change Based Experiment”, Proc.
of Mining Software Repositories (MSR 2007), p. 18-21, Min-
neapolis, MN, May 2007.

[25] C. Ebert (ed.), “Open Source Software in Industry”, IEEE
Software, Vol. 25, No. 3, pp. 52-53, May/June 2008.

[26] Maven Central Repository, http://search.maven.org/.
[27] C. K. Roy, James R. Cordy, R. Koschke, “Comparison and

Evaluation of Code Clone Detection Techniques and Tools:
A Qualitative Approach”, Science of Computer Programming,
Vol. 74, No. 7, pp. 470-495, 2009.

[28] N. E. Schwarz, E. Wernli, and A. Kuhn, “Hot Clones,
Maintaining a Link between Clones across Repositories”, Proc.
4th International Workshop on Software Clones (IWSC 2010),
pp. 81-82, Cape Town, South Africa, May 2010.

[29] SourceForge, //http://sourceforge.net/.
[30] SPARS Project,

http://sel.ist.osaka-u.ac.jp/SPARS/index.html.en.
[31] SSHTools Source Repository,

http://sourceforge.net/projects/sshtools/.
[32] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di

Penta, “An empirical study on the maintenance of source code
clones”, Empirical Software Engineering, Vol. 15, No. 1, pp.
1-34, 2009.

[33] S. Thummalapenta, T. Xie, “PARSEWeb:A Programmer As-
sistant for Reusing Open Source Code on the Web”, Proc.
of 22nd International Conference on Automated Software
Engineering (ASE 2007), pp. 204-213, Atlanta, GA., Nov.
2007.

[34] S. Uchida, A. Monden, N. Ohsugi, T. Kamiya, K. Matsumoto,
and H. Kudo, “Software Analysis by Code Clones in Open
Source Software”, Journal of Computer Information Systems,
Vol. 45, No. 3, pp. 1-11, 2005.

[35] Y. Ye, and G. Fischer, “Supporting Reuse by Delivering Task-
Relevant and Personalized Information”, Proc. of International
Conference on Software Engineering (ICSE 2002), pp. 513-
523, Orlando, FL, May 2002.

[36] H. Zhang, B. Shi, and L. Zhang, “Automatic Checking of
License Compliance”, Proc. of 26th International Conf. on
Software Maintenance, Timisoara, Romania, Sep. 2010.

[37] The zlib/libpng License,
http://www.opensource.org/licenses/zlib-license.

